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Abstract -- Salesforce is intended to use as very little
information measure as attainable, in order that the
positioning performs adequately over high-speed, dial-up,
and wireless net connections. Whereas average page size is
on the order of 90KB, Salesforce supports compression as
outlined within the communications protocol one.l
commonplace to compress the hypertext mark-up language
content before it's transmitted as knowledge across the net
to a user's pc. the positioning was designed with minimum
information measure necessities in mind, thus the in depth
use of color committal to writing rather than pictures. Our
average user is also far-famed to look at roughly one
hundred twenty pages from our web site per day. However,
it's best to live any page that has been tailor-made,
particularly if Visual Force parts are acquisitions to the
page, to urge Associate in nursing correct measure of the
page size. Our application is homeless, therefore, there are
not any communication necessities within the background
once the page masses like ancient shopper server
applications e.g. Outlook. Therefore, once the page masses
there are not any extra information measure necessities till
a user queries or writes information to Salesforce. In
practice we have found the bandwidth requirements for
other commonly used programs place a much higher
demand on Internet bandwidth. We have also found
through working wit. An example would be an Account
Executive sending a 7MB marketing brochure or
PowerPoint presentation to a customer. The application of
the formula *Peak bandwidth/number of users = average
bandwidth per user" does not accurately portray the
average bandwidth usage by the average user at Salesforce.

l. INTRODUCTION

We have found the bandwidth requirements for other
commonly used programs place a much higher
demand on Internet bandwidth. We have also found
through working with our customers that email
(business & personal), email attachments, News,
streaming video, stock update, place a much greater
strain on the available bandwidth. Hence, we
recommend the customer measure all activities to
make sure they are evaluating a holistic demand on
their network services. An example would be an
Account Executive sending a 7MB marketing
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brochure or PowerPoint presentation to a customer.
The application of the formula  "Peak
bandwidth/number of users = average bandwidth per
user" does not accurately portray the average
bandwidth usage by the average user at Salesforce.
Salesforce handles considerably more transactions per
second in aggregate from all our customers than any
one individual customer would see from their end
(since not all users would be actively loading pages
simultaneously). In short, it is difficult to specify
customer bandwidth because of the nature of the
Internet and individual corporate usage. Network
latency, peering issues, bandwidth at upstream
providers, users using their Internet connections for
other use besides

Il. PROBLEM DOMAIN

This error happens throughout any set (log-in, sync,
log-out). Salesforce uses a web site as a portal between
the information within the cloud and therefore the
robot devices. If the request of websites is exceeded,
Error 00001 can occur and set would be incomplete.

I1. OBJECTIVES & SCOPE

Objective: To find the solution of error
00001 in salesforce.

IV. LITERATURE REVIEW

Montgomery and Urban (1969) and Lucas et al.
(1975) use profit maximization models to solve for
the optimal salesforce size. A limitation of their
approach is that they ignore the presence of multiple
products and/or territories. Lodish et al. (1988) use
a more sophisticated approach to modeling the issue
in the case of one particular firm. They showed, for
this one firm, that adding salespeople and
redeploying them would result in increased profits.
Zosters (1976), Lodish (1976, 1980), Ramaswamy
et al. (1990), and Mantrala et al. (1992) consider the
problem of finding the optimal allocation of
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salespeople to territories, products or customers.
These studies use static frameworks that do not
incorporate learning effects within the salesforce.
Another issue that has not been addressed
adequately in the literature is specialization and the
effect it has on structuring the salesforce. Given that
salespeople often specialize in particular products
and that such specialists are scarce, there are
instances when a non-specialist serves a customer,
which may have an impact on sales.

Dewan and Mendelson (1990), Stidham (1992) and
So and Song (1998) are examples of works in which
both capacity and pricing are endogenous to the
firm's decision problem. In all of these, the firm is
modeled as a single server queue and capacity is
determined by the service rate. In this paper, we are
explicitly modeling capacity as the stamng level in
a multi-server queue. Furthermore, we consider the
interaction of parallel queues serving different
customer types. Finally, in our model price
determines the sales quantity rather than the
customer arrival process. As we mentioned in the
Introduction, our formulation is appropriate for
environments in which sales leads are "handed off"
to the salesforce.

V. BASE PAPER METHODOLOGY AND
DESCRIPTION

Model Formulation:

Consider a firm that sells two products, A and B, and
has two types of salespeople, A and B. We assume that
sales leads representing customers interested in each
of these products arrive according to a Poisson process
with arrival rates of XA and XB respectively. In the
following, we refer to customers and sales leads
interchangeably. We can state the profit function of the
firm in very general terms as a function of the stamng
S = (SA, SB) and the price of each product p = (PA,
PB) as follows:

fI(S, P) = i=A.Bj=A.BrijClij(Pi — CD — dISl,

where r.ij is the throughput of type-i leads through
typej salespeople, qij is the expected quantity of a
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product i sold by a type j salesperson pursuing a type-
i lead, Ci is the production cost of each unit of product
i and di is the cost per unit time of each salesperson.
Both Ci and dt are exogenous parameters. The
following sections describe how we find the
throughput of each customer type (rij) and the quantity

sold (qty).

Throughput statistics: -

Salespeople. every employee may
match on several leads at the same time with a
selected lead being active for days, weeks or
months relying upon the character and characteristics
of the merchandise category. As we have a tendency
to mentioned within the Introduction, it's common for
salespeople to be appointed primary responsibility for
one set of product and secondary responsibility for
others. for instance, in salesforce compensation is
usually designed as a matrix that assigns a commission
to sales person type and product-type pairs. the aim of
such a matrix is to encourage salespeople to specialize
in their primary product lines whereas keeping the
choice open for cross-selling. To modify our
analysis, we have a tendency to assume that the
assignment of consumers to salespeople happens as
follows. once a type-i sales lead arrives it is directed to
a type-i salesperson. However, if all type-i salespeople
are busy pursuing other leads the lead is routed to a
type-j salesperson.

Aa »| number of servers T
=S, (rate =p)

A overflow

B overflow,

As

17 = §p (rate =)
v

Fig. 1. Routing of leads through a hierarchical
salesforce.

We are modelling the salesforce as a pair of multi-
server service systems with exponential service times
that operate in parallel and receive their own
independent Poisson arrival streams with rates XA
and AB but also allow leads to overflow into each
other. Later we will also examine systems in which a
group of salespeople are dedicated to a single product.
Because the "single-product™ model is relatively
simple (e.g., the sales leads flow through an M/ M/S/
S queueing system), we will focus on the more
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general two product model here. We will assume that
the service rate of each salesperson, g, is the same
(although it is not difficult to relax this assumption).
Note that we are modelling each lead as being
processed sequentially by a salesperson while in
practice a salesperson would be pursuing multiple
leads simultaneously. We make this abstraction to
simplify the calculation of queueing statistics, and we
believe that explicitly modeling the simultaneous
processing of leads would be an interesting topic for
further research. In addition, we assume that sales
quantity does not affect the time it takes to pursue a
sales lead.

The sales quantity model described in the next section
uses two sets of statistics from this model: throughput
and utilization. Let rAB represent the throughput of
type A leads through type B salespeople; rBA, rAA,
and rBB have similar interpretations. Note that ro is a
function of the stamng vector S = (SA, SD.
Utilization is represented as PAB, PBB, PAA, and
PBA, and each of these is calculated easily from the
appropriate values of ry.

Calculating the throughput statistics of the
salespeople is more difficult than finding the
throughput of a standard loss system because the
arrival process to each group of salespeople is not
purely Poisson but is instead a combination of a
Poisson process and bursts of arrivals that are sent
when the other sales group is fully occupied. For this
system we calculate throughput statistics
numerically. Specifically, we define a two-
dimensional state space (NA, NB) where NL
represents the number of busy salespeople of type i.
The balance equations for this state space are
relatively simple to enumerate, and we use these
equations to solve iteratively for the steady-state
probabilities of (NA, NB) (Gross and Harris, 1985, p.
437). Given the steady-state probabilities, we
calculate the expected throughput and utilization.

3.2. Quantity sold

The quantity of the product sold as a result of
pursuing a lead depends upon the price of the product
and the experience of the salesperson with that
product. Here we develop a model of demand that is
based upon customer sensitivity to both price and the
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experience of the salesforce as well as a model of the
career path and experience accrual of an individual
salesperson.

Given that a type-j salesperson pursues a lead
for product i, we assume that the sales generated
by that lead is a random variable DIJ = ay — RiPi,
where aij is a random variable that depends upon
the (random) experience level of the salesperson
encountered by a customer and Ri is the sensitivity
of demand to price for product i. Therefore, in the
profit function of Equation (1):

qty = E[DIj].

The important difference between our specification
and the traditional, linear demand model is that we
allow the intercept to vary across salespeople. In the
marketing literature sales volume is typically
described as a function of the skill of a salesperson.
Rao (1990) for example, proposes the functional form:

s=so(l —e ™), )

where s is the sales, so is the maximum achievable sales
level, b is the skill of the salesperson and n is a parameter
determining the rate at which so is approached. From the
learning-curve literature (Yelle, 1979; Badiru, 1992), we
can see that often heterogeneity in skill is a result of
heterogeneity in experience levels. In this paper we
combine these two perspectives by expressing sales
volume as a function of experience. We use the same
functional form as in Equation (2), in particular we
assume that atj = Kij(l — exp(—nw,j)) where Wij is the
accrued experience of a type-j salesperson selling
product i (measured in units of time), Kij is a constant
representing the upper limit of sales ability, i.e., the sales
volume of a salesperson with infinite experience, and n
is a learning parameter. Much of the traditional literature
on learning curves uses units of work, for example
widgets built, as a measure of experience. In
manufacturing settings where unit labor costs decrease
with learning because workers become faster, and it is
easy to measure costs, this approach is appropriate. In
our application the work unit is a sales lead and it is
difficult to obtain data on the number of leads handled.
Furthermore, it is not clear that the time spent per lead
will decrease with experience. Rather, as we model it,
the likelihood of a sale will increase with experience.
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Therefore, additional experience selling a product has
the effect of increasing the intercept of the demand for
that product. This functional form is appealing for a
number of reasons. First it is consistent with the
marketing literature, second, it is consistent with the
learning-curve literature in which most learning curves
are asymptotic, and finally we have found that it
provides a reasonable fit to actual salesforce
performance data. The learning-curve literature
typically models production costs as a decreasing
function of experience that asymptotically approaches
zero. In our case we are modeling the effect of
experience on sales (or revenue generation) and
therefore use an increasing function of experience that
asymptotically approaches some upper limit. Note that
the proposed function differs from the unbounded
"power function” used in Pinker and Shumsky describe
between experience and

Given our discussion above we can now define
quantity sold as:

Dij = kzj(1-e ") —Bwpi-  (3)

Let y be the tenure of a salesperson. Then the expected
sales quantity is:

qij - = Klj _KijEy[E[e_nwu I _
BiPi.  (4)

It can be shown that when the average time spent
on a sales lead is small relative to the tenure of a
salesperson then E[exp( | y] can be closely

approximated byexp(_

This approximation is similar to one that appears in
Pinker and Shumsky (2000) and its accuracy here has
been verified using simulation. Therefore: ¥Kij(I —
e '1Pijt— BIPi).

The probability density function for y, gy(t), is
derived from a model of a salesperson's tenure process
in which a career is divided into stages, so that the
stages of the career can be modeled as states of a
continuous-time Markov chain. The tendency to end
employment (by being fired or quitting) varies from
stage to stage, and the time a salesperson stays in a
stage before leaving is exponentially distributed. The
parameter Xl is the rate at which salespeople move
from the first stage to the second stage, X2 is the rate
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at which they end their employment in the first stage,
X3 is the rate at which workers in the second stage end
their employment, and 12 > 13.

Using this model of the tenure process it can be
shown that:

e np;j ( X}f + Xx¥2, )
¥ Y A1+ A2 + npj; (A1 + A3)(A3 + npyy)
— RiPi.

(6)

Equation (6) accounts for price, learning and the
tenure process to determine the quantity sold. Since
Pij is a byproduct of the staffing levels, S = (SA, SB),
Equation (6) also links staffing to sales.

3.3. The complete objective function

We can now restate the optimization problem faced by
the firm as:

Max ms, p)

where

e (S
=3 ¥ {r,y(S)[K,y(f,{;%f)

i=A,Bj=A.B

n
rl(S, p) ) (11 + A2 + n(rij(S)/;LSj))

el B )
(A1 + 23)(A3 + n(ri(S)|S)))

. ﬁipi] pi—ci)— dei}-
)
There are a number of tradeoffs explicitly
represented in this objective function. First we know
that throughput (rij) is increasing in staffing and
therefore there is a trade-off between the additional
revenue brought by increased staffing and the
marginal cost of an additional salesperson di.
However, while increasing staffing increases the
number of sales leads that can be pursued,
increasing staffing also reduces the number of units
sold per lead because it reduces the utilization and
therefore the experience of the salesforce. This
complex effect of utilization on experience and
profits can be seen by the appearance of the variable
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S in the denominator of some of the terms in
Equation (7). This trade-off is clear when the
salesforce sells a single product. In Section 6 we will
see that this utilization effect also has a significant
influence on salesforce design decisions when there
are multiple products, e.g., whether to deploy a
specialized or pooled salesforce.

4. Optimizing prices, given salesforce size

The complex interactions among staffing, sales and
experience make it difficult to derive an analytical
characterization of the optimal decision. However,
given the expected profit function, Equations (1)
and (7), it is relatively straightforward to solve for
optimal prices given a specific staffng of each type
of salesperson.

To obtain the optimal prices given staffing we
differentiate expected profit, Equation (I), with
respect to price and obtain:

[aqij
2. |rvg,
j=aBL Pi i — cD + rijgij
=0 fori=A,B. (8

Solving for price and using the notation of Equation
(7) we find:

¢ rij(S) n
B=y Zj: I uS; )\ + A+ n(ry(S)/uS))
A+ Ak

) 28 i "
X(] i A+ A3)(As + n(r:j(S)/l/«Sj)))/ P %‘rl

fori=A, B. 9)
This expression is similar to the standard
monopolistic price for a linear demand curve,
except that the intercept is a weighted average of the
intercepts of the two sources of demand. If there
were only one product, no learning effects (so that
the demand intercept is a constant, a), and
throughput were equal to one, then the price
equation is:

which is the standard monopoly price.
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We now describe a few properties that follow
directly from the price equation. The price of product
il

I. increases with the cost, Ci, of product i;

2. increases with the maximum productivity, Kij, of
a type-j salesperson with product i;

3. decreases with the price sensitivity Bi, of product i;

4. increases with the learning rate, n (while this is not
obvious from Equation (9), it can be shown that
apte/On > 0).

One property we do not specify here is the
relationship between staffing and pricing. While it
might seem appropriate to conjecture that prices
and stamng (for a given product) move in the same
direction, this is not clear from our model. While
throughput is increasing in staffing, utilization is
not, and this may create a non-monotone
relationship between the two. We revisit this issue
in the numerical experiments of Section 6.

5. Industry data analysis

The model described in Section 3 assumes that
sales productivity grows with the experience of a
particular salesperson. While the impact of
experience on manufacturing productivity has been
well documented by empirical research (see the
summary by Yelle (1979)), to our knowledge there
have been no published studies linking sales and
experience in a salesforce. The data analysis in this
section helps us to identify reasonable learning-
curve parameters that will be used in the numerical
experiments of the next section.

For our analysis we have obtained sales data from
one particular company, "Firm A," a market leader
in offce products with an annual sales revenue of
over $10 billion and over 40 000 employees.
Although the firm operates in various product and
service markets we restrict our focus to the division
that is the flagship of the company and accounts for
a substantial proportion of its revenues. The
business environment of this division conforms to
the assumptions of our model: the firm is a market
leader and has some pricing power, the product is
complex, and the market is mature so that
salespeople primarily respond to requests from
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existing customers, rather than finding new leads.
The division has two primary salesforces,
"Representatives” (or "Reps") and "Specialists".
Specialists sell technologically advanced, high-
priced equipment to large corporations while Reps
focus on less-complex and less expensive products
for small and medium-sized firms. Our data set is
cross-sectional: it records the number of years a
salesperson has been with the firm (tenure) and the
most recent annual sales figure for each employee.
Table | contains a summary of the data. Figures 2
and 3 display the relationship between tenure and
sales in each sale force. Each 'e" in Fig. 2 represents
the average sales of 50 salespeople, while each data
point in Fig. 3 represents a group of 40 salespeople.
For example, the first point on the lower left of Fig.
2 shows the average sales of the 50 most
inexperienced Reps: their average tenure was 5
months, and the average sales in that group was
$330 000/year. In the figures we see a relationship

Table 1. Summary of salesforce data

between tenure and sales that could be attributed to
learning, and that in each salesforce there is a large
number of relatively inexperienced salespeople on
the "steep” part of the learning n=0.02 (in this cage,
a salesperson reaches just 20% of the maximum
after | year and requires almost 17 years to reach
98%). On the other hand, some products and
markets are relatively simple, so that salespeople
have a rapid ascent up the learning curve, relative to
their tenure. After this rapid climb, sales do not
increase significantly with experience. To represent
such environments we use upper bound of n =4 (a
salesperson reaches 98% of the maximum within 1
month).

While the estimates of N derived from the
industry data lead directly to our estimates of n in
the general model, the connection between H and
the parameter K is more complex. There are two
complications when trying to derive K from H: (i)
K represents a quantity of product sold per sales

Employee tenure (years)Annual sales per employee ($, x 108)

Salesforce Number ofemployees pMean  Std. dev.

Min. Max. Mean Std.dev. \in,  Max.

Reps 1239 9.1 9.3
Specialists 409 10.0 7.8

35.6 1.3 11 0.005 9.5
34.8 3.1 2.2 0.005 14.9

salesi=—e NT) + (20)

where salesi represents the dollar value of sales made by a salesperson i, Ti is the length of tenure, and is a stochastic
error term assumed to be distributed identically and independently normal with mean zero. We used the maximum
likelihood method to estimate H and N from each data set. These estimates are presented in Table 2 and the
associated functions are plotted as dotted lines in Figs. 2 and 3. As one might expect, the learning curve is more
gradual and the asymptote H is higher for the specialists, who handle more complex and expensive products.
The proposed model seems to provide a good fit with the data, although there are clearly other factors besides

experience that influence sales (R 2= 0.10 and 0.11). There are also some limitations to this data set that restrict our
ability to precisely estimate the learning-curve parameters n and Kij (or, K when there is just one product).
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lead, while H is an upper bound on the annual sales
per salesperson; and (ii) K is the number of items
sold per lead, given infinite sales experience and a
price of zero (see

Annual Sales ($, x108)

o 5 10 15
20 Tenure (years)

Fig. 3. Specialists data and model.

Table 2. Maximum likelihood estimation results

routing decisions). In Section 6. | , we describe
baseline parameters for the model that are derived
from the analysis of Section 5 and are used in
subsequent comparisons. In Section 6.2, we find the
optimal staffing levels for a single-product system,
given the baseline parameters, and we see how the
optimal staffing level changes as the cost, learning
curve, and productivity parameters change. In
Section 6.3 we consider a firm with two products
and two salesforces and investigate the relative
benefits of a pooled salesforce versus a system with
two completely specialized salesforces. We also
examine the impact of the routing decision within a
pooled salesforce by comparing two sales-lead
assignment procedures: (i) random assignment; and
(ii) the assignment of primary and secondary
products to each salesperson, the hierarchical
system described in Section 3.1.

6.1. Baseline scenario

The parameters for the baseline scenario are based

Salesforce  Parameter Estimate Std.err  T-Stat

upon the sales "Rep" data from the previous section.

P-value

Reps H 1596 065 35655 44.8
(R? = 0.10) 0.066 0.0083 8.0
Specialists 3579 766 124986 28.6
(R2=0.11) 0.046  0.0011 4.44

<0.0001

<0.0001
<0.0081 The tenure parameters (XI, 12, and 13) have been

<0.0001 Set so that the distribution of tenure found by a

¢ From the analysis above, n = 0.066 in the baseline
model. However, we will vary n from 0.02 to 4.

Equation (3)). To overcome complications (i) and (ii)
we make a few additional assumptions and then find a
value of K that is consistent with the observed sales
data. Details of this procedure are included in the next
section. In practice, however, a firm's prices, cost per
unit, and quantity sold are often observable, and these
data can be used to more directly estimate the cost and
demand parameters of the model.

6. Numerical experiments

Here we explore the interactions among the
exogenous parameters of the model (e.g., learning
rate, price sensitivity and cost parameters) and the
endogenous decisions (staffng levels, prices, and

IRE 1700612

random arrival to the system is similar to the
distribution of tenure in the Rep data set. In
particular, the model is configured so that the
average tenure of a sales Rep seen by a customer
is just over 9 years, with a large percentage of
relatively inexperienced salespeople: 52% below
4 years.

®* d = $350/day. This is the average rate of
compensation in the industry.
* B=2. Below we experiment with a range of 3 and
describe the impact of changes in B.

® M= 1 /day for all products and salespeople.
According to the industry data, the average total
time spent on a single lead is approximately |
day.

. X = 40/day. The size of an entire salesforce
can often be measured in the thousands, but an offered
load (X / g) of sales leads equivalent to 40 salespeople
corresponds to a medium-sized regional salesforce for

ICONIC RESEARCH AND ENGINEERING JOURNALS 234



© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880

a single product. In Section 6.2, we will consider the
salesforce for a single product taken in isolation, with
X = 40/day, while in Section 6.3 we apply our model
to two products sold by two salesforces. In the two-
product case we assume that all parameters for each
product and salesforce are equal to the baseline
parameters described here, except that XA = XB =
20/day (for a total load of 40 on the system). To
simplify the exposition we are reporting results of
experiments with a completely symmetric system in
which the parameters for each salesforce and product
are the same. We have conducted numerous
experiments with asymmetric systems without
revealing any major additional insights.

Unfortunately, the data set described in Section 5
does not contain sufficient information to find ¢ or K.
The model developed from the industry data does
indicate that the average Rep, given essentially
infinite experience, can earn $1600 000 in annual
revenue. Under our assumption that the average lead
requires | day of work, and assuming 250
workdays/year, these most experienced Reps average
$6400 in revenue per lead. To use this information to
find the maximum possible quantity of product sold
per lead (K) and the cost per unit (c), we must make
two additional assumptions. Assume that firm A: (i)
uses the optimal price, as described in Section 4; and
(ii) earns a 25% margin on its sales (including the cost
of the sale force itself). Then, K=7.2 and ¢c = $1120
are the only parameter values that are consistent with
these assumptions, the parameters above, and the
observed maximum revenue of $6400/lead. These
values were found by "reverse-engineering" the
model described in Sections 3 and 4. While useful as
a baseline, we will also experiment with a range of
both K and c.

6.2. A single product

First we consider a firm with a single product to sell
and a single salesforce. For the single-product case,
the objective function of Equation (7) has a single
term in the summation, and the subscripts i and j are
removed (e.g., Kij replaced by K). Throughput and
utilization statistics are calculated from the Erlang-
B formula. Given the baseline parameters, we find
the optimal price (Equation (9)) and total profit
(Equation (7)) as a function of salesforce size, S.

IRE 1700612

The results are shown in Fig. 4. The optimal price
is

¥

11.85

Profit ($1000/day)
Optimal Price ($1000)

153@ 33 Qg 49 45 50 i

Size of Salesforce

Fig. 4. Profit and price as staffng varies in the
baseline model.

$ 1870/ unit, the profit-maximizing stamng level is
41 sales representatives, and the optimal profit is
$25 000/day. We examined the objective function
for hundreds of cases and in each case the objective
function was unimodal. This was true for both the
one-product and two-product scenarios. However,
to be thorough, all results presented here were
found by searching for the optimum over the entire
range of reasonable staffing configurations.

In Fig. 4, large unit profits explain the rapid rise
in profitability on the left-hand side of the graph: as
we add salespeople, throughput, r, rises and profits
increase. This increase is partially balanced by the
cost of each additional sales representative.
However, in this baseline case d = $350, and the
decrease in profits on the right-hand side of the
graph is much more rapid than the rate implied by
d. In this case, the primary cost of additional servers
is the decrease in the utilization of each server and
the concurrent decrease in experience. As
utilization decreases, both the demand-curve
intercept and the optimal price decrease (see
Equation (9)). Here the utilization effect first
described at the end of Section 3 has a strong
impact on both the profit and the size of the optimal
salesforce. We also see, in Fig. 4, that the optimal
price decreases with the size of the salesforce. We
found that this was the case in all our numerical
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experiments. This observation is consistent with
intuition: as we increase staffing we want to
increase volume and therefore must decrease
prices.

To determine the impact of cost, productivity
and learning parameters on the optimal levels of
staffing, we varied each model parameter over a
wide range around the baseline value described
above. For example, took on values from one-half
to three. With B = 0.5, the customer is barely price
sensitive and the firm's profit margin is high
(80%), given the other baseline parameters. With =
3, the consumer is extremely price sensitive, and
given the other baseline parameters the firm cannot
be profitable (in this case, the optimal size of the
salesforce is zero).

Table 3. Effect of exogenous variables on the optimal
salesforce size

Parameter K ¢ B

Direction of change of the + - —
Direction of change of the optimal salesforce size
as the parameter increases

For each parameter combination, we solved for
the optimal salesforce size. In all, we conducted
over 100 000 of these numerical experiments
(contact the authors for a detailed description of the
parameters used). For five of the parameters the
impact on optimal staffing levels was monotonic.
These results are presented in Table 3. In the table,
a + (—) indicates that the optimal salesforce size is
non-decreasing (non-increasing) as the parameter
increases.

These results are intuitive. The impact of K, the
productivity parameter, is positive for salesforce
size. Because K .increases the demand intercept
term, an increase in K leads to an increase in
salesforce productivity thereby making the addition
of salespeople profitable. On the other hand, an
increase in the cost of the product, c, has a negative
impact on salesforce size. Again, this is because an
increase in product cost decreases the marginal
revenue gained by adding an additional salesperson.
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A similar pattern is seen for the price sensitivity
parameter, p: as price sensitivity increases, price
goes down, and this diminishes the marginal revenue
of each salesperson. This leads to a decrease in the
salesforce size. An increase in d, the cost of a
salesperson, reduces the optimal salesforce size.
Finally, an increase in n both increases salesforce
productivity and reduces the impact of the utilization
effect described above. Both of these effects lead to
an increase in salesforce size. However, we will see
in the next section that the optimal salesforce size
may not be monotone in n when the salesforce
handles two products, rather than one product.

In addition, the existence of a learning curve for
the salesforce can affect the impact of changes in
other parameters; if altering a parameter changes
staffing levels, then learning can dampen this effect.
For example, in Fig. 5 we see the optimal salesforce
size under a range of compensation rates for our
model with learning (the solid line) and for a model
without learning (the dashed line). In the model
without learning, salesforce productivity is fixed so
that the two models have the same optimal staffing
level, given the baseline parameters. The figure
shows how an increase in the cost per salesperson
leads to a decline in the optimal salesforce size (as
suggested in Table 3), and the figure also shows that
the rate of decline is much more gradual, given
employee learning. This is because any reduction in
staffing also increases utilization. Therefore, in an
environment with a learning curve, the marginal
contribution of each salesperson is larger and the
optimal number of salespeople remains high as d
grows. We found a similar effect as we varied
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Compensation Rate, d ($/day)

Fig. 5. Optimal size of the salesforce as the cost of a
salesperson, d, varies.

parameters 3 and c. In each case, the presence of
learning moderates the impact of changes in the other
parameters.

6.3. Two products

In this section, we consider a firm with two distinct
products and salesforces. We consider three options
for managing these salesforces: (i) specialized; (ii)
hierarchical; and (iii) pooled. Under the specialized
structure, each salesforce has exclusive selling rights
for one of the products and does not receive leads for
the other. Therefore, the two products and their
salesforces can be managed independently, as if there
were only one product and one salesforce. Under the
hierarchical structure we assume that each product has
a primary salesforce, In Fig. 6 we plot the optimal
staffing level as a function of the learning rate
parameter n for the three salesforce structures. Asin a
traditional staffing problem, economies of scale in the
pooled system lead to a smaller workforce than the
specialized system. In addition, the optimal salesforce
sizes of both the pooled and specialized systems
increase with n, as suggested in the previous section's
experiments with one product. thhierarchical sys-

BU— . . e

hierarchical

o
15,

50

45

Optimal Total Size of Salesforce

Learning Rate (n)

The staffing pattern for the hierarchical system
is due to the presence of experience-based
learning in the model. When n is low, a
salesperson with little experience is extremely
unproductive, so experience gained by a
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salesperson must be focused on one product to
maximize learning. In the specialized system, the
learning is focused by design, but in the
hierarchical system each salesperson receives
overflow leads for their secondary products. To
prevent this overflow, it is optimal when n is low
to staff each salesforce at higher levels in the
hierarchical system than in the specialized
system. For high n, however, most salespeople
reach the plateau of the learning curve for both
primary and secondary products, and the staffng
level for the hierarchical system is close to the
level for the simple pooled system.

The dynamics described above also have an
effect on pricing. In Fig. 7, we plot the optimal
price as a function of the learning rates for all
three systems. As the learning rate increases, the
optimal price increases, because each salesperson
becomes much more effective; increased learning
leads

to a rise in the demand curve. We also see that the
specialized system has higher prices than the
pooled system because the specialized system has
higher-skilled salespeople, producing a higher
demand curve.

Finally, we examine which system is
preferable, for a given value of n. Figures 8 and 9
compare the profitability of the three systems. For
the lowest values of n, none of the systems
are profitable. In this case, for a wide range of n
the specialized system is more profitable because
of that system's ability to focus its salespeople on
a single product. O

VI. LIMITATIONS OF THE BASE PAPER

Figure shows how the enterprise filter can be
physically connected with the organizations proxy
servers, firewalls, cache engines or other Internet
appliances. Logically new scheme or new schedule
policy can be setup at the internet appliance or cache
engine box. Then data collections scheduling database
can be build to capture all the traffic that will
conjunction with the Enterprise filter called the Master
Database. This database can be organized and
customize any new feature such as peer to peer
applications such as MP3 downloading, movies online
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or unprofitable internet serving. Certain filtering or
scheduling scheme can be managed to block or permit
access to individual categories by user, group or time
of day. An Internet filtering system would allow an
administrator to monitor and controlling Internet
access. Certain restrictions are setup on the system
according to policy used within the organization.
These restrictions could be the outright blocking of
access to certain types of Internet sites, or the
requirement of authentication, time of day controls or
login access controls. The enterprise filter scheme
could consistently refine its master database of sites
using any artificial intelligence technology and
Internet analysts such as adding the new sites filtering
daily and the enterprise filter database could be refined
to automatically downloads updates to the database
every night to ensure that the network administrator
keeping up with the rapid evolution of the Internet.
This scheme could be enhanced from time to time and
generate statistical data on the internet usage from or
out of internet traffic in an organization.

POLICY: Written

Policy Rules and sefap i DATABASE: Update
j Daily

FIREWALL: Cache INTERNET
E Appliance &
~Z= 8 USER £ “\\4‘\,)
4  PERMITTED Request Sllas > nL
—
K3 L
—_—

BLOCK: Request
¥ Monitor Usage
v Reports

¥ Customizable

v
= E Management
o ¢ —
- 1 _— MONITOR
== — Activity

REPORT
Analysis

VIl. DESCRIPTION OF THE
RESEARCH WORK

PROPOSED

Survey on the literature review that focuses on
modeling  for the bandwidth  management
performances in an IP Based network then is
compared and tabulated as in Table 2, Appendix A.
Comparison has been made from the scope down
information in table 1 which detailed out there is only
three published papers on IP based network. Three
different models have been used to implement
bandwidth management. This model focuses and
implemented on the different resources management
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such as to filter the routing traffics in the network,
supporting the DS-TE in the MPLS networks and QoS
controlled between end to end data aggregation. The
three-implemented model used the ARMAX/GARCH
model, MAM and a policy based model. A policy
based model could be explore more in the next
research where, it is an important plan or schedule
need by the organizations. Different organization may
need and want to implement a different policy based
on their implemented network structure. This is why
policies driven model can be enhanced further and
new technique or algorithm can be produced based on
this survey. Tabulated comparison in the table also
shows that a different algorithm has been used in the
different implemented model for the bandwidth
management implementation. These algorithms are
bandwidth allocations method, pre-emption algorithm
and LSPs pre-emption algorithm and intserv-type of
end to end point admission control. New techniques
could be developed based on this algorithm method to
improve the control and performance outcome.

VIIl.  CONCLUSIONS AND LIMITATIONS

This contradicts the conventional wisdom that the
economy of scale provided by pooling reduces staffng
requirements. We also show that, with learning,
pooling using a hierarchical routing scheme is always
preferred to pure pooling that randomly assigns leads
to salespeople. Finally, in this paper, we use data
collected from the salesforce of a large manufacturer,
and fit the learning-curve and tenure-process
parameters of the model to this data.

While this paper has contributed to the literature it is
not without limitations. One extension of the current
model would be to add a cost for lost leads to the profit
function. Within the objective function of the model
Equation (1), including such a cost is equivalent to
including some additional revenue for each sale,
revenue that does not depend upon the price.
Therefore, a significant cost for each lost lead would
increase the value of throughput, . In doing this one
could draw upon the literature on the performance
analysis of shared processors and polling systems. It
would also be interesting to allow the salesperson to
be a more active participant in the system, making both
effort and pricing decisions, as in agency theoretic
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models. We have modeled the arrival process as
exogenous, but in some environments, such as new or
volatile markets in which the customer base is growing
or changing quickly, the same salespeople are
generating the leads and turning them into sales. It
would be interesting to model how salespeople decide

to allocate effort between generating leads and
following leads up, within the context of a model of
staffing with learning effects. We recognize that this is
not an easy task because, among other complications,
the service rates of the salespeople would be
endogenous.
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