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Abstract- Models plays a vital role in understanding 

microbial growth in wastewater treatment and 

bioremediation processes, as is, in safe food 

production, microbe-mediated and mining among 

others. However, it is also gaining popularity in 

optimization designs. A study was undertaken to 

predict microbial growth in anaerobic digestor 

using Gompertz and logistic models. The objective 

was to determine the growth parameters and 

compare the performance of these primary models 

in anaerobic digestion (AD). Three isolates from 

brewery waste water closely related to Bacillus 

subtilis, Bacillus methylotrophicus and 

Lysinibacillus species were used as inoculum and 

their growth monitored based on optical density 

(OD) at the same conditions but different initial cell 

concentration. Microbial population growth data 

were fitted to the modified logistic function and 

Gompertz function using Marquardt algorithm and 

the comparison was based on both the Alkaike 

Information Criterion value (AIC), Residual Sum of 

Squares and R
2
values. 

 

All the models had a high goodness of fit (R
2
> 0.93) 

for all growth curves for three isolates, in all the 

cases. However, Gompertz model was accepted in 

66.67% of the cases based on the AIC values and 

also supported by the R
2 
> 0.95values and small RSS 

values. The models provided knowledge to define 

the growth of the methanogenic community in a 

bio-digester as a function of time, which could be 

used for maximum utilization of the exponential 

phase of the microbial growth for production of 

biogas. This indicates the practicality of applying 

Gompertz model to actual anaerobic digestion of 

brewery waste water. Growth parameters like the 

rate of increase in the number of cells per unit time 

and lag time were determined from the models. 

Indexed Terms- Anaerobic digestion, Biogas, 

Gompertz, Logistic, Microbial growth Models. 

 

I. INTRODUCTION 

 

As the utmost common process for the biological 

treatment of wastewater and biogas production, AD 

has gained significant importance, albeit problems 

such as low methane yield and process instability, 

preventing this technique from being widely used [1], 

[2]. This process requires synergistic efforts of 

various microorganisms in various steps including 

hydrolysis, acidogenesis, acetogeneisis and 

methanogenesis, where the products of one step are 

utilized in the next one finally culminating in the 

production of biogas [3] 

Acid forming and the methane forming 

microorganisms vary broadly in terms of structure, 

nutritional needs, growth kinetics, and sensitivity to 

environmental conditions. Thus, balance between 

these two groups of microorganisms has to be 

maintained ,to reduce possibilities of  reactor 

instability [1]. In addition, the low growth rates and 

the susceptibility of the organisms to toxins enhances 

the difficulties in the optimization of methanogenesis 

[4]. Investigation of these methanogens can not only 

assist in the classification but also in the optimization 

of the AD systems [5].Thus, the study builds on the 

primary microbial growth models developed by 

Gomperzt and Logistic to describe the growth of the 

methanogenic community in a bio-digester as a 

function of time. 

 

Microbial models  can be classified as primary, 

secondary or tertiary [6], [7]. Primary models 
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describe how the number of microorganisms in a 

population changes with time under specific 

conditions. Secondary models relate the primary 

model parameters to environmental or intrinsic 

variables such as temperature or pH. Tertiary models 

combine primary and secondary models with a 

computer interface providing a complete prediction 

tool [8], [9]. Several primary growth models exist in 

the literature, such as the models by Gompertz, 

Richards, Stannard et al., Schnute, and the logistic 

model among others [10], [11].These mathematical 

expressions have been modified to which give 

biological meaning to the parameters as illustrated in 

Table 1,and they differ in “ease of use” and number 

of parameters in the equation [12].  

 

Model selection seems to be biased though, 

Gompertz, Richards, and logistic, are the most 

commonly used [9], [13]. The models have different 

number of growth parameters defined by the growth 

curve thus there may be  difference in the results 

obtained using different growth models [11]. The 

behaviour of different growth models have been 

compared in literature ranging from different 

mathematical measures of goodness of fit and/or 

other statistical criteria [14]. Direct comparisons of 

specific growth parameters as predicted by various 

models have also been explored with different 

conclusions, hence, there is substantial disparity in 

literature on which is the best-fitting model for 

predicting microbial growth [13], [15].The modified 

stannard equation appears to be the same as the 

modified Richards equation (Table 1), with four 

growth parameters (A,  max,  and ).The ,in the 

four parameter models represents the shape 

parameter which is difficult to explain biologically, 

and are significantly better to use when a large 

number of datum points are collected. However, three 

parameter models have more degrees of freedom for 

the parameter estimates which can very useful when 

applied to growth curves of small number of 

measured points [11]. 

 

Plotting the population growth verses time data 

yields a typical bacterial growth curve which is 

usually divided into the lag phase, exponential 

phase, stationary phase and the death phase as 

illustrated in Figure 2 [16]. 

 Lag Phase. 

After inoculation of the cells into fresh medium, the 

population remains temporarily unchanged during 

this phase. The cells may grow in volume or mass, 

synthesizing enzymes, proteins, RNA, etc., and 

increase in metabolic activity, though no apparent 

cell division occurs. The duration of the lag phase 

depends on number of factors, including, but not 

limited to the initial cell concentration, the time 

required to recover in the transmission from physical 

damage or shock, time required for synthesis of 

essential coenzymes or division factors, and time 

required for synthesis of new enzymes that are 

necessary to metabolize the substrates present in the 

medium. In this phase, the growth is approximately 

equal to zero, thus; 

0dN
dt
  [1] 

Where N represents the number of cells. 

 

 Exponential (log) phase. 

The cells divide at a constant rate by binary fission 

and grow by geometric progression depending on the 

growth medium and the conditions of incubation 

[17]. The rate of exponential growth of a bacterial 

culture is expressed as generation time (doubling 

time) of the bacterial population. The growth can be 

represented as; 

0 1 2 3 4 5 n
Z Z N Z N Z N Z N Z N Z N       

Where n represents the number of doublings occurred 

after some time interval.  

Thus, 

tn
t
d

  [2] 

Where, dt  is the doubling time in hours. It follows 

therefore that the number of cells present at time t, in 

relation to the initial population is given as; 

0 2n

tN N  [3] 

Where, n= represents the number of generation, 

tN =Final number of cells 

oN =Initial number of cells 

Substituting the value of n in equation [3] gives; 

0 02 2 d

t
tn

tN N N   [4] 

Similarly, 
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0

2 d

t
ttN

N
               [5] 

Taking logarithms, 

0

( ) 2 d

t
ttN

In
N

  

Which is the same as, 

0( ) 0.693t

d

InN InN

t t


            [6] 

Plotting the natural logarithm of the number of cells 

against time of incubation should yield as straight 

line whose slope is equivalent to 
0.693

dt
 Thus, 

0.683( )
d

d InN dt
t

            [7] 

The specific growth rate constant (the rate of increase 

in the number of cells per unit time) can be given by; 

( )d InN dN

dN dt
  

( ) 1 0.683

d

d InN dN dN

dN dt N dt t
             [8] 

Where;  

1 dN

N dt
  is the specific growth rate,  and the units 

are in reciprocal hours (h
-1

). 

 

 Stationary phase. 

The growth of bacterial usually goes through a phase 

in which the specific growth rate starts at a value of 

zero and then accelerates to a maximal value ( max

), in a certain period of time. The asymptote is the 

maximal log10 N value reached resulting to 

maximum population. In a batch culture, population 

growth is controlled by a number of factors without 

limitation, to exhaustion of available nutrients; 

accumulation of inhibitory metabolites or end 

products; and exhaustion of space thus limiting the 

exponential growth [16], [18]. During the stationary 

phase, if viable cells are being counted, it cannot be 

determined whether some cells are dying and an 

equal number of cells are dividing, or the population 

of cells has simply stopped growing and dividing. 

The stationary phase, like the lag phase, is not 

necessarily a period of dormancy. 

 

 Death phase. 

During the death phase, the number of viable cells 

decreases geometrically (exponentially), essentially 

the reverse of growth during the log phase, and 

cannot be observed if counting is done by 

turbidimetric measurements or microscopic counts. 

Generally, data on growth curves are necessary to 

define and construct predictive models in anaerobic 

digestion. For reduction of measured data to 

important growth parameters in microbial growth, 

models play an important role as opposed to using 

linear regression [6], [9], [13], [19]. 

 

II. MATERIALS AND METHODS 

 

 Microorganism and culture medium 

Three isolates closely related to Bacillus subtilis, 

Bacillus methylotrophicus and Lysinibacillus species 

as identified through sequencing from brewery 

wastewater were used as inoculum [20], [21]. Freshly 

cultured 12 hour old cells of were used in this 

experiment. 200µl of the cells were inoculated in 

800µl brewer Thyglycollate media after autoclaving 

at 121ºC and incubated in a Labtechdhaihan shaking 

incubator at 250 rpm. The initial turbidity was 

observed by taking the OD600 nm values using a 

spectrophotometer at incubation time of zero for all 

the organisms. Incubation was done at 37ºC and the 

OD values were taken at the time intervals of 0, 1, 2, 

4, 6, 15, 18, 22, 24, and 28 hours respectively in 

triplicates until the readings were constant. To reduce 

effect of cell multiplication during turbidity 

determination, the samples were placed in a freezer 

until the readings were recorded. 

 

 Fitting of the experimental data 

Non-linear regression in R programming language 

and Marquardt algorithm were used to fit the 

microbial population growth data to the modified 

logistic function and Gompertz function as illustrated 

in equation [9] and [10] respectively. 

0 4 max
log10 ( ) log10

(1 exp[ ( ) 2])
A

A
N t N

t 
 

  

     [9]  

max.
log10 ( ) log10 exp{ exp[ ( ) 1]}

e
N t No A t

A


    

      [10] 

Where A is given by equation [11]  
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max
log10

N
A

No


   [11] 

 

 max is as illustrated in equation [8], while   and t 

represent the lag time and time of incubation 

respectively. Marquardt algorithm minimizes the sum 

of the squares of the differences between the 

predicted and measured values. It automatically 

calculates starting values by searching for the 

steepest gradient of the curve as illustrated in 

equation [8] between four datum points (estimation 

of µmax), by intersecting this line with the x axis 

(estimation of λ), and by taking the final datum point 

as estimation for the asymptote (A)[11], as illustrated 

in equation [11]. The algorithm then calculates the set 

of parameters with the lowest residual sum of squares 

(RSS) and their 95% confidence intervals. The death 

phase was not considered in this study. 

 

 Model comparison 

Data fits obtained by using the growth models were 

compared statistically by the use of Akaike 

Information Criterion (AIC) [22] based on 

information theory, r
2
,and RSS [9], [10],with 95% 

confidence limits. The AIC is defined by equation 

[12]. 

ln 2
SS

AIC N K
N

 
          [12] 

Where N represents the number of data points, K is 

the number of parameters fit by the regression plus 

one, since regression is estimating the sum of squares 

as well as the values of the parameters, and SS is the 

sum of square of the vertical distances of the points 

from the curve. An AIC value can be positive or 

negative and the sign doesn‟t have a meaning since it 

can be changed using different units to express data. 

Models were compared by evaluating the difference 

between the AIC values in which the model with the 

smallest AIC values was taken as the most likely to 

be correct. 

 

III. RESULTS AND DISCUSSION 

 

Table 2 shows the growth parameters as estimated by 

the Gompertz and logistic models for the growth 

curves of the three isolates closely related to Bacillus 

subtilis, Bacillus methylotrophicus and Lysinibacillus 

species plotted with the log of N values. All the 

models gave a good fit of data, and provided the 

values that could be expected for growth parameters 

of the three growth curves selected of this 

microorganism, although they gave different 

estimates of the growth parameters. 

 

Figure 1 shows the growth curve fitted with both 

Gompertz and logistic models for isolate closely 

related to Bacillus Subtilis. When comparing the 

growth rate values given by the two models Table 2, 

Gompertz gave the lowest growth rate of (0.355-

2.680) cells h
-1

 with a lag time of (3.762-4.725) hours 

while logistic had a growth rate of (0.397-1.890) cells 

h
-1

 with a lag time of (3.982-5.588) hours. The R
2
 

value for the logistic model was as low as 0.979, with 

a high SSE value of 0.026 as compared to values 

from Gompertz model. The logistic model was also 

found to have a high AIC value thus, Gompertz 

model was found to be the most likely model to be 

correct as it had the best fit for the isolate. 

 

For the isolate closely related to the Lysinibacillus 

.Sp, Logistics model gave the highest growth rate 

values of (0.245-2.014) cells h
-1

 with a lag time of 

(3.183-5.620) hours while Gompertz had a growth 

rate of (0.257-2.217) cells h
-1

 with a lag time of 

(3.172-4.809) hours. The R
2
 value for the logistic 

model was as low as 0.944 , with a high RSS value of 

0.087 as compared to R
2
 and RSS value of 0.962 and 

0.0447 respectively for the Gompertz model. 

Gompertz model however, had a lower AIC value 

thus, it was found to be the most likely model to be 

correct for isolate closely related to Lysinibacillus. 

Sp. 

 

Gompertz model had the lowest values for the 

estimated growth parameters as (0.117-0.637) cells h
-

1
 for growth rate and lag time of (3.648-5.599) hours 

as compared to (0.167-1.939) cells h
-1

 and (4.252-

5.873) hours respectively for logistic model, 

Figure3.The AIC value and RSS value for the 

Gompertz model were also observed to be lower. 

However, the R
2
 value for all the models were above 

0.995. Basing on the AIC value, the Gompertz model 

was found to be the most likely to be correct. 

 

All the models provided a high goodness of fit (R
2
> 

0.93) for all growth curves for three isolates, in all 
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the cases. The differences between the Gompertz and 

logistic models were not significant. This is in line 

with the findings of Longhi et al., 2013. However, 

Gompertz model was accepted in 66.67% of the cases 

based on the AIC values and also supported by the 

R2> 0.95values and small RSS values. The lag 

stages, slopes and constant growth stages for all the 

growth curves representing the growth of these  

microorganism were in line with, lag, exponential  

and stationary growth phases as reported in literature 

[6], [9], [11], [13]. The lag time and growth rates 

were also different  although all the microorganism 

were grown in the same conditions, depicting 

different adaption times for different microorganisms 

[18], [23].This information could be useful in the 

determination of the sludge retention time for the 

methanogenesis step in order to allow maximum 

contact of the feedstock and the bacterial mass and to 

minimize transport problems related to toxins with 

respect to substrate compounds, intermediate and end 

products[1], [4]. 

CONCLUSION 

 

The models provided knowledge to define the growth 

of the methanogenic community in a bio-digester as a 

function of time, which could be used for maximum 

utilization of the exponential phase of the microbial 

growth for production of biogas. This indicates the 

practicality of applying Gompertz model to actual 

anaerobic digestion of brewery waste. 
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Table 1: Primary microbial growth models and their biological modified forms

  

MODEL  MATHEMATICAL EQUATION MODIFIED EQUATION 

Logistic  
 

[1 exp( )]

a
y

b cx


 
 

max4
{1 exp[ ( ) 2]}

o
A

y y

t
A




 

  

 

Gompertz exp[ exp( )]y a b cx     max .
exp{ exp[ ( ) 1]}o

e
y y A t

A


      

Richards    

1
( ){1 .exp[ ( )}y a k x


      

max 1 1
{1 .exp(1 ).exp[ .(1 )(1 ).( )]}( )oy y A t

A


   

 
         

Stannard 
 ( )

(1 )
{1 exp[ ]} p

kx
y a

p



    

max 1 1
{1 .exp(1 ).exp[ .(1 )(1 ).( )]}( )oy y A t

A


   

 
         

Schnute 
1

2 1

1 exp[ ( )] 1
{ ( ). }

1 2 1 1 exp[ ( )]

b b b a t
y y y

a b



 

  
  

  
y  

(1 ) 1 .exp( . 1 ) 1
( max )[ ]

1
o

b b a b at
y y

a b b




    
 


 

Source:  modified from Zwietering, 1990 

 

Legend; a, b, c are mathematical parameters, A is the 

asymptote of growth curve when population reaches 

maximum, max is the maximum of specific 

growth rate,  is the lag time. 

 

 

Table 2:  Estimated growth parameters and their 95%confidencelimits for isolates closely related to Bacillus subtulis, 

Lysinibacillus.spand Bacillus methylotrophicus
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Isolate 
Growth 

Model 

Initial 

Concentration 

(No) 

Asymptote 

A(cells) 

Growth 

rate(µmax)cells 

h-1 

Lag time (λ)( h) 

Akaike 

information 

criterion (AIC) 

R2 SSE 

         

         
B.Subtilis Gompertz 9.204 9.9 0.743 4.702 -26.253 0.986 

0.01

6 

  
(9.141 - 9.232) 

(9.863 - 

9.933) 
(0.355 - 2.680) (3.763 - 4.725) 

   

         

 
Logistic 9.204 9.9 1.548 5.468 -25.252 0.979 

0.02

6 

  
(9.158 - 9.227) 

(9.863 - 

9.933) 
(0.397 - 1.890) (3.982 - 5.588) 

   

         
Lysinibacillus.sp Gompertz 9.204 9.916 7.05 x 10-1 4.719 -15.212 0.962 

0.04

7 

  
(9.144 - 9.252) 

(9.880 - 

9.980) 
(0.257 - 2.217) (3.171 - 4.809) 

   

         

 
Logistic 9.204 9.916 1.64 5.523 -15.212 0.944 

0.08

7 

  
(9.145 - 9.258) 

(9.876 - 

9.979) 
(0.245 - 2.014) (3.183 - 5.620) 

   

         
B.methylotrophi

cus 
Gompertz 8.901 9.733 0.238 4.733 -29.625 0.993 

0.01

1 

  
(8.865 - 8.930) 

(9.704 - 

9.759) 
(0.117 - 0.637) (3.648 - 5.599) 

   

         

 
Logistic 8.903 9.733 0.971 5.693 -29.588 0.981 

0.03

1 

  
(8.865 - 8.935) 

(9.705 - 

9.766) 
(0.167 - 1.939) (4.252 - 5.873) 
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Figure 1: Growth curve for isolate closely related 

toBacillus subtilis at 37  C and pH 7.2 fitted with the 

Gompertz and logistic model 

 

 
Figure 2Growth curve for isolate closely related to 

Lysinibacillus. Sp at 37 C and pH 7.2 fitted with the 

Gompertz and logistic model: 

 

 
Figure 3: Growth curve for isolate closely related to 

Bacillus Methylotrophicus at 37   C and pH 7.2 

fitted with the Gompertz and logistic model 
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