
© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 198

Advance Security Enhancement in Android Application

HARSHNA BABBAR1, RAVINDRA KUMAR SONI2
1,2 Computer Science Deprtment, Poornima College of Engineering, Jaipur, Rajasthan, India

Abstract -- Android security has been a problem area as of

late in both scholastic research and open worries because

of various examples of security assaults and protection

spillage on Android stage. Android security has been based

upon a consent based system which limits gets to of outsider

Android applications to basic assets on an Android gadget.

Such consent based system is broadly reprimanded for its

coarse-grained control of utilization authorizations and

troublesome administration of consents by engineers,

advertisers, and end-clients. Android has a layered design

that enables applications to use administrations gave by the

hidden Linux bit. In any case, Android does not keep

applications from straightforwardly setting off the bit

functionalities through framework call summons. As of

late appeared in the writing, this component can be

mishandled by malignant applications and subsequently

lead to bothersome impacts. The reception of SEAndroid in

the most recent Android dispersions may moderate the

issue. However, the viability of SEAndroid to counter these

dangers is resolved in this paper. In this paper, we discuss

about the more security enhancement in Android and how

we implement this security.

Index Keywords — SELinux, AOSP, dmesg, logcat, MAC,

DAC

I. INTRODUCTION

All Android gadgets share a typical, stage level

security display. This model has been upgraded over

numerous years with SELinux insurances, application

seclusion utilizing sandboxing, misuse alleviations,

and cryptographic highlights, like document based

encryption and Verified Boot.

Android security has been a problem area as of late in

both scholastic research and open worries because of

various examples of security assaults and protection

spillage on Android stage. Android security has been

based upon a consent based system which limits gets

to of outsider Android applications to basic assets on

an Android gadget. Such consent based system is

broadly reprimanded for its coarse-grained control of

utilization authorizations and troublesome

administration of consents by engineers, advertisers,

and end-clients.

Numerous organizations and associations have added

to SELinux; their commitments are freely accessible

for survey on android.googlesource.com, otherwise

known as the Android Open Source Project (AOSP).

With SELinux, Android can better ensure and restrict

framework administrations, control access to

application information and framework logs, lessen

the impacts of vindictive programming, and shield

clients from potential blemishes in code on cell

phones.

Android incorporates SELinux in upholding mode and

a comparing security strategy that works as a matter of

course crosswise over AOSP. In authorizing mode, ill-

conceived activities are anticipated and every

endeavored infringement is logged by the part to

dmesg and logcat. Android gadget producers should

assemble data about mistakes so they may refine their

product and SELinux strategies before upholding them

II. LITERATURE SURVEY

[1] In this paper, authors wrote about the history of

android, about each versions of android that which

version provides which security and wrote about the

architecture of android.

[2] In this paper, authors portray the techniques for

actualizing connectionless approach for more

grounded validation. This connectionless approach

incorporates the two factor verification utilizing cell

phone (Android). The primary motivation behind this

technique is to give the more grounded confirmation

in online exchange. Cell phone is utilized with the end

goal of age of OTP. It enhances the security of Internet

installments by giving an extra secret word to the

client. Utilizing the secret key the client can

effectively make his installment. Online card

exchanges over Internet require improved security.

Secure preparing framework encourages extra security

by method for a cardholder-picked secret key, which

is known just to the cardholder. Dynamic secret word

validation is one arrangement that uses the additional

security of charge cards to offer better assurance

against online extortion. The essential advantage of

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 199

this framework is the decrease in questioned

exchanges and the resultant special case taking care of

cost and misfortunes. Along these lines the proposed

framework is including an additional layer of security

at the point where you enter data on the web. The

administration avoids unapproved online use before it

occurs by affirming your personality with an extra

secret key.

[3] In this paper, authors proposed an algorithm Model

Extractor in which chosen android highlights will be

separated for whole list of capabilities to identify

malware on four stages: bundle, client, application,

and approval stage. The malware recognition will be

founded on behavioral and grouped by their hazard

(High, Medium, and Low). This will be useful for the

client to deal with the framework (Application) easily.

[4] In this paper, authors wrote about the difference

between the Android and SEAndroid and they

proposed a runtime observing authorization module

(called Kernel Call Controller) which is perfect both

with Android and SEAndroid and can uphold security

strategies on part call summons. They tentatively

survey both the viability and the execution of KCC on

genuine gadgets. [5] Permission based Android

security: Issues and countermeasures, authors were

Zheran Fang, Weili Hang and Yingjiu Li, they give a

precise audit on the advancement of these

countermeasures, and contrast them concurring with

their specialized highlights. At long last, they propose

a few techniques to additionally relieve the hazard in

Android security.

A. Background of SELinux

SELinux works on the ethos of default foreswearing:

Anything not expressly permitted is denied. SELinux

can work in one of two worldwide modes:

 Permissive mode, in which authorization

refusals are logged however not upheld.

 Enforcing mode, in which consents disavowals

are both logged and upheld.

SELinux additionally bolsters a for every space lenient

mode in which particular areas (forms) can be made

tolerant while putting whatever is left of the

framework in worldwide upholding mode. A space is

basically a mark distinguishing a procedure or set of

procedures in the security arrangement, where all

procedures named with a similar area are dealt with

indistinguishably by the security strategy. Per-area

lenient mode empowers incremental use of SELinux

to a consistently expanding part of the framework and

strategy improvement for new administrations (while

keeping whatever is left of the framework

implementing).

The Android 5.0 discharge moved to full requirement

of SELinux, expanding on the tolerant arrival of

Android 4.3 and the incomplete authorization of

Android 4.4. With this change, Android moved from

authorization on a restricted arrangement of urgent

areas (installd, netd, vold and zygote) to everything (in

excess of 60 spaces). In particular:

 Everything is in upholding mode in Android 5.x

and higher.

 No procedures other than init should keep running

in the init area.

 Any bland disavowal (for a block_device,

socket_device, default_service, and so forth.)

demonstrates that gadget needs a unique area.

Accordingly, makers need to better comprehend and

scale their SELinux usage to give good gadgets.

B. Mandatory Access Control

Security Enhanced Linux (SELinux), is a required

access control (MAC) framework for the Linux

working framework. As a MAC framework, it varies

from Linux's well-known optional access control

(DAC) framework. In a DAC framework, an idea of

possession exists, whereby a proprietor of a specific

asset controls get to authorizations related with it. This

is for the most part coarse-grained and subject to

unintended benefits acceleration. A MAC framework,

be that as it may, counsels a focal specialist for a choice

on all entrance endeavors.

SELinux has been executed as a feature of the Linux

Security Module (LSM) structure, which perceives

different portion articles, and delicate activities

performed on them. At the time when every one of

these activities would be played out, a LSM snare

work is called to decide if the activity ought to be

permitted in light of the data for it put away in an

obscure security question. SELinux gives an execution

to these snares and administration of these security

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 200

objects, which consolidate with its own particular

approach, to decide the entrance choices.

In conjunction with other Android safety efforts,

Android's entrance control arrangement

extraordinarily restrains the potential harm of traded

off machines and records. Utilizing devices like

Android's optional and required access controls gives

you a structure to guarantee your product runs just at

the base benefit level. This mitigates the impacts of

assaults and lessens the probability of errant

procedures overwriting or notwithstanding

transmitting information.

Beginning in Android 4.3, SELinux gives an

obligatory access control (MAC) umbrella over

conventional optional access control (DAC)

situations. For example, programming must normally

keep running as the root client record to keep in touch

with crude square gadgets. In a conventional DAC-

based Linux condition, if the root client progresses

toward becoming traded off that client can keep in

touch with each crude piece gadget. Be that as it may,

SELinux can be utilized to name these gadgets so the

procedure doled out the root benefit can keep in touch

with just those predefined in the related approach.

Along these lines, the procedure can't overwrite

information and framework settings outside of the

particular crude square gadget.

C. Labels, Rules and Domains

SELinux relies on names to coordinate activities and

arrangements. Marks figure out what is permitted.

Attachments, documents, and procedures all have

marks in SELinux. SELinux choices are construct in a

general sense with respect to names appointed to these

articles and the strategy characterizing how they may

collaborate. In SELinux, a name takes the frame:

user:role:type:mls_level, where the sort is the essential

part of the entrance choices, which might be altered by

alternate segments which make up the mark. The items

are mapped to classes and the diverse sorts of access

for each class are spoken to by consents.

The strategy rules come in the shape:

allow domains types:classes permissions;, where:

 Domain: A label for the process or set of

processes. Also called a domain type as it is just a

type for a process.

 Type: A label for the object (e.g. file, socket) or

set of objects.

 Class: The kind of object (e.g. file, socket) being

accessed.

 Permission: The operation (e.g. read, write) being

performed.

Thus an example of this would take after the structure:

allow appdomain app_data_file:file rw_file_perms;

The above example says that all application domains

are permitted to read and write files labeled

app_data_file. Note that this run depends upon macros

characterized in the global_macros document, and

other accommodating macros can likewise be found in

the te_macros record, both of which can be found in

the system/sepolicy directory in the AOSP source tree.

Macros are accommodated normal groupings of

classes, authorizations and govern, and ought to be

utilized at whatever point conceivable to help diminish

the probability of disappointments because of refusals

on related consents.

Utilize the punctuation to make avc decides that

contain the pith of a SELinux arrangement. A control

takes the frame:

RULE_VARIANT SOURCE_TYPES

TARGET_TYPES : CLASSES PERMISSIONS

The manage demonstrates what ought to happen when

a subject named with any of the source_types

endeavors an activity relating to any of the

authorizations on a protest with any of the class classes

which has any of the target_types name. The most

widely recognized case of one of these standards is a

permit govern, e.g.:

allow domain null_device:chr_file { open };

This administer permits a procedure with any area

related with the 'space' ascribe to make the move

portrayed by the authorization 'open' on a question of

class 'chr_file' (character gadget document) that has

the target_type mark of 'null_device.' practically

speaking, this govern might be stretched out to

https://android.googlesource.com/platform/system/sepolicy/

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 201

incorporate different consents: allow domain

null_device:chr_file { getattr open read ioctl lock

append write};

At the point when joined with the learning that 'area' is

a credit alloted to all procedure areas and that

null_device is the name for the character

gadget/dev/null, this lead fundamentally allows

perusing and writing to/dev/null.

Stage applications incorporated with the framework

keep running under a different mark and are allowed

an unmistakable arrangement of authorizations.

Framework UID applications that are a piece of the

center Android framework keep running under the

system_app name for yet another arrangement of

benefits.

Access to the accompanying nonexclusive marks

ought to never be straightforwardly permitted to

spaces; rather, a more particular write ought to be

made for the question or protests:

 socket_device

 device

 block_device

 default_device

 system_data_file

 tmpf

III. PROPOSED METHODOLOGY

A. Implementing SELinux

SELinux is set up to default-deny, which implies that

each and every entrance for which it has a snare in the

part should be expressly permitted by approach. This

implies an approach record is involved a lot of data

with respect to rules, types, classes, authorizations,

and that's just the beginning. A full thought of

SELinux is out of the extent of this report, however a

comprehension of how to compose approach rules is

presently fundamental when raising new Android

gadgets. There is a lot of data accessible with respect

to SELinux as of now.

B. Steps to implement SELinux in your

Android device

1. In the Kernel and configuration, include SELinux

bolster.

2. Give each administration (process or daemon)

began from init its own space.

3. Recognize these administrations by:

 Looking into the init.<device>.rc document

and discovering all administrations.

 Looking at notices of the frame init:

Warning! Administration name needs a

SELinux space characterized; please settle!

in dmesg yield.

 Checking ps - Z | grep init yield to see which

administrations are running in the init space.

4. Name every single new process, drivers,

attachments, and so forth. All articles should be

marked legitimately to guarantee they

communicate appropriately with the strategies

you apply. See the names utilized as a part of

AOSP for cases to follow in name creation.

5. Organization security arrangements that

completely cover all marks and limit

authorizations to their supreme least.

In a perfect world, OEMs begin with the approaches

in the AOSP and after that expand upon them for their

own customizations.

C. Key Files

SELinux for Android is joined by all that you have to

empower SELinux now. You only need to coordinate

the most recent Android part and after that consolidate

the records found in the framework/sepolicy registry:

Those documents when accumulated involve the

SELinux portion security approach and cover the

upstream Android working framework. You may not

have to alter the framework/sepolicy records

straightforwardly. Rather, include your own gadget

particular approach records inside

the/gadget/maker/gadget name/sepolicy registry.

Here are the records you should make or alter keeping

in mind the end goal to execute SELinux:

 New SELinux arrangement source (*.te)

documents - Located in

the/gadget/producer/gadget name/sepolicy

registry. These documents characterize areas and

their marks. The new strategy records get linked

with the current arrangement documents amid

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 202

assemblage into a solitary SELinux bit approach

record.

 Refreshed BoardConfig.mk makefile - Located in

the index containing the sepolicy subdirectory. It

must be refreshed to reference the sepolicy

subdirectory once made in the event that it wasn't

in introductory usage.

 file_contexts - Located in the sepolicy

subdirectory. This record allots marks to

documents and is utilized by different userspace

segments. As you make new arrangements, make

or refresh this record to relegate new names to

documents. Keeping in mind the end goal to apply

new file_contexts, you should revamp the

filesystem picture or run restorecon on the

document to be relabeled.

 genfs_contexts - Located in the sepolicy

subdirectory. This record doles out marks to

filesystems, for example, proc or vfat that don't

bolster broadened properties.

 property_contexts - Located in the sepolicy

subdirectory. This document allocates names to

Android framework properties to control what

procedures can set them. This setup is perused by

the init procedure amid startup.

 service_contexts - Located in the sepolicy

subdirectory. This record appoints names to

Android cover administrations to control what

procedures can include (enlist) and discover

(query) a folio reference for the administration.

This design is perused by the service manager

procedure amid startup.

 seapp_contexts - Located in the sepolicy

subdirectory. This record allots marks to

application forms and/information/information

catalogs.

 mac_permissions.xml - Located in the sepolicy

subdirectory. This record relegates a seinfo tag to

applications in view of their mark and

alternatively their bundle name.

At that point simply refresh your BoardConfig.mk

makefile - situated in the registry containing the

sepolicy subdirectory - to reference the sepolicy

subdirectory and every approach document once

made, as demonstrated as follows. The

BOARD_SEPOLICY factors and their significance is

reported in the framework/sepolicy/README record.

BOARD_SEPOLICY_DIRS += \

 <root>/device/manufacturer/device-

name/sepolicy

BOARD_SEPOLICY_UNION += \

 genfs_contexts \

 file_contexts \

 sepolicy.te

In the wake of remaking your gadget, it is empowered

with SELinux. You would now be able to either redo

your SELinux strategies to oblige your own particular

increases to the Android working framework.

Once the new arrangement documents and

BoardConfig.mk refreshes are set up, the new strategy

settings are naturally incorporated with the last piece

approach record.

SELinux is based upon the M4 computer language and

therefore supports a variety of macros to save time.

In the accompanying case, all spaces are conceded

access to peruse from or write to/dev/invalid and read

from/dev/zero.

Allow read / write access to /dev/null

allow domain null_device:chr_file { getattr open read

ioctl lock append write};

Allow read-only access to /dev/zero

allow domain zero_device:chr_file { getattr open read

ioctl lock };

This same explanation can be composed with SELinux

*_file_perms macros (shorthand):

Allow read / write access to /dev/null

allow domain null_device:chr_file rw_file_perms;

Allow read-only access to /dev/zero

allow domain zero_device:chr_file r_file_perms;

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 203

Here is a total case approach for DHCP, which we look

at underneath:

type dhcp, domain;

permissive dhcp;

type dhcp_exec, exec_type, file_type;

type dhcp_data_file, file_type, data_file_type;

init_daemon_domain(dhcp)

net_domain(dhcp)

allow dhcp self:capability { setgid setuid net_admin

net_raw net_bind_service

};

allow dhcp self:packet_socket create_socket_perms;

allow dhcp self:netlink_route_socket {

create_socket_perms nlmsg_write };

allow dhcp shell_exec:file rx_file_perms;

allow dhcp system_file:file rx_file_perms;

For /proc/sys/net/ipv4/conf/*/promote_secondaries

allow dhcp proc_net:file write;

allow dhcp system_prop:property_service set ;

unix_socket_connect(dhcp, property, init)

type_transition dhcp system_data_file:{ dir file }

dhcp_data_file;

allow dhcp dhcp_data_file:dir create_dir_perms;

allow dhcp dhcp_data_file:file create_file_perms;

allow dhcp netd:fd use;

allow dhcp netd:fifo_file rw_file_perms;

allow dhcp netd:{ dgram_socket_class_set

unix_stream_socket } { read write };

allow dhcp netd:{ netlink_kobject_uevent_socket

netlink_route_socket

netlink_nflog_socket } { read write };

How about we dismember the case:

In the first line, the sort presentation, the DHCP

daemon acquires from the base security strategy

(space). From the past proclamation cases, we know

DHCP can read from and write to/dev/invalid.

In the second line, DHCP is recognized as a tolerant

space.

In the init_daemon_domain(dhcp) line, the approach

states DHCP is generated from init and is permitted to

speak with it.

In the net_domain(dhcp) line, the strategy enables

DHCP to utilize regular system usefulness from the

net area, for example, perusing and composing TCP

parcels, conveying over attachments, and directing

DNS asks.

In the line permit dhcp proc_net:file compose;, the

approach states DHCP can keep in touch with

particular documents in/proc. This line exhibits

SELinux's fine-grained document marking. It utilizes

the proc_net name to constrain compose access to just

the documents under/proc/sys/net.

The last piece of the illustration beginning with permit

dhcp netd:fd utilize; delineates how applications might

be permitted to communicate with each other. The

strategy says DHCP and netd may speak with each

other by means of document descriptors, FIFO

records, datagram attachments, and UNIX stream

attachments. DHCP may just read to and compose

from the datagram attachments and UNIX stream

attachments and not make or open them.

IV. EXPERIMENTAL RESULTS

A. Overuse of negation

The accompanying case control resembles locking the

front entryway yet leaving the windows open:

allow { domain -untrusted_app }

scary_debug_device:chr_file rw_file_perms

The accompanying case control resembles locking the

front entryway yet leaving the windows open:

The lead is imperfect in a couple of ways. The

avoidance of untrusted_app is insignificant to work

around on the grounds that all applications may

alternatively run benefits in the isolated_app area. In

like manner, if new areas for outsider applications are

added to AOSP, they will likewise approach

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 204

scary_debug_device. The run is excessively lenient.

Most areas won't profit by approaching this

troubleshooting apparatus. The control ought to have

been composed to permit just the spaces that require

get to.

B. Debugging Features in production

Investigate highlights ought not be available on

generation constructs nor should their approach.

The easiest option is to just permit the troubleshoot

highlight when SELinux is crippled on eng/userdebug

constructs, for example, adb root and adb shell

setenforce 0.

C. Policy Size Explosion

Characterizing SEAndroid policies in the world

portrays a concerning pattern in the development of

gadget strategy customizations. Gadget particular

strategy should represent 5– 10% of the general

arrangement running on a gadget. Customizations in

the 20%+ territory more likely than not contain over

advantaged areas and dead strategy.

Pointlessly extensive approach:

 Endures a twofold shot on memory as the strategy

sits in the ramdisk and is additionally stacked into

piece memory.

 Squanders circle space by requiring a bigger

bootimage.

 Influences runtime arrangement query times.

The accompanying illustration demonstrates two

gadgets where the maker particular strategy included

half and 40% of the on-gadget arrangement. A rework

of the strategy yielded considerable security changes

with no misfortune in usefulness, as demonstrated as

follows. (AOSP gadgets Shamu and Flounder are

incorporated for examination).

Figure 1: Comparison of device-specific policy size

after

 Security Audit

In the two cases, the arrangement was significantly

decreased both in measure and in number of consents.

The lessening in approach measure is altogether

because of expelling superfluous consents, a large

number of which were likely decides produced by

audit2allow that were unpredictably added to the

arrangement. Dead spaces were additionally an issue

for the two gadgets.

D. Granting the dac_override

 A dac_override refusal implies that the culpable

procedure is endeavoring to get to a record with the

erroneous unix client/gathering/world consents. The

best possible arrangement is never to allow the

dac_override authorization. Rather change the unix

consents on the record or process. A couple of spaces,

for example, init, vold, and installed really require the

capacity to abrogate unix document authorizations to

get to other procedures' records. See Dan Walsh's blog

for a more top to bottom clarification.

V. ADVANTAGES AND

DISADVANTAGES

1. One of the key attributes of SELinux is that it

gives far reaching required access control (MAC)

that is both adaptable and configurable. What

makes it configurable is a rich and refined

approach dialect that enables an engineer to

control pretty much any asset gave by the Linux

part. Since the portion is rich and complex,

SELinux must give a rich arrangement dialect to

enable us to control possibly any asset.

2. The MAC gave in SELinux (called type

requirement) is exceedingly versatile to numerous

security issues.

3. With SELinux, you can construct sandboxes

around singular applications and guarantee that

vulnerabilities and bugs in a single application

don't meddle with different applications (e.g., no

benefit acceleration assaults).

4. SELinux additionally brings organize insurance

inside the crate. Today, firewalls ordinarily decide

the sort of system get to that procedures (any

procedure, to the extent the firewall is worried)

inside the framework may get to. With SELinux

we can indicate arrange get to that individual

procedures may get to (i.e., "firewalls for forms").

Default arrangements make restricted utilization

© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880

IRE 1700368 ICONIC RESEARCH AND ENGINEERING JOURNALS 205

of this ability, yet any custom strategy

advancement can abuse this element to make

uncommonly solid system security models.

VI. CONCLUSION

The security issues and countermeasures of Android

frameworks have been thoroughly examined since the

principal Android gadget was delivered to the market.

Lately, the issue of Android security has turned out to

be significantly more serious, in part due to the

vulnerabilities in the plan of Android frameworks, and

somewhat because of the colossal achievement of

Android gadgets in the advertise.

In this paper, we discuss about the SELinux through

which the security of Android devices can be enhance.

And also we discuss how to implement SELinux in

Android devices, so that it can easily be use by others.

This paper tells about the benefits of the SELinux over

the Linux based Android operating system.

REFERENCES

[1] Asst. Prof. Monika Sharma and Ankit
Thakur, “Review Paper on Android
Operating System”, IJETST-

Vol.||02||Issue||05||Pages 2486-
2490||May||ISSN 2348-9480

[2] Rahul Kale, Neha Gore, Kavita, Nilesh
Jadhav and Swapnil Shinde, “Review Paper

on factor authentication using Mobile
Phone(Android)”, July 2013, Vol. 1 Iss. 3,
PP. 92-95

[3] Mr. Sagar Vitthal Shinde and Ms. Amrita A.
Manjrekar, “ A Review Paper on Effective
Behavioral Based Malware Detection and
Prevention Techniques for Android
Platform” , ISSN 0974-3154 Volume 10,

Number 1 (2017)

[4] Alessio Merlo, Gabriele Costa, Luca
Verderame and Alessandro Armando,

“Android vs. SEAndroid: An empirical
assessment”

[5] Zheran Fang, Weili Hang and Yingjiu Li,
“Permission based Android security: Issues

and countermeasures”

[6] Kirandeep and Anu Garg, “Implementing
Security on Android Application,” in The
International Journal Of Engineering And

Science (IJES), Volume 2, Pages 56-59,
March 2013.

[7] Webroot, (2014). Mobile Threat Report.
Webroot Inc. Almin, S. B. and Chatterjee, M.
(2015) , A Novel Approach to Detect Android
Malware, Procedia Computer Science,

45pp.407-417. doi:
10.1016/j.procs.2015.03.170.

[8] Felt, A., Ha, E., Egelman, S., Haney, A.,
Chin, E. and Wagner, D. (2012) "Android

permissions", Proceedings of the Eighth
Symposium on Usable Privacy and Security -
SOUPS '12. doi: 10.1145/2335356.2335360.

[9] Tomáš Rosa. “The Decline and Dawn of

Two-Factor Authentication on Smart
Phones,” INFORMATION SECURITY
SUMMIT 2012.

[10] Andrea Saracino, Daniele Sgandurra,
Gianluca Dini and Fabio Martinelli,
“MADAM: Effective and Efficient Behavior-
based Android Malware Detection and
Prevention”, IEEE Transactions on

Dependable and Secure Computing , 2016.

[11] Hamid Bagheri, Member, IEEE, Alireza
Sadeghi, Joshua Garcia, and Sam Malek,

Member, IEEE, “COVERT: Compositional
Analysis of Android Inter-App Permission
Leakage” IEEE Transactiton on software
engineering,2015.

[12] Shancang Li, Theo Tryfonas, Gordon
Russell, and Panagiotis Andriotis, “Risk
Assessment for Mobile Systems Through a
Multilayered Hierarchical Bayesian

Network”, IEEE TRANSACTIONS ON
CYBERNETICS, VOL. 46, NO. 8, AUGUST
2016.

[13] Ke Xu, Yingjiu Li, and Robert H. Deng

“ICCDetector: ICC-Based Malware
Detection on Android”, IEEE
TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY, VOL. 11,

NO. 6, JUNE 2016.

