Calculation Of Entropy of Azoles by Density Functional Theory Program DGAUSS Method

P.K. SINGH

Department of Physics, M.L.K. P.G. College, Balrampur, U.P.

Abstract- I have calculated the entropy of azoles (1,2,3-Triazole, 1,2,4-Triazole, Imidazole, Tetrazole, Pyrrole, Pyrazole, Pentazole,) at different temperatures starting form 200 k. to 600 k. with DFT program. Entropy is the measure of disorder of molecules. As disorder increases, entropy increases. the increment in the entropy of azoles decreases with increase in temperature.

Indexed Terms- Azoles, Cache Software, density functional theory, Entropy,

I. INTRODUCTION

Entropy is a measure of the number of specific ways in which a system may be arranged, often taken to be a measure of disorder, or a measure of progressing towards thermodynamic equilibrium. The entropy of an isolated system never decreases, because isolated systems spontaneously evolve towards thermodynamic equilibrium, which is the state of maximum entropy. An azole is a class of fivemembered nitrogen heterocyclic ring compounds containing at least one other non-carbon atom of either nitrogen, sulfur, or oxygen.

In recent work Rodgers & Armentrout have developed methods to allow the application of quantitative threshold collision induced dissociation methods to obtain accurate thermodynamic is formation on increasingly large system. Many researchers examine the interactions of the family of five-members heterocyclic containing nitrogen. The azoles, with alkalions. The systems were chosen as models of noncovalent interactions with nucleic acids and possibly of selective cation transport through biological membranes. The azoles are building blocks for many antibiotics, anticancer agents and drugs used in the treatment of AIDS. Tetrazoles are used as promoters for synthesis of a variety of biopolymers. The large nitrogen content also makes the azoles important as

high energy density compounds useful in explosives and fuels and as clean sources of nitrogen in thin film deposition. Since there is a lot of application of azoles in different fields therefore, we chose this compound for present study. We have calculated the thermodynamic properties entropy of azoles and if, derivatives. The heat of formation can be obtained experimentally, but when a compound is unstable or difficult to purity, experimental heat of formation becomes increasingly difficult to measure. The experimental heat of formation exists for azoles up to three nitrogen atoms. From heat of formation, it is often quite easy to estimate the corresponding heat of reaction at room temperature. Calculations of entropy could provide an extremely useful criterion of reaction mechanism since they depend critically upon the geometry of transition state and the strength and type of bonding init.

II. MATERIAL AND METHODS

The thermodynamic properties entropy, are calculated by density functional theory program DGauss. This program is available in Cache Software. Cache provides access to MOPAC methods through a windows or Macintosh environment. This section provides reference information about the kinds of computations possible using MOPAC theory and specific information about the Cache computational application, MOPAC. The Cache MOPAC (Molecular Orbital Package) application determines both an optimum geometry and the electronic properties of molecules by solving the Schrodinger equation using the semi-empirical Hamiltonians AM 1, PM3andPM5, development by M.J.S. Dewar and J.J.P. Stewart respectively. Cache also supports the older parameter sets, MNDO and MINDO/3, and the newer parameter set. MNDO-d. In addition. Cache extends AM 1 to AM 1/d.

DGauss can generate thermodynamic properties using

statistical mechanics. DGauss calculates an energy that corresponds to the bottom of an energy well. The energy of the molecule at O.K. also includes the Zeropoint energy, which is a sum of all the vibrational energies (One-half of the frequency for each vibrational mode). The vibrational frequencies obtained by DGauss are combined with the molecular geometry and symmetry to calculate vibrational, rotational and translational contributions to the entropy, enthalpy and heat capacity of the molecule.

These calculations assume ideal gas behave down too. k, and do not include contributions due to condensedphase interactions or phase transitions. The standard partition functions are used to express the heat capacity, enthalpy correction (that is, the heat needed to change the ideal gas temperature from o.k. to the temperature under consideration) and entropy at a given temperature as a sum of translational, rotational and vibrational contributions. Low frequency vibrations, those with frequencies smaller than 350 cm⁻¹, are excluded from the vibrational contributions as these typically describe free internal rotations. The enthalpy at a given temperature is expressed as a sum of the energy, the zero-point energy and the enthalpy correction.

$H(T) = E + E_{\text{zeropoint}} + \Delta H(T).$

The enthalpy, H(T), and entropy, S(T) are combined to provide the free energy at a given temperature as G(T)=H(T)-TS(T)

III. RESULTS AND DISCUSSION

Entropy is the measure of disorder of molecules. As disorder increases, entropy increases. We have reported the entropy of 1,2,3-triazole, 1,2,4 triazole, imdazole, pentazole, pyrazole, pyorle and tetrazole at different temperature in table-1. It is clear form table that entropy increases as the increase of temperature standard value of entropy is takes at 298 K temperature. At 298 K temperature, the entropies of 1,2,3-triazole is 65.237, 1,2'4-triazole is 65.133, imidazole is 66.033, pentazole is 62.947, pyrazole is

65.954, pyrrole is 64.325 and tetrazole is 64.742. In all azoles, the entropy of pentazole is least while entropy of imidazole is highest. The entropy of azoles is in following order Imidazole > Pyrazole > 1,2,3-triazole > 1,2,3-triazole > tetrazole > Pyrrole > Pentazole. The above order of entropy is also found at higher temperatures.

The translational contribution of entropy depends only on the temperature, molecular weight and a number of fundamental constants. While vibrational contribution of entropy depends critically the accuracy of the lower vibrational frequencies. Since the vibrational contribution of entropy at moderate temperatures are relatively small, any errors in the vibrational contribution of entropy are correspondingly reduced in importance in calculating overall entropy. We can also calculate the entropy of reaction as a function of temperature. The entropy of activation, is a measure of the looseness of the transition state and also a reflection of the complexity of the system. If is largely determined by the molecular parameters used to model the energized molecule and the transition state, but also depends upon the threshold energy. Rodgers and Armen trout have calculated the entropies of activation of azoles at 1000k.butinthe present study we have calculated the entropy of azoles at different temperatures starting form200 k. to 600 k. with DFT program. The difference between entropy of 1,2,3triazole between temperatures 200 k and 220 k is 1.045 cal/mol/kelvin while between temperatures 580 k and 600 k it is 0.909. Thus, the increment in the entropy of 1,2,3-triazole decreases with increase in temperature. Similar trends are also observed in 1,2,4-triazole, imidazole, pentazole, pyrazole, pyrrole and tetrazole. In a number of cases, it is possible to compare the theoretical values of entropy with those determine calorimetrically. For this comparison to be meaningful, the experimental values should be corrected for gas imperfection often the greatest source of uncertainty in these data. The values of entropy determined calorimetrically, spectroscopically and by DFT are in excellent agreement.

© AUG 2017 | IRE Journals | Volume 1 Issue 2 | ISSN: 2456-8880

TABLE-1

Molecule	Temperature	Entropy	Molecule	Temperature	Entropy	Molecule	Temperature	Entropy
1,2,3-	200	60.197	Pyrazole	200	60.57	Pentazole	200	58.429
Triazole								
	220	61.242		220	61.68		220	59.39
	240	62.273		240	62.78		240	60.324
	260	63.298		260	63.875		260	61.239
	280	64.319		280	64.969		280	62.143
	298	65.237		298	65.954		298	62.947
	300	65.339		300	66.064		300	63.036
	320	66.358		320	67.16		320	63.921
	340	67.375		340	68.256		340	64.799
	360	68.391		360	69.351		360	65.669
	380	69.402		380	70.443		380	66.531
	400	70.409		400	71.532		400	67.384
	420	71.41		420	72.616		420	68.228
	440	72.404		440	73.692		440	69.063
	460	73.389		460	74.761		460	69.887
	480	74.366		480	75.821		480	70.701
	500	75.332		500	76.871		500	71.503
	520	76.287		520	77.911		520	72.294
	540	77.232		540	78.939		540	73.073
	560	78.164		560	79.956		560	73.841
	580	79.085		580	80.96		580	74.597
	600	79.994		600	81.953		600	75.34
1,2,4-	200							
Triazole		60.174	Pyrrole	200	59.004			
	220	61.208		220	60.086			
	240	62.225		240	61.165			
	260	63.232		260	62.248			
	280	64.234		280	63.338			
	298	65.133		298	64.325			
	300	65.233		300	64.435			
	320	66.23		320	65.537			
	340	67.225		340	66.645			
	360	68.217		360	67.756			
	380	69.207		380	68.868			
	400	70.192		400	69.978			
	420	71.171		420	71.086			
	440	72.145		440	72.19			
	460	73.111		460	73.287			
	480	74.068		480	74.377			
	500	75.016		500	75.458			
	520	75.955		520	76.53			
	540	76.883		540	77.592			
	560	77.801		560	78.642			

	580	78.708		580	79.682		
	600	79.603		600	80.71		
Imidazole	200	60.586	Tetrazole	200	59.986		
	220	61.71		220	60.985		
	240	62.823		240	61.963		
	260	63.931		260	62.928		
	280	65.037		280	63.885		
	298	66.033		298	64.742		
	300	66.144		300	64.837		
	320	67.25		320	65.784		
	340	68.356		340	66.727		
	360	69.459		360	67.665		
	380	70.559		380	68.597		
	400	71.655		400	69.523		
	420	72.745		420	70.441		
	440	73.827		440	71.351		
	460	74.901		460	72.252		
	480	75.965		480	73.143		
	500	77.02		500	74.023		
	520	78.063		520	74.893		
	540	79.094		540	75.751		
	560	80.114		560	76.598		
	580	81.121		580	77.433		
	600	82.116		600	78.257		

CONCLUSION

The entropy of 1,2,3-triazole, 1,2,4-triazole, imdazole, pentazole, pyrazole, pyorle and tetrazole at different temperature increases as the increase of temperature Entropy is the measure of disorder of molecules. As disorder increases, entropy increases. The translational contribution of entropy depends only on the temperature, molecular weight and a number of fundamental constants. While vibrational contribution of entropy depends critically the accuracy of the lower vibrational frequencies. The entropy of activation, is a measure of the looseness of the transition state and also a reflection of the complexity of the system.

ACKNOWLEDGEMENT

The authors are highly thankful to the Principal, M.L.K. (P.G.) college, Balrampur, for providing necessary facilities during this work.

REFERENCES

- [1] F.R. Benson, The High Nitrogen Compounds, Wiley, New York,1984.
- [2] G. Karlsson and M. C. Zerner, Int. J. Quantum Chem. 7,35(1973).
- [3] Hyperchem Computational Chemistry Software Package, Version 5.0, Hypercube Inc., Gainesville, FL.,1997.
- [4] N. Subramanvan, K. Ramakrishnaiah, S.V. Iyer, V. Kapali, Corros. Sci. 18(1978)1083.
- [5] R. S. Upadhayaya, S. V. Lahore, A. Y. Sayyed, S. S. Dixit, P. D. Shinde and J. Chadopadhyaya, Org. Biomol, Chem, 2010, 8,2180-2197.
- [6] R.H. Schultz, K.C. Crellin, P.B. Armentrout, J. Am. Chem. Soc. 113 (1992)8590.
- W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A.
 Pople, Ab Initio Molecular Orbital theory, Wiley, New York, 1986, p. 1. C.I. Williams, M.A. Whitehead. J. Mole. Struc. (Theochem)

393, (1997) 9

[8] F.R. Benson, The High Nitrogen Compounds, Wiley, New York, 1984