
© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880

IRE 1700555 ICONIC RESEARCH AND ENGINEERING JOURNALS 19

Mitigating Cross-Site Scripting Attacks with a Content

Security Policy

B. SAI JYOTHI1, RAVIPATI JYOTHI2, YELLANKI BHAVANI3, SHAIK MABIBI4,

SANAGAVARAPU PRIYANKA5

1, 2,3,4,5 Computer Science of Engineering, Vasireddy Venkatadri Institute of Technology, Nambur, Guntur

Abstract- A content security policy (CSP) can help Web

application developers and server administrator’s better

control website content and avoid vulnerabilities to cross-

site scripting (XSS). In experiments with a prototype

website, the authors' CSP implementation successfully

mitigated all XSS attack types in four popular browsers. An

XSS attack involves injecting malicious script into a trusted

website that executes on a visitor’s browser without the

visitor’s knowledge and thereby enables the attacker to

access sensitive user data, such as session tokens and

cookies stored on the

browser.1 With this data, attackers can execute several

malicious acts, including identity theft, key logging,

phishing, user impersonation, and webcam activation.

Index-Terms: Content Security Policy, Cross Site

Scripting, Web Applications, Input Sanitizers, Mitigating,

Vulnerabilities.

I. INTRODUCTION

A primary goal of CSP is to mitigate and report

XSS attacks. XSS attacks exploit the browser's trust

of the content received from the server. Malicious

scripts are executed by the victim's browser because

the browser trusts the source of the content, even

when it's not coming from where it seems to be

coming from. CSP makes it possible for server

administrators to reduce or eliminate the vectors by

which XSS can occur by specifying the domains that

the browser should consider to be valid sources of

executable scripts. A CSP compatible browser will

then only execute scripts loaded in source files

received from those whitelisted domains, ignoring

all other script (including inline scripts and event-

handling HTML attributes). Researchers have

proposed a range of mechanisms to prevent XSS

attacks, with content sanitizers dominating those

approaches. Although sanitizing eliminates

potentially harmful content from untrusted input,

each Web application must manually implement it—

a process prone to error. To avoid this problem, we

use a different technique. Instead of sanitizing

harmful scripts before they are injected into a

website, we block them from loading and executing

with a variation of the content security policy (CSP),

which provides server administrators with a white list

of accepted and approved resources. The Web

application or website will block any input not on

that list and thus there is no need for sanitizing. The

white list also guards against data exfiltration and

extrusion—the unauthorized downloading of data

from a website visitor’s computer.

1.1 Objective

A CSP closes this XSS loophole through its white list,

which guides the browser

to execute only the listed resources. Thus, even if the

attacker finds a way to inject a script into the trusted

origin, it would not match the resources and content in

the white list and would therefore be rejected. Web

application developers or server administrators use

the default source, or default-src, directive to de ne the

white list of resources.

II. TYPES OF XSS ATTACKS

An XSS attack can be Persistent, Non-persistent or it

can be based on a Document Object Model (DOM).

1) Persistent XSS:

Persistent XSS attack also known as a stored XSS or

Type-1 XSS attack. It is usually difficult to detect and

is more harmful than the other two attack types.

Because the malicious script is rendered

automatically, there is no need to target individual

victims or lure them to a third party website. This

type of attack involves injecting malicious script into

a trusted website, which stores the script in its

© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880

IRE 1700420 ICONIC RESEARCH AND ENGINEERING JOURNALS 20

database. If the stored script is malicious and not

filtered then it is included as a part of Web application

and run within the browser’s site. A persistent XSS

attack does not need a malicious link for successful

exploitation, by simply visiting that web page may

compromise the user. In the persistent XSS attack, the

malicious input originates from the victims request.

Figure I: - Typical scenario of a persistent cross-site

scripting (XSS) attack.

Each time a user visits a webpage injected with

malicious script, the stored script exploits the user’s

browser privileges to access sensitive information.

2) Non-Persistent XSS:

A Non-persistent, or reflected, XSS attack, which

occurs when a website or Web application passes

invalid user inputs. Usually, an attacker hides

malicious script in the URL, disguising it as user input,

and lures victims by sending emails that prompt users

to click on the crafted URL.

When they do, the harmful script executes in the

browser, allowing the attacker to steal authenticated

cookies or data. In the figure, we assume that victims

have authenticated themselves at the vulnerable site.

Figure 2. Typical scenario of a no persistent XSS

attack.

Victims authenticate themselves at the site and the

attacker lures them into loading a malicious link. The

link then executes malicious code with the user’s

credentials.

3) DOM-based XSS:

A webpage is composed of various elements, such as

forms, paragraphs, and tables, which are represented

in an object hierarchy. To update the structure and

style of webpage content dynamically, all Web

applications and websites interact with the DOM, a

virtual map that enables access to these webpage

elements.

The attack occurs when the victim’s browser executes

the malicious code from the modified DOM. On the

client side, the HTTP response does not change but the

script executes maliciously. This exploit works only if

the browser does not modify the URL characters. A

DOM-based XSS attack is the most advanced type and

is not well known. Indeed, much of the vulnerability to

this attack type stems from the inability of Web

application developers to fully understand how it

works.

III. LITERATURE REVIEW

”Defending Against Cross-Site Scripting Attacks”,

L.K. Shar and H.B.K. Tan, Computer, vol. 45, no. 3,

2012, pp. 55−62. Researchers Have Proposed Multiple

Solutions To Cross-site Scripting, But Vulnerabilities

Continue To Exist In Many Web Applications Due To

© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880

IRE 1700420 ICONIC RESEARCH AND ENGINEERING JOURNALS 21

Developers' Lack Of Understanding Of The Problem

And Their Unfamiliarity With Current Defenses'

Strengths And Limitations.

 NOXES: “ACLIENT-SIDE SOLUTION FOR

MITIGATING CROSS-SITE SCRIPTING

ATTACKS,”E. Kirda et al., Proc. 21st Ann.ACM

Symp. Applied Computing (SAC06), 2006, pp.

330−337.

Web applications are becoming the dominant way to

provide access to on-line services. At the same time,

web application vulnerabilities are being discovered

and disclosed at an alarming rate. This paper presents

Noxes, which is, to the best of our knowledge, the first

client-side solution to mitigate cross-site scripting

attacks. Noxes Acts as a Web Proxy and Uses Both

Manual and Automatically Generated Rules to

Mitigate Possible Cross-site Scripting Attempts.

Noxes Effectively Protects Against Information

Leakage From The User's Environment While

Requiring Minimal User Interaction And

Customization Effort.

“Defeating Script Injection Attacks With Browser-

Enforced Embedded Policies”,T. Jim, N. Swamy, And

M. Hicks, Proc. 16th Int’l Acm Conf. World Wide

Web (Www07), 2007, Pp. 601−610.

This paper proposes a simple alternative mechanism

for preventing script injection called Browser-

Enforced Embedded Policies (BEEP). The idea is that

a web site can embed a policy in its pages that specifies

which scripts are allowed to run. The browser, which

knows exactly when it will run a script, can enforce

this policy perfectly. We have added BEEP support to

several browsers, and built tools to simplify adding

policies to web applications.

“DOCUMENT STRUCTURE INTEGRITY: A

ROBUST BASIS FOR CROSS-SITE SCRIPTING

DEFENSE”

Y. Nadji, P. Saxena, and D. Song, “Document

Structure Integrity: A Robust Basis for Cross-Site

Scripting Defense,”Proc. 6th Ann. Network &

Distributed System Security Symp. (NDSS09),

2009;www.cs.berkeley.edu/~dawnsong

/papers/2009%20dsi ndss09.pdf.

Cross-site scripting (or XSS) has been the most

dominant class of web vulnerabilities in 2007. In this

paper, we develop a new approach that combines

randomization of web application code and runtime

tracking of untrusted data both on the server and the

browser to combat XSS attacks. We call this property

DOCUMENT STRUCTURE INTEGRITY (or DSI).

Similar to prepared statements in SQL, DSI

enforcement ensures automatic syntactic isolation of

inline user generated data at the parser-level.

3.1 Existing System

Identity request will be send by the system. The

collected information will be send to the collected

database server. The server not only instructs the

clients about the XSS attacks but also informs the

vulnerable sites for preventing. So this mechanism

requires minimal effort and low performance. The

pattern filtering and code filtering approaches are only

to prevent the persistent attack and those rules don’t

work for non-persistent XSS attack. If the filtering

approach fails to work, then the malicious script will

be stored and executed in the database.

3.1.1 Disadvantages

 Approved scripts have to be identified by the

website.

 It provides low performance.

 How to use the collected information in

database is not addressed.

 There are multiple policies for the

documents. No single policy for all the

documents.

 It requires user-defined security policies

which can be labor-intensive.

 How to make system deployed universally

has also not been mentioned.

3.2 Proposed System

Researchers have proposed a range of mechanisms to

prevent XSS attacks, with content sanitizers

dominating those approaches. Although sanitizing

eliminates potentially harmful content from untrusted

input, each Web application must manually implement

it—a process prone to error. To avoid this problem, we

use a different technique.

Instead of sanitizing harmful scripts before they are

injected into a website, we block them from loading

© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880

IRE 1700420 ICONIC RESEARCH AND ENGINEERING JOURNALS 22

and executing with a variation of the content security

policy (CSP), which provides server administrators

with a white list of accepted and approved resources.

The Web application or website will block any input

not on that list and thus there is no need for sanitizing.

3.2.1 Advantages of Proposed System

 It improves accuracy.

 Increases Computational Efficiency.

 Scalability and Reliability.

 The Proposed approach is modeled in such a

way that it validates the input at client side.

This technique works for both Persistent and

Non-Persistent attacks. The server side

approach provides validate output.

 Web applications provide security critical

services for preventing web related

vulnerabilities.

 Automatic rewriting of .NET applications

better support CSP.

IV. SYSTEM MODEL

Cross-site scripting is a type of computer security

vulnerability found in web-based applications which

allows code injection by malicious web users into any

web page that is viewed by the other users. The term

“Cross-site scripting”, originated when a malicious

website could potentially load a website onto other

window and then use JavaScript to read or write

information on the other website, which was later

redefined as injection.

At the time of attack, everything seems to be fine to

the end users, but they are subjected to a wide variety

of threats. This XSS attack is potentially a dangerous

vulnerability that is easy to execute and arduous to

repair. The above figure shows that the vulnerable site

sends the documents requested by the user only if it is

secured by the white listed policy. If the requested

content from the web application satisfies the Content

Security Policy, then it is send to the user. Otherwise

the request is rejected and secure messages are sending

as the requested website is malicious.

To avoid the web application attacks the web browser

security model is built on the same origin policy that

isolates one origin from the other thus providing the

developers a safe sandbox environment to build these

applications in which the code from one origin

(http://self.com) has access to only https://self.com

data and the code from other origin (https://other.com)

is not permitted to access https://self.com data. But the

attackers by pass this policy by exploiting cross-site

scripting vulnerabilities in the web application. He

injects his own script into the web application and later

this injected script will get embedded along with the

actual intended response from the website whenever

any user visits that particular webpage.

Working of CSP

If a browser is embedded with CSP, it simply follows

the CSP’s directives-language constructs that specify

how a compiler should process its input. CSP blocks

the execution of inline JavaScript. CSP allows

developers or administrators to explicitly define, using

a declarative policy language, the origin from which

different classes of content can be included into a

document. Policies are sent by the server in a special

security header, and a browser supporting the standard

is then responsible for enforcing the policy on the

client. CSP provides a principled and robust

mechanism for preventing the inclusion of malicious

content in security-sensitive web applications.

© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880

IRE 1700420 ICONIC RESEARCH AND ENGINEERING JOURNALS 23

Source directives

CSP source directives control how a client-side

browser should behave when it comes across various

types of protected website content-from JavaScript to

connection locations. Of these source directives the

most common are default, script and style.

Default source:

Web application developers or server administrators

use the default source, or default-src, directive to

define the white list of resources. Sample policies

using this directive are

Content-Security-Policy: default src ‘self’

Which permits client browsers to load all resources

only from the Web application’s own origin (protocol,

hostname, and port number), and

Content-Security-Policy: default src ‘none’

Which specifies with the keyword none that no

resource is allowed to load?

Script source:

The script-src directive controls the loading of

JavaScript on the website. The first part of the sample

policy

Content-Security-Policy: default src ‘none’; script-src

script .example.com javascript.example.com

 Specifies a default-src of ‘none’. The second

part permits the client browser to load script from

script.example.com and javascript.example.com. The

second part overwrites the default-src policy— that is,

no resource (script) is permitted to load except from

script.example.com and javascript.example.com.

Style source:

The style-src directive controls the use of Cascading

Style Sheets (CSS) and other styles on a webpage. The

policy

Content-Security-Policy: default src ‘none’; style-src

 ‘unsafe inline’ maxcdn.bootstrapcdn.com

Allows the use of inline style and the style sheets from

bootstrapcdn.com only. It disallows the loading of any

other sources, such as the connect, frame, and media

sources.

V. RESEARCH FEATURE

Based on Comparison chart test results are evolved

that is, Without CSP protection, as many as 37 XSS

vectors were successful (Firefox). Even the XSS

auditor in Chrome, Safari, and Opera could not

eliminate all XSS vectors. However, applying CSP

protection eliminated all XSS vectors for each

browser. This result is shown in following figure.

VI. RELATE WORK

CSP was proposed by Stamm et al, who provided the

first implementation in the Firefox browser.

Subsequently, CSP became a W3C standard and was

adopted by most major browsers. CSP was the first

widely deployed browser policy framework to

mitigate content injection attacks. However, it was not

the first one to be suggested. SOMA (Same Origin

Mutual Approval) reduces the impact of XSS by

controlling information flows. Website operators need

to approve content sources in a manifest file, as well

© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880

IRE 1700420 ICONIC RESEARCH AND ENGINEERING JOURNALS 24

as content providers need to approve websites to

include their content. BEEP (Browser Enforced

Embedded Policies) can prevent XSS attacks with a

whitelist approach for JavaScript and a DOM

(Document Object Model) sandbox for possibly

malicious user content.

VII. CONCLUSION AND FUTURE SCOPE

Although our CSP has many benefits, it is not intended

as a primary defence mechanism against XSS attacks.

Document structure integrity (dsi) is a client-server

architecture that restricts the interpretation of

untrusted content.7 DSI uses parser-level isolation to

isolate inline untrusted data and separates dynamic

content from static content. However, this approach

requires both servers and clients to cooperatively

upgrade to enable protection.

Lot of work has been done to handle XSS attacks

which include:

 Client side approaches

 Server side approaches

 Testing based approaches

 Static and dynamic analysis based approaches

VIII. FUTURE SCOPE

In this work, it has been restricted the XSS attacks with

the help of content filtering algorithm. This algorithm

works fine because it allows no script to store in the

database and thus no script is made to be executed.

But, it made the efforts to reduce the XSS attacks by

means of cookie stealing which is not only the way of

performing XSS attacks. In future, the same algorithm

will be implemented to restrict attacks done through

key logging etc. The scope may be extended to

implement CSP to execute the inline JavaScript.

REFERENCES

[1] M. Johns, “Code Injection Vulnerabilities in

Web Applications—Exemplified at Cross-

Site Scripting,” PhD dissertation, Univ. of

Passau,

2009; https://opus4.kobv.de/opus4-uni-

passau/frontdoor/index/index

/docId/144.

[2] Open Web Application Security Project,

“OWASP Top 10 – 2013: The Ten Most

Critical Web Application Security Risks,”

2013;www.owasp.org/index.php/Top10#OW

ASP_Top_10_for_2013.

[3] I. Yusof and A.-S.K. Pathan, “Preventing

Persistent Cross-Site Scripting

(XSS) Attack by Applying Pattern Filtering

Approach,” Proc. 5th IEEE Conf.

Information and Communication Technology

for the Muslim World (ICT4M14), 2014, pp.

1−6.

[4] L.K. Shar and H.B.K. Tan, “Defending

against Cross-Site Scripting Attacks,”

Computer, vol. 45, no. 3, 2012, pp. 55−62.

[5] E. Kirda et al., “Noxes: A Client-Side

Solution for Mitigating Cross-Site

Scripting Attacks,” Proc. 21st Ann.ACM

Symp. Applied Computing (SAC06), 2006,

pp. 330−337.

[6] T. Jim, N. Swamy, and M. Hicks, “Defeating

Script Injection Attacks

with Browser-Enforced Embedded Policies,”

Proc. 16th Int’l ACM Conf. Worldwide Web

(WWW07), 2007, pp. 601−610.

