
© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 143

Quantum Computing and Quantum Algorithms

DUKE VAISHNAV

Department of Computer Science & Engineering, Poornima College of Engineering, Jaipur, Rajasthan

Abstract -- Generally, a classical computer (which works

on a layer of millions of transistors) is said to be an efficient

computing device which can find out the solution of any

computational problem in polynomial order of time .But

with the advent of quantum computers and quantum

algorithms it was found that such computational problems

and the other problems which cannot be solved even by the

classical computers were solved in much lesser time by

these quantum computers. Introductory Topics covered by

this paper include: introduction to quantum computing

and quantum algorithms, a brief description about vector

complex numbers, complex vector spaces, quantum states,

quantum systems, bits, qbits and cbits .the further sections

will include LAS VEGAS algorithm for finding discrete

logarithms and factoring integers on a quantum computer

that take a number of steps which is polynomial in the input

size, these problems are generally thought to be hard on a

classical computer and which have been used as the basis

of several proposed cryptosystems. This review paper is

written with the aim to lay out a foundation for quantum

computing in the minds of readers.

I. INTRODUCTION

The fundamental basis of quantum computation is

Landauer’s observation that all information is

ultimately physical [1, 2]. Information, the 1's and 0's

of classical computers, must inevitably be recorded by

some physical system - be it paper or silicon. Which

brings us to the key point. As far as we know today,

all matter is composed of atoms - nuclei and electrons

- and the interactions and time evolution of atoms are

governed by the laws of quantum mechanics.

Although the peculiarities of the quantum world may

not seem readily apparent at first glance, a closer look

reveals that applications of quantum mechanics are all

around us (see for example Ref. [3]). As has been

emphasized by Minsky [4], the very existence of

atoms owes everything not to the chaotic uncertainties

of classical mechanics, but rather to the certainties of

quantum mechanics with the Pauli exclusion principle

and well-defined and stable atomic energy levels!

Indeed without our quantum understanding of the solid

state and the band theory of metals, insulators and

semiconductors, the whole of the semiconductor

industry with its transistors and integrated circuits -

and hence the computer on which I am writing this

lecture - could not have developed. The same can be

said about quantum optics and lasers: huge industries

- from optical communications to music and video

CDs - have their basis in these intrinsically quantum

technologies.

At bottom then, everything is quantum mechanical

and, like Feynman in his visionary 1959 ‘Plenty of

Room at the Bottom’ talk [5], we can certainly

envisage storing bits of information on single atoms or

electrons. However, these microscopic objects do not

obey Newton's Laws of classical mechanics: instead,

they evolve and interact according to the Schroedinger

equation, the ‘Newton's Law’ of quantum mechanics.

In fact, we know now that even this is only a suitable

approximation for everyday speeds and energies: at

high speeds and energies, we must use the Dirac

equation and Einstein's relativity, with its predictions

of relativistic mass increase and particle antiparticle

creation, must be taken into account. However, for

most of our everyday concerns, it is safe for us to

ignore these complications and use the non-relativistic

version of quantum mechanics embodied by

Schroedinger's equation. Information is ultimately not

an abstract concept - it must be recorded and stored on

media that are fundamentally quantum mechanical.

We must therefore broaden our definition of

information as merely a string of 1's and 0's and

examine the consequences of the quantum nature of

media for information. The implications of this new

field of quantum information theory are still being

explored and may yet deliver more surprises.

However, to introduce quantum computing, we shall

only need a few quantum concepts and principles. But

before we turn to a discussion of qubits and the like,

we must now make an apparently puzzling diversion

and introduce some ideas of Ed Fredkin and Charles

Bennett about reversible computing and reversible

logic gates.

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 144

II. REVERSIBLE COMPUTING

In 1973, Charles Bennett of IBM Research made a

remarkable discovery [6]. Classical computation can

be broken down into a series of steps, each logically

reversible, and this in turn allows physical reversibility

of the computation. This result has implications for the

energy dissipated by the computation. Rolf Landauer,

Bennett's long-term colleague and mentor, had earlier

shown that it is the act of discarding information that

incurs an unavoidable energy loss. This is Landauer's

Principle and, for example, this is now central to our

current understanding of the problem of Maxwell's

Demon as given by Bennett [7, 8]. Bennett's result

means that we can arrange our computer to calculate

reversibly, very slowly, with an energy as small as we

please. In his lectures on computation in the 1980's [9],

Feynman discusses a reversible computer that

calculates for a few steps, then drifts back a bit,

‘uncalculating’ as it goes, before it drifts forward again

to eventually complete the calculation with almost

zero energy loss.

To build such a reversible computer requires us to use

new types of logic gates that are reversible, i.e. from

the output of the gate one can reconstruct the input. It

is easy to see that a conventional AND gate is not

reversible. If the output of an AND gate is 0, the

signals on the two input wires could be any one of

three possibilities - 00, 01 and 10. The possibility of

reversible logic gates was considered by Fredkin and

Toffoli nearly 20 years ago [10]. Let us consider a

simple example. The truth table for a classical NOT

gate is shown below (Fig. 1). It is clearly reversible:

from its output we can deduce its input. For this reason

Feynman prefers to use the symmetrical notation for a

NOT gate shown in Fig. 2. Two NOT gates put back

to back evidently bring us back to the same place and

manifestly demonstrate the reversibility. Consider

now the two-input gate shown in Fig.3. This is called

a ‘Controlled NOT’ or CN gate, since the NOT

operation on the lower input line is only operative

when there is a ‘1’ on the upper input: a ‘0’ on the

upper input means that the lower bit passes through

unchanged. In effect, what appears on the lower output

is just the XOR operation on the two input bits (Fig.

4). However, the CN gate is more than just an XOR

gate since we retain information about the control bit.

This is a general feature of reversible gates: the price

for reversibility is that we need to carry round extra

bits of information. But, because we are not discarding

any information, such a gate is, in principle, more

energy efficient than a classical XOR

gate.Again, as shown in Fig. 5, the CN gate can be

shown to be manifestly reversible by putting two CN

gates back to back. Any logical operation can be built

from one of several complete sets of classical logic

gates - a choice from NOT, AND, OR, XOR, NAND

and so on. Similarly, one can show that there are

complete sets of reversible gates that allow us to

perform any logic operation. In fact, we need more

than just the CN gate: we can add a Controlled

Controlled NOT (CCN) or ‘Toffoli’ gate (Fig. 6) or a

more complicated Fredkin exchange gate (Fig. 7).

Why do we care about all this? Well for one thing it is

possible that use of such gates may one day be needed

to reduce power consumption of microprocessors

implemented in CMOS silicon technology. At present,

the Intel Pentium discards something like 100,000 bits

per flop with each discarded bit incurring at least the

minimum Landauer energy loss [11]. In our case,

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 145

however, we are interested because the laws of

quantum physics are reversible in time. This

guarantees that probability is conserved as a state

evolves with time. Technically speaking, the

Schroedinger time evolution operator is unitary and

preserves the norm of quantum mechanical states (see

below). To build a quantum computer with quantum

states evolving according to the Schroedinger equation

therefore necessarily requires us to use realisations of

reversible logic gates.

III. QUANTUM COMPLEXITY

Complexity is the study of algorithms. The

‘universality’ of Turing Machines makes it possible

for computer scientists to classify algorithms into

different ‘complexity classes’. For example,

multiplication of two N x N matrices requires an

operation count that grows like N3 with the size of the

matrix. This can be analysed in detail for a simple

Turing machine implementation of the algorithm.

However, the important point about ‘universality’ is

that although you may be able to multiply matrices

somewhat faster than on a Turing machine, you cannot

change from an N3 growth of operations no matter

what Pentium chip or special purpose matrix multiply

hardware you choose to use. Thus algorithms, such as

matrix multiply, for which execution time and

resources grow polynomially with problem size, are

said to be ‘tractable’ and in the complexity class ‘P’.

Algorithms for which time and resources are found to

grow exponentially with problem size are said to be

‘intractable’. There are many subtleties to this

classification scheme: the famous ‘Travelling

Salesperson Problem’, for example, is in the rather

mysterious complexity class ‘NP’. The book by David

Harel [12] contains an excellent introduction to this

subject.

What has this to do with quantum information and

quantum computers? In 1985 David Deutsch pointed

out that since a quantum computer was not a Turing

machine there was the possibility of new complexity

classification of algorithms [13]. As we will see,

quantum computers evolve a coherent superposition of

quantum states so that each of these states could follow

a distinct computational path until a final measurement

is made at the output. It is therefore certainly

conceptually possible that at least for some problems,

quantum computers could surpass the power of

classical Turing computers. The first speculation that

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 146

this might be so is probably due to Feynman in 1981

[14]. However, it was not until 1994 that interest in

this subject exploded after Peter Shor's discovery of a

new quantum algorithm for factorizing large numbers

[15].

Mathematicians believe (although it has yet to be

proved) that the number of steps required on a

classical computer to factorize a number with N

decimal digits grows exponentially with N. Since the

computational work required grows very rapidly, the

difficulty of factorizing very large numbers has been

made the basis of the security of the RSA encryption

method (see Ref. [13] for a good review of encryption

techniques). This system is widely used to protect

electronic bank accounts, for example. The

significance of Shor's result was that his algorithm,

running on a quantum computer, could solve the

factorization problem in polynomial time. What this

could mean for the RSA cryptographic system may be

illustrated by the time required to factorize a 129 digit

number known as RSA129 [16]. In 1994 this required

5000 MIPS-years of computer time to factorize into its

64 and 65 bit prime factors, using over 1000

workstations over a period of 8 months. A quantum

computer using Shor's algorithm with a clock speed of

100 MHz could factor RSA129 in a few seconds. This

explains the interest of various ‘secret’ government

agencies around the world in the feasibility of building

quantum computers!

IV. QUBITS AND QUANTUM GATES

Instead of using high and low voltages to represent the

1's and 0's of binary data, there is no reason in principle

for us not to be able to any two state quantum system.

Two commonly discussed possibilities are the two

spin states of an electron:

or two polarization states of a photon:

The time evolution of a quantum system is usually

well approximated by the Schroedinger equation. In a

coordinate space representation, for example, the

Schroedinger equation is a linear partial differential

equation with the property that any linear

superposition of eigenfunctions is also a solution. This

superposition property of quantum mechanics means

that the general state may be written as a superposition

of eigenstates. In the case of our 2-state quantum

system the general state may be written as:

According to the standard interpretation of quantum

mechanics, any measurement (of spin or polarization)

made on this state will always yield one of the two

eigenvalues with no way of knowing which one.

Normalization of the state to unity guarantees:

and this normalization and hence the probability

interpretation is maintained by any unitary operator U

defined by the property:

Information stored in a 2-state quantum system is

called a quantum bit or ‘qubit’: besides storing

classical ‘1’ and ‘0’ information there is also the

possibility of storing information as a superposition of

‘1’ and ‘0’ states. We can define quantum analogues

of classical reversible gates by means of unitary

operators acting on the qubit basis states. For example,

a quantum version of the NOT operator may be

defined as follows:

The phase is chosen for consistency of interpretation

in terms of rotations of a spin half particle. The NOT

gate corresponds to a 180 degree spin rotation. An

overall phase makes no difference to the probability of

measuring the particular basis state although any

relative phase difference does affect measurements

which depend on the interference between the two

basis states.We now see two possible quantum

generalisations compared to computation with

classical bits. First, we can perform unitary operations

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 147

on coherent linear combinations of the two basis

states:

Second, we can consider operations on qubits that

have no classical analogue. For example,

Deutsch introduces the ‘Square Root of NOT’ operator

defined by:

In physical terms, such an operation merely

corresponds to a 90 degree spin rotation1.

Generalizing away from this specific spin

interpretation, a transformation that takes a basis state

and transforms it into a linear combination of the two

basis states is very useful in the construction of

quantum algorithms and is called a ‘Hadamard’

transformation.

We have considered a single electron system for

storing a single qubit. By considering multiparticle

systems we can construct quantum registers. Thus an

n-bit register may be written as:

If we now apply our SRN or Hadamard transformation

to this state we now generate a superposition of all 2n

states:

In other words, by applying a linear number of

operations to the quantum register we are able to

generate a register state with an exponential (2n)

number of terms. The ability to create such

superpositions is one of the key properties that gives

quantum parallel processing its power.We now seem

to have all the ingredients - logic gates and registers -

to construct a quantum computer. However, neither

reversible gates nor superpositions are specifically

quantum mechanical.Quantum algorithms derive their

remarkable power from one intrinsically quantum

phenomenon that we have not so far considered. This

is the property called quantum entanglement and, as

we shall see, takes us to the very heart of the

peculiarities of quantum mechanics.

V. PRIME FACTORIZATION

It has been known since before Euclid that every

integer n is uniquely decomposable into a product of

primes. Mathematicians have been interested in the

question of how to factor a number into this product of

primes for nearly as long. It was only in the 1970’s,

however, that researchers applied the paradigms of

theoretical computer science to number theory, and

looked at the asymptotic running times of factoring

algorithms [Adleman 1994]. This has resulted in a

great improvement in the efficiency of factoring

algorithms. The best factoring algorithm

asymptotically is currently the number field sieve

[Lenstra et al. 1990, Lenstra and Lenstra 1993], which

in order to factor an integer n takes asymptotic running

time exp(c (log n)1/3 (log (log n))2/3) for some constant

c.

Since the input, n, is only log n bits in length, this

algorithm is an exponential-time algorithm. Our

quantum factoring algorithm takes asymptotically

O((log n)2(log log n) (log log log n)) steps on a

quantum computer, along with a polynomial (in log n)

amount of post-processing time on a classical

computer that is used to convert the output of the

quantum computer to factors of n. While this post-

processing could in principle be done on a quantum

computer, there is no reason not to use a classical

computer if they are more efficient in practice. Instead

of giving a quantum computer algorithm for factoring

n directly, we give a quantum computer algorithm for

finding the order of an element x in the multiplicative

group (mod n); that is, the least integer r such that xr ≡

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 148

1 (mod n). It is known that using randomization,

factorization can be reduced to finding the order of an

element [Miller 1976]; we now briefly give this

reduction. To find a factor of an odd number n, given

a method for computing the order r of x, choose a

random x (mod n), find its order r, and compute

gcd(xr/2 − 1, n). Here, gcd(a, b) is the greatest common

divisor of a and b, i.e., the largest integer that divides

both a and b. The Euclidean algorithm [Knuth 1981]

can be used to compute gcd(a, b) in polynomial time.

Since (xr/2−1)(xr/2+1) = xr−1 ≡ 0 (mod n), the

gcd(xr/2−1, n) fails to be a non-trivial divisor of n only

if r is odd or if xr/2 ≡ −1 (mod n). Using this criterion,

it can be shown that this procedure, when applied to a

random x (mod n), yields a factor of n with probability

at least 1−1/2k−1, where k is the number of distinct odd

prime factors of n. A brief sketch of the proof of this

result follows. Suppose that

Let ri be the order of x (mod piai). Then r is the least

common multiple of all the ri. Consider the largest

power of 2 dividing each ri. The algorithm only fails

if all of these powers of 2 agree: if they are all 1, then

r is odd and r/2 does not exist; if they are all equal and

larger than 1, then xr/2 ≡ −1 (mod n) since xr/2 ≡ −1

(mod piαi) for every i. By the Chinese remainder

theorem [Knuth 1981, Hardy and Wright 1979,

Theorem 121], choosing an x (mod n) at random is the

same as choosing for each i a number xi (mod piai) at

random, where piai is the ith prime power factor of n.

The multiplicative group (mod pα) for any odd prime

power pα is cyclic [Knuth 1981], so for any odd prime

power piai , the probability is at most 1/2 of choosing

an xi having any particular power of two as the largest

divisor of its order ri. Thus each of these powers of 2

has at most a 50% probability of agreeing with the

previous ones, so all k of them agree with probability

at most 1/2k−1, and there is at least a 1 − 1/2k−1

chance that the x we choose is good. This scheme will

thus work as long as n is odd and not a prime power;

finding factors of prime powers can be done efficiently

with classical methods.

We now describe the algorithm for finding the order

of x (mod n) on a quantum computer. This algorithm

will use two quantum registers which hold integers

represented in binary. There will also be some amount

of workspace.This workspace gets reset to 0 after each

subroutine of our algorithm, so we will not include it

when we write down the state of our machine. Given

x and n, to find the order of x, i.e., the least r such that

xr ≡ 1 (mod n), we do the following. First, we find q,

the power of 2 with n2 ≤ q < 2n2. We will not include

n, x, or q when we write down the state of our machine,

because we never change these values. In a quantum

gate array we need not even keep these values in

memory, as they can be built into the structure of the

gate array. Next, we put the first register in the uniform

superposition of states representing numbers a (mod

q). This leaves our machine in state

This step is relatively easy, since all it entails is putting

each bit in the first register into the superposition

1/√2(|0> + |1>). Next, we compute xa (mod n) in the

second register as described in §3. Since we keep a in

the first register this can be done reversibly. This

leaves our machine in the state

We then perform our Fourier transform Aq on the first

register, as described in §4, mapping |a> to

That is, we apply the unitary matrix with the (a, c)

entry equal to

This leaves our machine in state

Finally, we observe the machine. It would be sufficient

to observe solely the value of |c> in the first register,

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 149

but for clarity we will assume that we observe both |c>

and |xa (mod n)>. We now compute the probability

that our machine ends in a particular state |c, xk (mod

n)> , where we may assume 0 ≤ k < r. Summing over

all possible ways to reach the state |c, xk (mod n)> , we

find that this probability is

where the sum is over all a, 0 ≤ a < q, such that xa ≡

xk(mod n). Because the order of x is r, this sum is over

all a satisfying a ≡ k (mod r). Writing a = br + k, we

find that the above probability is

We can ignore the term of exp(2∏ikc/q), as it can be

factored out of the sum and has magnitude 1. We can

also replace rc with {rc}q, where {rc}q is the residue

which is congruent to rc (mod q) and is in the range

−q/2 < {rc}q ≤ q/2. This leaves us with the expression

We will now show that if {rc}q is small enough, all the

amplitudes in this sum will be in nearly the same

direction (i.e., have close to the same phase), and thus

make the sum large. Turning the sum into an integral,

we obtain

If |{rc}q| ≤ r/2, the error term in the above expression

is easily seen to be bounded by O(1/q). We now show

that if |{rc}q| ≤ r/2, the above integral is large, so the

probability of obtaining a state |c, xk (mod n)> is large.

Note that this condition depends only on c and is

independent of k. Substituting u = rb/q in the above

integral, we get

Since k < r, approximating the upper limit of

integration by 1 results in only a O(1/q) error in the

above expression. If we do this, we obtain the integral

Letting {rc}q/r vary between −1/2 and 1/2 , the

absolute magnitude of the integral (5.10) is easily seen

to be minimized when {rc}q/r = ±1/2 , in which case

the absolute value of expression (5.10) is 2/(∏r). The

square of this quantity is a lower bound on the

probability that we see any particular state |c, xk (mod

n)> with {rc}q ≤ r/2; this probability is thus

asymptotically bounded below by 4/(∏2r2), and so is

at least 1/3r2 for sufficiently large n. The probability of

seeing a given state

i.e., if there is a d such that

Dividing by rq and rearranging the terms gives

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 150

We know c and q. Because q > n2, there is at most one

fraction d/r with r < n that satisfies the above

inequality. Thus, we can obtain the fraction d/r in

lowest terms by rounding c/q to the nearest fraction

having a denominator smaller than n. This fraction can

be found in polynomial time by using a continued

fraction expansion of c/q, which finds all the best

approximations of c/q by fractions [Hardy and Wright

1979, Chapter X, Knuth 1981]. The exact probabilities

as given by equation (5.7) for an example case with r

= 10 and q = 256 are plotted in Figure 5.1. The value r

= 10 could occur when factoring 33 if x were chosen

to be 5, for example. Here q is taken smaller than 332

so as to make the values of c in the plot

distinguishable; this does not change the functional

structure of P(c). Note that with high probability the

observed value of c is near an integral multiple of q/r

= 256/10.If we have the fraction d/r in lowest terms,

and if d happens to be relatively prime to r, this will

give us r. We will now count the number of states |c,

xk (mod n)> which enable us to compute r in this way.

There are ø(r) possible values of d relatively prime to

r, where ø is Euler’s totient function [Knuth 1981,

Hardy and Wright 1979, §5.5]. Each of these fractions

d/r is close to one fraction c/q with |c/q − d/r| ≤ 1/2q.

There are also r possible values for xk, since r is the

order of x. Thus, there are r ø(r) states |c, xk (mod n) |

which would enable us to obtain r. Since each of these

states occurs with probability at least 1/3r2, we obtain

r with probability at least ø (r)/3r. Using the theorem

that _(r)/r > _/ log log r for some constant _ [Hardy

and Wright 1979,Theorem 328], this shows that we

find r at least a _/ log log r fraction of the time, so by

repeating this experiment only O(log log r) times, we

are assured of a high probability of success. In

practice, assuming that quantum computation is more

expensive than classical computation, it would be

worthwhile to alter the above algorithm so as to

perform less quantum computation and more post

processing. First, if the observed state is |c>, it would

be wise to also try numbers close to c such as c ± 1, c

± 2, . . ., since these also have a reasonable chance of

being close to a fraction qd/r. Second, if c/q ≈ d/r, and

d and r have a common factor, it is likely to be small.

Thus, if the observed value of

c/q is rounded off to d’/r′ in lowest terms, for a

candidate r one should consider not only r′ but also its

small multiples 2r′, 3r′, . . . , to see if these are the

actual order of x. Although the first technique will only

reduce the expected number of trials required to find r

by a constant factor, the second technique will reduce

the expected number of trials for the hardest n from

O(log log n) to O(1) if the first (log n)1+€ multiples of

r′ are

considered [Odylzko 1995]. A third technique is, if

two candidate r’s have been found, say r1 and r2, to

test the least common multiple of r1 and r2 as a

candidate r. This third technique is also able to reduce

the expected number of trials to a constant [Knill

1995], and will also work in some cases where the first

two techniques fail. Note that in this algorithm for

determining the order of an element, we did not use

many of the properties of multiplication (mod n). In

fact, if we have a permutation f mapping the set {0, 1,

2, . . . , n − 1} into itself such that its kth iterate, f(k)(a),

is computable in time polynomial in log n and log k,

the same algorithm will be able to find the order of an

element a under f, i.e., the minimum r such that f(r)(a)

= a.

VI. DISCRETE LOGARITHMS

For every prime p, the multiplicative group (mod p) is

cyclic, that is, there are generators g such that 1, g, g2,

gp−2 comprise all the non-zero residues (mod p) [Hardy

and Wright 1979, Theorem 111, Knuth 1981].

Suppose we are given a prime p and such a generator

g. The discrete logarithm of a number x with respect

to p and g is theinteger r with 0 ≤ r < p−1 such that gr

≡ x (mod p). The fastest algorithm known for finding

discrete logarithms modulo arbitrary primes p is

Gordon’s [1993] adaptation of the number field sieve,

which runs in time exp(O(log p)1/3(log log p)2/3)). We

show how to find discrete logarithms on a quantum

computer with two modular exponentiations and two

quantum Fourier transforms.

This algorithm will use three quantum registers. We

first find q a power of 2 such that q is close to p, i.e.,

with p < q < 2p. Next, we put the first two registers in

our quantum computer in the uniform superposition of

all |a> and |b> (mod p − 1), and compute gax−b (mod

p) in the third register. This leaves our machine in the

state

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 151

As before, we use the Fourier transform Aq to send |a>

→ |c> and |b> → |d> with probability amplitude 1/q

exp(2∏i(ac+bd)/q). This is, we take the state |a, b> to

the state

This leaves our quantum computer in the state

Finally, we observe the state of the quantum computer.

The probability of observing a state |c, d, y> with y ≡

gk (mod p) is

where the sum is over all (a, b) such that a − rb ≡ k

(mod p − 1). Note that we now have two moduli to deal

with, p − 1 and q. While this makes keeping track of

things more confusing, it does not pose serious

problems. We now use the relation

and substitute (6.5) in the expression (6.4) to obtain

the amplitude on | c, d, gk (mod p) >, which is

The absolute value of the square of this amplitude is

the probability of observing the State | c, d, gk (mod p)

> . We will now analyze the expression (6.6). First, a

factor of exp(2∏ikc/q) can be taken out of all the terms

and ignored, because it does not change the

probability. Next, we split the exponent into two parts

and factor out b to obtain

Here by {z}q we mean the residue of z (mod q) with

−q/2 < {z}q ≤ q/2, as in equation (5.7). We next

classify possible outputs (observed states) of the

quantum computer into “good” and “bad.” We will

show that if we get enough “good” outputs, then we

will likely be able to deduce r, and that furthermore,

the chance of getting a “good” output is constant. The

idea is that if

where j is the closest integer to T/q, then as b varies

between 0 and p − 2, the phase of the first exponential

term in equation (6.7) only varies over at most half of

the unit circle. Further, if

then |V | is always at most q/12, so the phase of the

second exponential term in equation (6.7) never is

farther than exp(∏i/6) from 1. If conditions (6.10) and

(6.11) both hold, we will say that an output is “good.”

We will show that if both conditions hold, then the

contribution to the probability from the corresponding

term is significant. Furthermore, both conditions will

hold with constant probability, and a reasonable

sample of c’s for which condition (6.10) holds will

allow us to deduce r. We now give a lower bound on

the probability of each good output, i.e., an output that

satisfies conditions (6.10) and (6.11). We know that as

b ranges from 0 to p − 2, the phase of exp(2∏ibT/q)

ranges from 0 to 2∏iW where

and j is as in equation (6.10). Thus, the component of

the amplitude of the first exponential in the summand

of (6.7) in the direction

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 152

is at least cos(2∏ |W/2 −Wb/(p − 2)|). By condition

(6.11), the phase can vary by at most ∏i/6 due to the

second exponential exp(2∏iV/q). Applying this

variation in the manner that minimizes the component

in the direction (6.13), we get that the component in

this direction is at least

Thus we get that the absolute value of the amplitude

(6.7) is at least

Replacing this sum with an integral, we get that the

absolute value of this amplitude is at least

From condition (6.10), |W| ≤ 1/2 , so the error term is

O(1/pq). As W varies between −1/2 and 1/2 , the

integral (6.16) is minimized when |W| = 1/2 . Thus, the

probability of arriving at a state |c, d, y> that satisfies

both conditions (6.10) and (6.11) is at least

or at least .054/q2 > 1/(20q2). We will now count the

number of pairs (c, d) satisfying conditions (6.10) and

(6.11). The number of pairs (c, d) such that (6.10)

holds is exactly the number of possible c’s, since for

every c there is exactly one d such that (6.10) holds.

Unless gcd(p−1, q) is large, the number of c’s for

which (6.11) holds is approximately q/6, and even if it

is large, this number is at least q/12. Thus, there are at

least q/12 pairs (c, d) satisfying both conditions.

Multiplying by p−1, which is the number of possible

y’s, gives approximately pq/12 good states |c, d, y>..

Combining this calculation with the lower bound

1/(20q2) on the probability of observing each good

state gives us that the probability of observing some

good state is at least p/(240q), or at least 1/480 (since

q < 2p). Note that each good c has a probability of at

least (p − 1)/(20q2) ≥ 1/(40q) of being observed, since

there p − 1 values of y and one value of d with which

c can make a good state |c, d, y>. We now want to

recover r from a pair c, d such that

where this equation was obtained from condition

(6.10) by dividing by q. The first thing to notice is that

the multiplier on r is a fraction with denominator p −

1, since q evenly divides c(p−1)−{c(p − 1)}q. Thus,

we need only round d/q off to the nearest multiple of

1/(p − 1) and divide (mod p − 1) by the integer

to find a candidate r. To show that the quantum

calculation need only be repeated a polynomial

number of times to find the correct r requires only a

few more details. The problem is that we cannot divide

by a number c′ which is not relatively prime to p − 1.

For the discrete log algorithm, we do not know that all

possible values of c′ are generated with reasonable

likelihood; we only know this about one-twelfth of

them. This additional difficulty makes the next step

harder than the corresponding step in the algorithm for

factoring. If we knew the remainder of r modulo all

prime powers dividing

p−1, we could use the Chinese remainder theorem to

recover r in polynomial time. We will only be able to

prove that we can find this remainder for primes larger

than 18, but with a little extra work we will still be able

to recover r.

Recall that each good (c, d) pair is generated with

probability at least 1/(20q2), and that at least a twelfth

of the possible c’s are in a good (c, d) pair. From

equation (6.19), it follows that these c’s are mapped

from c/q to c′/(p − 1) by rounding to the nearest

integral multiple of 1/(p − 1). Further, the good c’s are

exactly those in which c/q is close to c′/(p − 1). Thus,

each good c corresponds with exactly one c′. We

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700338 ICONIC RESEARCH AND ENGINEERING JOURNALS 153

would like to show that for any prime power pαi

dividing p − 1, a random good c′ is unlikely to

contain pi. If we are willing to accept a large constant

for our algorithm, we can just ignore the prime powers

under 18; if we know r modulo all prime powers over

18, we can try all possible residues for primes under

18 with only a (large) constant factor increase in

running time. Because at least one twelfth of the c’s

were in a good (c, d) pair, at least one twelfth of the

c′’s are good. Thus, for a prime power piαi , a random

good c′ is divisible by piαi with probability at most

12/piαi . If we have t good c′’s, the probability of

having a prime power over 18 that divides all of them

is therefore at most

where a|b means that a evenly divides b, so the sum is

over all prime powers greater than 18 that divide p −

1. This sum (over all integers > 18) converges for t =

2, and goes down by at least a factor of 2/3 for each

further increase of t by 1; thus for some constant t it is

less than 1/2. Recall that each good c′ is obtained with

probability at least 1/(40q) from any experiment. Since

there are q/12 good c′’s, after 480t experiments, we are

likely to obtain a sample of t good c′’s chosen equally

likely from all good c′’s. Thus, we will be able to find

a set of c′’s such that all prime powers piαi > 20

dividing p−1 are relatively prime to at least one of

these c′’s. To obtain a polynomial time algorithm, all

one need

do is try all possible sets of c′’s of size t; in practice,

one would use an algorithm to find sets of c′’s with

large common factors. This set gives the residue of r

for all primes larger than 18. For each prime pi less

than 18, we have at most 18 possibilities for the

residue modulo piαi , where αi is the exponent on prime

pi in the prime factorization of p−1. We can thus try

all possibilities for residues modulo powers of primes

less than 18: for each possibility we can calculate the

corresponding r using the Chinese remainder theorem

and then check to see whether it is the desired discrete

logarithm. If one were to actually program this

algorithm there are many ways in which the efficiency

could be increased over the efficiency shown in this

paper. For example, the estimate for the number of

good c′’s is likely too low, especially since weaker

conditions than (6.10) and (6.11) should suffice. This

means that the number of times the experiment need

be run could be reduced. It also seems improbable that

the distribution of bad values of c′ would have any

relationship to primes under 18; if this is true, we need

not treat small prime powers separately.

This algorithm does not use very many properties of

Zp, so we can use the same algorithm to find discrete

logarithms over other fields such as Zpα, as long as the

field has a cyclic multiplicative group. All we need is

that we know the order of the generator, and that we

can multiply and take inverses of elements in

polynomial time. The order of the generator could in

fact be computed using the quantum order-finding

algorithm given in §5 of this paper. Boneh and Lipton

[1995] have generalized the algorithm so as to be able

to find discrete logarithms when the group is abelian

but not cyclic.

REFERENCES

[1] P. Benioff, “Quantum mechanical

Hamiltonian models of Turing machines,” J.
Stat. Phys. Vol. 29, pp. 515- 546 (1982).

[2] P. Benioff, “Quantum mechanical

Hamiltonian models of Turing machines that
dissipate no energy,” Phys. Rev. Lett. Vol.
48, pp. 1581-1585 (1982).

[3] C. H. Bennett, “Logical reversibility of

computation,” IBM J. Res. Develop. Vol. 17,
pp. 525-532 (1973).

