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Abstract -- Salesforce is intended to use as very little 

information measure as attainable, in order that the 

positioning performs adequately over high-speed, dial-up, 

and wireless net connections. Whereas average page size is 

on the order of 90KB, Salesforce supports compression as 

outlined within the communications protocol one.1 

commonplace to compress the hypertext mark-up language 

content before it's transmitted as knowledge across the net 

to a user's pc. the positioning was designed with minimum 

information measure necessities in mind, thus the in depth 

use of color committal to writing rather than pictures. Our 

average user is also far-famed to look at roughly one 

hundred twenty pages from our web site per day. However, 

it's best to live any page that has been tailor-made, 

particularly if Visual Force parts are acquisitions to the 

page, to urge Associate in nursing correct measure of the 

page size. Our application is homeless, therefore, there are 

not any communication necessities within the background 

once the page masses like ancient shopper server 

applications e.g. Outlook. Therefore, once the page masses 

there are not any extra information measure necessities till 

a user queries or writes information to Salesforce. In 

practice we have found the bandwidth requirements for 

other commonly used programs place a much higher 

demand on Internet bandwidth. We have also found 

through working wit. An example would be an Account 

Executive sending a 7MB marketing brochure or 

PowerPoint presentation to a customer. The application of 

the formula "Peak bandwidth/number of users = average 

bandwidth per user" does not accurately portray the 

average bandwidth usage by the average user at Salesforce. 

 

I. INTRODUCTION 

 

We have found the bandwidth requirements for other 

commonly used programs place a much higher 

demand on Internet bandwidth. We have also found 

through working with our customers that email 

(business & personal), email attachments, News, 

streaming video, stock update, place a much greater 

strain on the available bandwidth. Hence, we 

recommend the customer measure all activities to 

make sure they are evaluating a holistic demand on 

their network services. An example would be an 

Account Executive sending a 7MB marketing 

brochure or PowerPoint presentation to a customer. 

The application of the formula "Peak 

bandwidth/number of users = average bandwidth per 

user" does not accurately portray the average 

bandwidth usage by the average user at Salesforce. 

Salesforce handles considerably more transactions per 

second in aggregate from all our customers than any 

one individual customer would see from their end 

(since not all users would be actively loading pages 

simultaneously). In short, it is difficult to specify 

customer bandwidth because of the nature of the 

Internet and individual corporate usage. Network 

latency, peering issues, bandwidth at upstream 

providers, users using their Internet connections for 

other use besides  

II. PROBLEM DOMAIN 

This error happens throughout any set (log-in, sync, 

log-out). Salesforce uses a web site as a portal between 

the information within the cloud and therefore the 

robot devices. If the request of websites is exceeded, 

Error 00001 can occur and set would be incomplete. 

III. OBJECTIVES & SCOPE 

Objective: To find the solution of error                                                                         

00001 in salesforce. 

IV. LITERATURE REVIEW 

Montgomery and Urban (1969) and Lucas et al. 

(1975) use profit maximization models to solve for 

the optimal salesforce size. A limitation of their 

approach is that they ignore the presence of multiple 

products and/or territories. Lodish et al. (1988) use 

a more sophisticated approach to modeling the issue 

in the case of one particular firm. They showed, for 

this one firm, that adding salespeople and 

redeploying them would result in increased profits. 

Zosters (1976), Lodish (1976, 1980), Ramaswamy 

et al. (1990), and Mantrala et al. (1992) consider the 

problem of finding the optimal allocation of 
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salespeople to territories, products or customers. 

These studies use static frameworks that do not 

incorporate learning effects within the salesforce. 

Another issue that has not been addressed 

adequately in the literature is specialization and the 

effect it has on structuring the salesforce. Given that 

salespeople often specialize in particular products 

and that such specialists are scarce, there are 

instances when a non-specialist serves a customer, 

which may have an impact on sales. 

Dewan and Mendelson (1990), Stidham (1992) and 

So and Song (1998) are examples of works in which 

both capacity and pricing are endogenous to the 

firm's decision problem. In all of these, the firm is 

modeled as a single server queue and capacity is 

determined by the service rate. In this paper, we are 

explicitly modeling capacity as the stamng level in 

a multi-server queue. Furthermore, we consider the 

interaction of parallel queues serving different 

customer types. Finally, in our model price 

determines the sales quantity rather than the 

customer arrival process. As we mentioned in the 

Introduction, our formulation is appropriate for 

environments in which sales leads are "handed off" 

to the salesforce. 

V. BASE PAPER METHODOLOGY AND 

DESCRIPTION 

Model Formulation: 

Consider a firm that sells two products, A and B, and 

has two types of salespeople, A and B. We assume that 

sales leads representing customers interested in each 

of these products arrive according to a Poisson process 

with arrival rates of XA and XB respectively. In the 

following, we refer to customers and sales leads 

interchangeably. We can state the profit function of the 

firm in very general terms as a function of the stamng 

S = (SA, SB) and the price of each product p = (PA, 

PB) as follows: 

 

 fl(S, P) = rijCIij(Pi — CD — dlSl,

  

 

where r.ij is the throughput of type-i leads through 

typej salespeople, qij is the expected quantity of a 

product i sold by a type j salesperson pursuing a type-

i lead, Ci is the production cost of each unit of product 

i and di is the cost per unit time of each salesperson. 

Both Ci and dt are exogenous parameters. The 

following sections describe how we find the 

throughput of each customer type (rij) and the quantity 

sold (qty). 

 

Throughput statistics: - 

Salespeople. every employee may 

match on several leads at the same time with a 

selected lead being active for days, weeks or 

months relying upon the character and characteristics 

of the merchandise category. As we have a tendency 

to mentioned within the Introduction, it's common for 

salespeople to be appointed primary responsibility for 

one set of product and secondary responsibility for 

others. for instance, in salesforce compensation is 

usually designed as a matrix that assigns a commission 

to sales person type and product-type pairs. the aim of 

such a matrix is to encourage salespeople to specialize 

in their primary product lines whereas keeping the 

choice open for cross-selling. To modify our 

analysis, we have a tendency to assume that the 

assignment of consumers to salespeople happens as 

follows. once a type-i sales lead arrives it is directed to 

a type-i salesperson. However, if all type-i salespeople 

are busy pursuing other leads the lead is routed to a 

type-j salesperson.  

 

Fig. 1. Routing of leads through a hierarchical 

salesforce. 

We are modelling the salesforce as a pair of multi-

server service systems with exponential service times 

that operate in parallel and receive their own 

independent Poisson arrival streams with rates XA 

and AB but also allow leads to overflow into each 

other. Later we will also examine systems in which a 

group of salespeople are dedicated to a single product. 

Because the "single-product" model is relatively 

simple (e.g., the sales leads flow through an M/ M/S/ 

S queueing system), we will focus on the more 
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general two product model here. We will assume that 

the service rate of each salesperson, g, is the same 

(although it is not difficult to relax this assumption). 

Note that we are modelling each lead as being 

processed sequentially by a salesperson while in 

practice a salesperson would be pursuing multiple 

leads simultaneously. We make this abstraction to 

simplify the calculation of queueing statistics, and we 

believe that explicitly modeling the simultaneous 

processing of leads would be an interesting topic for 

further research. In addition, we assume that sales 

quantity does not affect the time it takes to pursue a 

sales lead. 

The sales quantity model described in the next section 

uses two sets of statistics from this model: throughput 

and utilization. Let rAB represent the throughput of 

type A leads through type B salespeople; rBA, rAA, 

and rBB have similar interpretations. Note that ro is a 

function of the stamng vector S = (SA, SD. 

Utilization is represented as PAB, PBB, PAA, and 

PBA, and each of these is calculated easily from the 

appropriate values of ry. 

Calculating the throughput statistics of the 

salespeople is more difficult than finding the 

throughput of a standard loss system because the 

arrival process to each group of salespeople is not 

purely Poisson but is instead a combination of a 

Poisson process and bursts of arrivals that are sent 

when the other sales group is fully occupied. For this 

system we calculate throughput statistics 

numerically. Specifically, we define a two-

dimensional state space (NA, NB) where NL 

represents the number of busy salespeople of type i. 

The balance equations for this state space are 

relatively simple to enumerate, and we use these 

equations to solve iteratively for the steady-state 

probabilities of (NA, NB) (Gross and Harris, 1985, p. 

437). Given the steady-state probabilities, we 

calculate the expected throughput and utilization. 

3.2. Quantity sold 

The quantity of the product sold as a result of 

pursuing a lead depends upon the price of the product 

and the experience of the salesperson with that 

product. Here we develop a model of demand that is 

based upon customer sensitivity to both price and the 

experience of the salesforce as well as a model of the 

career path and experience accrual of an individual 

salesperson. 

Given that a type-j salesperson pursues a lead 

for product i, we assume that the sales generated 

by that lead is a random variable DIJ = ay — ßiPi, 

where aij is a random variable that depends upon 

the (random) experience level of the salesperson 

encountered by a customer and ßi is the sensitivity 

of demand to price for product i. Therefore, in the 

profit function of Equation (1): 

qty = E[Dlj]. 

 

The important difference between our specification 

and the traditional, linear demand model is that we 

allow the intercept to vary across salespeople. In the 

marketing literature sales volume is typically 

described as a function of the skill of a salesperson. 

Rao (1990) for example, proposes the functional form: 

 s = so(l — e nb ), (2) 

where s is the sales, so is the maximum achievable sales 

level, b is the skill of the salesperson and n is a parameter 

determining the rate at which so is approached. From the 

learning-curve literature (Yelle, 1979; Badiru, 1992), we 

can see that often heterogeneity in skill is a result of 

heterogeneity in experience levels. In this paper we 

combine these two perspectives by expressing sales 

volume as a function of experience. We use the same 

functional form as in Equation (2), in particular we 

assume that atj = Kij(l — exp(—nw,j)) where Wij is the 

accrued experience of a type-j salesperson selling 

product i (measured in units of time), Kij is a constant 

representing the upper limit of sales ability, i.e., the sales 

volume of a salesperson with infinite experience, and n 

is a learning parameter. Much of the traditional literature 

on learning curves uses units of work, for example 

widgets built, as a measure of experience. In 

manufacturing settings where unit labor costs decrease 

with learning because workers become faster, and it is 

easy to measure costs, this approach is appropriate. In 

our application the work unit is a sales lead and it is 

difficult to obtain data on the number of leads handled. 

Furthermore, it is not clear that the time spent per lead 

will decrease with experience. Rather, as we model it, 

the likelihood of a sale will increase with experience. 
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Therefore, additional experience selling a product has 

the effect of increasing the intercept of the demand for 

that product. This functional form is appealing for a 

number of reasons. First it is consistent with the 

marketing literature, second, it is consistent with the 

learning-curve literature in which most learning curves 

are asymptotic, and finally we have found that it 

provides a reasonable fit to actual salesforce 

performance data. The learning-curve literature 

typically models production costs as a decreasing 

function of experience that asymptotically approaches 

zero. In our case we are modeling the effect of 

experience on sales (or revenue generation) and 

therefore use an increasing function of experience that 

asymptotically approaches some upper limit. Note that 

the proposed function differs from the unbounded 

"power function" used in Pinker and Shumsky describe 

between experience and 

Given our discussion above we can now define 

quantity sold as: 

  = Kzj(l -e  (3) 

Let y be the tenure of a salesperson. Then the expected 

sales quantity is: 

  = = Kij -  I - 

ßiPi. (4) 

It can be shown that when the average time spent 

on a sales lead is small relative to the tenure of a 

salesperson then E[exp( I y] can be closely 

approximated by  

This approximation is similar to one that appears in 

Pinker and Shumsky (2000) and its accuracy here has 

been verified using simulation. Therefore: Kij(l — 

e¯'1Pijt— ßlPi). 

The probability density function for y, gy(t), is 

derived from a model of a salesperson's tenure process 

in which a career is divided into stages, so that the 

stages of the career can be modeled as states of a 

continuous-time Markov chain. The tendency to end 

employment (by being fired or quitting) varies from 

stage to stage, and the time a salesperson stays in a 

stage before leaving is exponentially distributed. The 

parameter Xl is the rate at which salespeople move 

from the first stage to the second stage, X2 is the rate 

at which they end their employment in the first stage, 

X3 is the rate at which workers in the second stage end 

their employment, and 12 > 13. 

Using this model of the tenure process it can be 

shown that: 

 
— ßiPi. 

(6) 

Equation (6) accounts for price, learning and the 

tenure process to determine the quantity sold. Since 

Pij is a byproduct of the staffing levels, S = (SA, SB), 

Equation (6) also links staffing to sales. 

3.3. The complete objective function 

 

We can now restate the optimization problem faced by 

the firm as: 

Max ms, p) 

where 

rl(S, p)  

 (7) 

There are a number of tradeoffs explicitly 

represented in this objective function. First we know 

that throughput (rij) is increasing in staffing and 

therefore there is a trade-off between the additional 

revenue brought by increased staffing and the 

marginal cost of an additional salesperson di. 

However, while increasing staffing increases the 

number of sales leads that can be pursued, 

increasing staffing also reduces the number of units 

sold per lead because it reduces the utilization and 

therefore the experience of the salesforce. This 

complex effect of utilization on experience and 

profits can be seen by the appearance of the variable 

X}  +  XlX2 

+  
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S in the denominator of some of the terms in 

Equation (7). This trade-off is clear when the 

salesforce sells a single product. In Section 6 we will 

see that this utilization effect also has a significant 

influence on salesforce design decisions when there 

are multiple products, e.g., whether to deploy a 

specialized or pooled salesforce. 

4. Optimizing prices, given salesforce size 

The complex interactions among staffing, sales and 

experience make it difficult to derive an analytical 

characterization of the optimal decision. However, 

given the expected profit function, Equations (1) 

and (7), it is relatively straightforward to solve for 

optimal prices given a specific staffng of each type 

of salesperson. 

To obtain the optimal prices given staffing we 

differentiate expected profit, Equation (l), with 

respect to price and obtain: 

 (Pi — CD + rijqij

 

Solving for price and using the notation of Equation 

(7) we find: 

 

 for i = A, B. (9) 

This expression is similar to the standard 

monopolistic price for a linear demand curve, 

except that the intercept is a weighted average of the 

intercepts of the two sources of demand. If there 

were only one product, no learning effects (so that 

the demand intercept is a constant, a), and 

throughput were equal to one, then the price 

equation is: 

 

which is the standard monopoly price. 

We now describe a few properties that follow 

directly from the price equation. The price of product 

i, 

l. increases with the cost, Ci, of product i; 

2. increases with the maximum productivity, Kij, of 

a type-j salesperson with product i; 

3. decreases with the price sensitivity ßi, of product i; 

4. increases with the learning rate, n (while this is not 

obvious from Equation (9), it can be shown that 

apt•/0n > 0). 

One property we do not specify here is the 

relationship between staffing and pricing. While it 

might seem appropriate to conjecture that prices 

and stamng (for a given product) move in the same 

direction, this is not clear from our model. While 

throughput is increasing in staffing, utilization is 

not, and this may create a non-monotone 

relationship between the two. We revisit this issue 

in the numerical experiments of Section 6. 

5. Industry data analysis 

The model described in Section 3 assumes that 

sales productivity grows with the experience of a 

particular salesperson. While the impact of 

experience on manufacturing productivity has been 

well documented by empirical research (see the 

summary by Yelle (1979)), to our knowledge there 

have been no published studies linking sales and 

experience in a salesforce. The data analysis in this 

section helps us to identify reasonable learning-

curve parameters that will be used in the numerical 

experiments of the next section. 

For our analysis we have obtained sales data from 

one particular company, "Firm A," a market leader 

in offce products with an annual sales revenue of 

over $10 billion and over 40 000 employees. 

Although the firm operates in various product and 

service markets we restrict our focus to the division 

that is the flagship of the company and accounts for 

a substantial proportion of its revenues. The 

business environment of this division conforms to 

the assumptions of our model: the firm is a market 

leader and has some pricing power, the product is 

complex, and the market is mature so that 

salespeople primarily respond to requests from 
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existing customers, rather than finding new leads. 

The division has two primary salesforces, 

"Representatives" (or "Reps") and "Specialists". 

Specialists sell technologically advanced, high-

priced equipment to large corporations while Reps 

focus on less-complex and less expensive products 

for small and medium-sized firms. Our data set is 

cross-sectional: it records the number of years a 

salesperson has been with the firm (tenure) and the 

most recent annual sales figure for each employee. 

Table I contains a summary of the data. Figures 2 

and 3 display the relationship between tenure and 

sales in each sale force. Each 'e' in Fig. 2 represents 

the average sales of 50 salespeople, while each data 

point in Fig. 3 represents a group of 40 salespeople. 

For example, the first point on the lower left of Fig. 

2 shows the average sales of the 50 most 

inexperienced Reps: their average tenure was 5 

months, and the average sales in that group was 

$330 000/year. In the figures we see a relationship 

between tenure and sales that could be attributed to 

learning, and that in each salesforce there is a large 

number of relatively inexperienced salespeople on 

the "steep" part of the learning  n = 0.02 (in this cage, 

a salesperson reaches just 20% of the maximum 

after I year and requires almost 17 years to reach 

98%). On the other hand, some products and 

markets are relatively simple, so that salespeople 

have a rapid ascent up the learning curve, relative to 

their tenure. After this rapid climb, sales do not 

increase significantly with experience. To represent 

such environments we use upper bound of n = 4 (a 

salesperson reaches 98% of the maximum within 1 

month). 

While the estimates of N derived from the 

industry data lead directly to our estimates of n in 

the general model, the connection between H and 

the parameter K is more complex. There are two 

complications when trying to derive K from H: (i) 

K represents a quantity of product sold per sales 

 

Table 1. Summary of salesforce data 

 

 Employee tenure (years)Annual sales per employee ($, x 106 ) 

Salesforce Number ofemployees Mean Std. dev. Min. Max. Mean Std. dev. Min. Max. 

Reps 

Specialists 

1239 

409 
9.1 

10.0 

9.3 

7.8 

0.1 

0.2 

35.6 

34.8 

1.3 

3.1 

1.1 

2.2 

0.005 

0.005 

9.5 

14.9 

 

 salesi = — e NT) + (10) 

where salesi represents the dollar value of sales made by a salesperson i, Ti is the length of tenure, and is a stochastic 

error term assumed to be distributed identically and independently normal with mean zero. We used the maximum 

likelihood method to estimate H and N from each data set. These estimates are presented in Table 2 and the 

associated functions are plotted as dotted lines in Figs. 2 and 3. As one might expect, the learning curve is more 

gradual and the asymptote H is higher for the specialists, who handle more complex and expensive products. 

The proposed model seems to provide a good fit with the data, although there are clearly other factors besides 

experience that influence sales (R 2 = 0.10 and 0.11). There are also some limitations to this data set that restrict our 

ability to precisely estimate the learning-curve parameters n and Kij (or, K when there is just one product). 

 

O 5 10 15 20 Tenure (years) 

a  
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lead, while H is an upper bound on the annual sales 

per salesperson; and (ii) K is the number of items 

sold per lead, given infinite sales experience and a 

price of zero (see 

 

 

o 5 10 15

 20 Tenure (years) 

Fig. 3. Specialists data and model. 

Table 2. Maximum likelihood estimation results 

Salesforce  Parameter  Estimate Std. err T-stat P-value 

Reps 

(R2 = 0.10) 

Specialists 

(R2 = 0.11) 

H 

H 

1596 065 

0.066 

3579 766 

0.046 

35 655 

0.0083 

124986 

0.0011 

44.8 

8.0 

28.6 

4.44 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

 

Equation (3)). To overcome complications (i) and (ii) 

we make a few additional assumptions and then find a 

value of K that is consistent with the observed sales 

data. Details of this procedure are included in the next 

section. In practice, however, a firm's prices, cost per 

unit, and quantity sold are often observable, and these 

data can be used to more directly estimate the cost and 

demand parameters of the model. 

6. Numerical experiments 

Here we explore the interactions among the 

exogenous parameters of the model (e.g., learning 

rate, price sensitivity and cost parameters) and the 

endogenous decisions (staffng levels, prices, and 

routing decisions). In Section 6. I , we describe 

baseline parameters for the model that are derived 

from the analysis of Section 5 and are used in 

subsequent comparisons. In Section 6.2, we find the 

optimal staffing levels for a single-product system, 

given the baseline parameters, and we see how the 

optimal staffing level changes as the cost, learning 

curve, and productivity parameters change. In 

Section 6.3 we consider a firm with two products 

and two salesforces and investigate the relative 

benefits of a pooled salesforce versus a system with 

two completely specialized salesforces. We also 

examine the impact of the routing decision within a 

pooled salesforce by comparing two sales-lead 

assignment procedures: (i) random assignment; and 

(ii) the assignment of primary and secondary 

products to each salesperson, the hierarchical 

system described in Section 3.1. 

6.1. Baseline scenario 

The parameters for the baseline scenario are based 

upon the sales "Rep" data from the previous section. 

• From the analysis above, n = 0.066 in the baseline 

model. However, we will vary n from 0.02 to 4. 

• The tenure parameters (Xl , 12, and 13) have been 

set so that the distribution of tenure found by a 

random arrival to the system is similar to the 

distribution of tenure in the Rep data set. In 

particular, the model is configured so that the 

average tenure of a sales Rep seen by a customer 

is just over 9 years, with a large percentage of 

relatively inexperienced salespeople: 52% below 

4 years. 

• d = $350/day. This is the average rate of 

compensation in the industry. 

= 2. Below we experiment with a range of ß and 

describe the impact of changes in ß. 

= 1 /day for all products and salespeople. 

According to the industry data, the average total 

time spent on a single lead is approximately I 

day. 

• X = 40/day. The size of an entire salesforce 

can often be measured in the thousands, but an offered 

load (X / g) of sales leads equivalent to 40 salespeople 

corresponds to a medium-sized regional salesforce for 
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a single product. In Section 6.2, we will consider the 

salesforce for a single product taken in isolation, with 

X = 40/day, while in Section 6.3 we apply our model 

to two products sold by two salesforces. In the two-

product case we assume that all parameters for each 

product and salesforce are equal to the baseline 

parameters described here, except that XA = XB = 

20/day (for a total load of 40 on the system). To 

simplify the exposition we are reporting results of 

experiments with a completely symmetric system in 

which the parameters for each salesforce and product 

are the same. We have conducted numerous 

experiments with asymmetric systems without 

revealing any major additional insights. 

Unfortunately, the data set described in Section 5 

does not contain sufficient information to find c or K. 

The model developed from the industry data does 

indicate that the average Rep, given essentially 

infinite experience, can earn $1600 000 in annual 

revenue. Under our assumption that the average lead 

requires I day of work, and assuming 250 

workdays/year, these most experienced Reps average 

$6400 in revenue per lead. To use this information to 

find the maximum possible quantity of product sold 

per lead (K) and the cost per unit (c), we must make 

two additional assumptions. Assume that firm A: (i) 

uses the optimal price, as described in Section 4; and 

(ii) earns a 25% margin on its sales (including the cost 

of the sale force itself). Then, K = 7.2 and c = $1120 

are the only parameter values that are consistent with 

these assumptions, the parameters above, and the 

observed maximum revenue of $6400/lead. These 

values were found by "reverse-engineering" the 

model described in Sections 3 and 4. While useful as 

a baseline, we will also experiment with a range of 

both K and c. 

6.2. A single product  

First we consider a firm with a single product to sell 

and a single salesforce. For the single-product case, 

the objective function of Equation (7) has a single 

term in the summation, and the subscripts i and j are 

removed (e.g., Kij replaced by K). Throughput and 

utilization statistics are calculated from the Erlang-

B formula. Given the baseline parameters, we find 

the optimal price (Equation (9)) and total profit 

(Equation (7)) as a function of salesforce size, S. 

The results are shown in Fig. 4. The optimal price 

is 

 

Size of Salesforce 

Fig. 4. Profit and price as staffng varies in the 

baseline model. 

$ 1870/ unit, the profit-maximizing stamng level is 

41 sales representatives, and the optimal profit is 

$25 000/day. We examined the objective function 

for hundreds of cases and in each case the objective 

function was unimodal. This was true for both the 

one-product and two-product scenarios. However, 

to be thorough, all results presented here were 

found by searching for the optimum over the entire 

range of reasonable staffing configurations. 

In Fig. 4, large unit profits explain the rapid rise 

in profitability on the left-hand side of the graph: as 

we add salespeople, throughput, r, rises and profits 

increase. This increase is partially balanced by the 

cost of each additional sales representative. 

However, in this baseline case d = $350, and the 

decrease in profits on the right-hand side of the 

graph is much more rapid than the rate implied by 

d. In this case, the primary cost of additional servers 

is the decrease in the utilization of each server and 

the concurrent decrease in experience. As 

utilization decreases, both the demand-curve 

intercept and the optimal price decrease (see 

Equation (9)). Here the utilization effect first 

described at the end of Section 3 has a strong 

impact on both the profit and the size of the optimal 

salesforce. We also see, in Fig. 4, that the optimal 

price decreases with the size of the salesforce. We 

found that this was the case in all our numerical 

1.

 

40 25 30 35 
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experiments. This observation is consistent with 

intuition: as we increase staffing we want to 

increase volume and therefore must decrease 

prices. 

To determine the impact of cost, productivity 

and learning parameters on the optimal levels of 

staffing, we varied each model parameter over a 

wide range around the baseline value described 

above. For example, took on values from one-half 

to three. With ß = 0.5, the customer is barely price 

sensitive and the firm's profit margin is high 

(80%), given the other baseline parameters. With = 

3, the consumer is extremely price sensitive, and 

given the other baseline parameters the firm cannot 

be profitable (in this case, the optimal size of the 

salesforce is zero). 

Table 3. Effect of exogenous variables on the optimal 

salesforce size 

Direction of change of the optimal salesforce size 

as the parameter increases 

 

For each parameter combination, we solved for 

the optimal salesforce size. In all, we conducted 

over 100 000 of these numerical experiments 

(contact the authors for a detailed description of the 

parameters used). For five of the parameters the 

impact on optimal staffing levels was monotonic. 

These results are presented in Table 3. In the table, 

a + (—) indicates that the optimal salesforce size is 

non-decreasing (non-increasing) as the parameter 

increases. 

These results are intuitive. The impact of K, the 

productivity parameter, is positive for salesforce 

size. Because K increases the demand intercept 

term, an increase in K leads to an increase in 

salesforce productivity thereby making the addition 

of salespeople profitable. On the other hand, an 

increase in the cost of the product, c, has a negative 

impact on salesforce size. Again, this is because an 

increase in product cost decreases the marginal 

revenue gained by adding an additional salesperson. 

A similar pattern is seen for the price sensitivity 

parameter, p: as price sensitivity increases, price 

goes down, and this diminishes the marginal revenue 

of each salesperson. This leads to a decrease in the 

salesforce size. An increase in d, the cost of a 

salesperson, reduces the optimal salesforce size. 

Finally, an increase in n both increases salesforce 

productivity and reduces the impact of the utilization 

effect described above. Both of these effects lead to 

an increase in salesforce size. However, we will see 

in the next section that the optimal salesforce size 

may not be monotone in n when the salesforce 

handles two products, rather than one product. 

In addition, the existence of a learning curve for 

the salesforce can affect the impact of changes in 

other parameters; if altering a parameter changes 

staffing levels, then learning can dampen this effect. 

For example, in Fig. 5 we see the optimal salesforce 

size under a range of compensation rates for our 

model with learning (the solid line) and for a model 

without learning (the dashed line). In the model 

without learning, salesforce productivity is fixed so 

that the two models have the same optimal staffing 

level, given the baseline parameters. The figure 

shows how an increase in the cost per salesperson 

leads to a decline in the optimal salesforce size (as 

suggested in Table 3), and the figure also shows that 

the rate of decline is much more gradual, given 

employee learning. This is because any reduction in 

staffing also increases utilization. Therefore, in an 

environment with a learning curve, the marginal 

contribution of each salesperson is larger and the 

optimal number of salespeople remains high as d 

grows. We found a similar effect as we varied 
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Compensation Rate, d ($/day) 

Fig. 5. Optimal size of the salesforce as the cost of a 

salesperson, d, varies. 

parameters ß and c. In each case, the presence of 

learning moderates the impact of changes in the other 

parameters. 

6.3. Two products 

In this section, we consider a firm with two distinct 

products and salesforces. We consider three options 

for managing these salesforces: (i) specialized; (ii) 

hierarchical; and (iii) pooled. Under the specialized 

structure, each salesforce has exclusive selling rights 

for one of the products and does not receive leads for 

the other. Therefore, the two products and their 

salesforces can be managed independently, as if there 

were only one product and one salesforce. Under the 

hierarchical structure we assume that each product has 

a primary salesforce, In Fig. 6 we plot the optimal 

staffing level as a function of the learning rate 

parameter n for the three salesforce structures. As in a 

traditional staffing problem, economies of scale in the 

pooled system lead to a smaller workforce than the 

specialized system. In addition, the optimal salesforce 

sizes of both the pooled and specialized systems 

increase with n, as suggested in the previous section's 

experiments with one product. thhierarchical sys- 

 

 
Learning Rate (n) 

The staffing pattern for the hierarchical system 

is due to the presence of experience-based 

learning in the model. When n is low, a 

salesperson with little experience is extremely 

unproductive, so experience gained by a 

salesperson must be focused on one product to 

maximize learning. In the specialized system, the 

learning is focused by design, but in the 

hierarchical system each salesperson receives 

overflow leads for their secondary products. To 

prevent this overflow, it is optimal when n is low 

to staff each salesforce at higher levels in the 

hierarchical system than in the specialized 

system. For high n, however, most salespeople 

reach the plateau of the learning curve for both 

primary and secondary products, and the staffng 

level for the hierarchical system is close to the 

level for the simple pooled system. 

The dynamics described above also have an 

effect on pricing. In Fig. 7, we plot the optimal 

price as a function of the learning rates for all 

three systems. As the learning rate increases, the 

optimal price increases, because each salesperson 

becomes much more effective; increased learning 

leads 

 
to a rise in the demand curve. We also see that the 

specialized system has higher prices than the 

pooled system because the specialized system has 

higher-skilled salespeople, producing a higher 

demand curve. 

Finally, we examine which system is 

preferable, for a given value of n. Figures 8 and 9 

compare the profitability of the three systems. For 

the lowest values of n, none of the systems 

are profitable. In this case, for a wide range of n 

the specialized system is more profitable because 

of that system's ability to focus its salespeople on 

a single product. O 

 

VI. LIMITATIONS OF THE BASE PAPER 

Figure shows how the enterprise filter can be 

physically connected with the organizations proxy 

servers, firewalls, cache engines or other Internet 

appliances. Logically new scheme or new schedule 

policy can be setup at the internet appliance or cache 

engine box. Then data collections scheduling database 

can be build to capture all the traffic that will 

conjunction with the Enterprise filter called the Master 

Database. This database can be organized and 

customize any new feature such as peer to peer 

applications such as MP3 downloading, movies online 
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or unprofitable internet serving. Certain filtering or 

scheduling scheme can be managed to block or permit 

access to individual categories by user, group or time 

of day. An Internet filtering system would allow an 

administrator to monitor and controlling Internet 

access. Certain restrictions are setup on the system 

according to policy used within the organization. 

These restrictions could be the outright blocking of 

access to certain types of Internet sites, or the 

requirement of authentication, time of day controls or 

login access controls. The enterprise filter scheme 

could consistently refine its master database of sites 

using any artificial intelligence technology and 

Internet analysts such as adding the new sites filtering 

daily and the enterprise filter database could be refined 

to automatically downloads updates to the database 

every night to ensure that the network administrator 

keeping up with the rapid evolution of the Internet. 

This scheme could be enhanced from time to time and 

generate statistical data on the internet usage from or 

out of internet traffic in an organization.  

 

 

VII. DESCRIPTION OF THE PROPOSED 

RESEARCH WORK 

Survey on the literature review that focuses on 

modeling for the bandwidth management 

performances in an IP Based network then is 

compared and tabulated as in Table 2, Appendix A. 

Comparison has been made from the scope down 

information in table 1 which detailed out there is only 

three published papers on IP based network.  Three 

different models have been used to implement 

bandwidth management. This model focuses and 

implemented on the different resources management 

such as to filter the routing traffics in the network, 

supporting the DS-TE in the MPLS networks and QoS 

controlled between end to end data aggregation. The 

three-implemented model used the ARMAX/GARCH 

model, MAM and a policy based model. A policy 

based model could be explore more in the next 

research where, it is an important plan or schedule 

need by the organizations. Different organization may 

need and want to implement a different policy based 

on their implemented network structure. This is why 

policies driven model can be enhanced further and 

new technique or algorithm can be produced based on 

this survey. Tabulated comparison in the table also 

shows that a different algorithm has been used in the 

different implemented model for the bandwidth 

management implementation. These algorithms are 

bandwidth allocations method, pre-emption algorithm 

and LSPs pre-emption algorithm and intserv-type of 

end to end point admission control. New techniques 

could be developed based on this algorithm method to 

improve the control and performance outcome.  

 

VIII. CONCLUSIONS AND LIMITATIONS 

This contradicts the conventional wisdom that the 

economy of scale provided by pooling reduces staffng 

requirements. We also show that, with learning, 

pooling using a hierarchical routing scheme is always 

preferred to pure pooling that randomly assigns leads 

to salespeople. Finally, in this paper, we use data 

collected from the salesforce of a large manufacturer, 

and fit the learning-curve and tenure-process 

parameters of the model to this data. 

While this paper has contributed to the literature it is 

not without limitations. One extension of the current 

model would be to add a cost for lost leads to the profit 

function. Within the objective function of the model 

Equation (1), including such a cost is equivalent to 

including some additional revenue for each sale, 

revenue that does not depend upon the price. 

Therefore, a significant cost for each lost lead would 

increase the value of throughput, . In doing this one 

could draw upon the literature on the performance 

analysis of shared processors and polling systems. It 

would also be interesting to allow the salesperson to 

be a more active participant in the system, making both 

effort and pricing decisions, as in agency theoretic 
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models. We have modeled the arrival process as 

exogenous, but in some environments, such as new or 

volatile markets in which the customer base is growing 

or changing quickly, the same salespeople are 

generating the leads and turning them into sales. It 

would be interesting to model how salespeople decide 

to allocate effort between generating leads and 

following leads up, within the context of a model of 

staffing with learning effects. We recognize that this is 

not an easy task because, among other complications, 

the service rates of the salespeople would be 

endogenous. 

 

REVIEW 



© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880 
 

IRE 1700612         ICONIC RESEARCH AND ENGINEERING JOURNALS 240 

 

 

 

REFERENCES 

 

[1] [1] M. H. Dunham, “Data Mining: 
Introductory and Advanced Topics,” Pearson 
Education. 

[2] Badiru, A. B. ( 1992) Computational survey 

of univariate and multivariate learning curve 
models. IEEE Transactions on Engineering 
Management, 39, 176-188. 

[3]  Basu, A., Lal, R., Srinivasan, V. and Staelin, 
R. (1985) Salesforce compensation plans: an 
agency theoretic perspective. Marketing 
Science, 4, 267—291. 

[4] Bhardwaj, P. (2001) Delegating pricing 
decisions. Marketing Science, 20(2), 143-
169. 

[5] Dewan, S. and Mendelson, H. ( 1990) User 
delay costs and internal pricing for a service 
facility. Management Science, 36, 1502—
1517. 

[6] Gross, D. and Harris C. (1985) Fundamentals 
of Queueing Theory. John Wiley and Sons, 

[7] Joseph, K. and Thevaranjan, A. (1998) 
Monitoring and incentives in sales 

organizations: an agency-theoretic 
perspective. Marketing Science, 17(2), 107-
124. 

[8] Lal, R. and Srinivasan, V. (1993) 

Compensation plans for single and 
multiproduct salesforces: an application of 
the Holmstrom-Milgrom model. 
Management Science, 39, 777—793. 

[9] Lodish, L. (1976) Assigning salesmen to 
accounts to maximize profits. Journal of 
Marketing Research, 13, 440-444. 

[10] Lodish, L. (1980) A user oriented model for 
salesforce size, product and market allocation 
decisions. Journal of Marketing, 44, 70—78. 

[11] Lodish, L., Curtis, E., Ness, E., and Simpson, 

M.K. (1988) Sales force sizing and 
deployment using a decision calculus model 
at Syntex Laboratories. Interfaces, 18, 5—20. 

[12] Lucas, H. , Weinberg, C. and Clowes, K. 
(1975) Sales response as a function of 
territorial potential and sales representative 
workload. Journal of Marketing Research, 12, 
298—305. 

[13] Mantrala, M. , Sinha, P. and Zoltners, A. 
(1992) Impact of resource allocation rules on 
marketing investment-level decisions and 

profitability. Journal of Marketing Research, 
29(2), 162—176. 

[14] Montgomery, D. and Urban, G. (1969) 
Management Science in Marketing, Prentice 

Hall, Englewood Cliffs, NJ. 



© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880 
 

IRE 1700612         ICONIC RESEARCH AND ENGINEERING JOURNALS 241 

[15] Pinker, E.J. and Shumsky, R.A. (2000) The 
emciency-quality trade-off of cross-trained 
workers. Manufacturing & Service 

Operations Man agement, 2(1), 32—48. 

[16] Rangaswamy, A., Sinha, P. and Zoltners, A. 
(1990) An integrated modelbased approach 

for sales force structuring. Marketing 
Science, 9(4), 279-299. 

[17] Rao, R. (1990) Compensating heterogeneous 
salesforces—some explicit solutions. 

Marketing Science, 9(4), 319—341. 

[18] So, K. and Song, J. (1998) Price, delivery 
time guarantees and capacity selection. 
European Journal of Operational Research, 

111, 28—49. 

[19] Stidham, S. (1992) Pricing and capacity 
decisions for a service facility: stability and 

multiple local optima. Management Science, 
38(8), 1121— 1139. 

[20] Yelle, L. (1979) The learning curve: 
historical review and comprehensive study. 

Decision Sciences, 10, 302—328. 

[21] Zoltners, A. (1976) Integer programming 
models for sales territory alignment to 
maximize profits. Journal of Marketing 

Research, 13, 426— 430. 


