
© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 41

Survey on Web Browser and Their Extensions

PALAK JAIN1
1CSE, Maulana Azad National Institute of Technology, Bhopal

Abstract-- The Web today has become the most useful and

popular platform for application development. In the

beginnings of the Web, applications provided users just the

ability to browse and read content. The expansion and

adoption of new web technologies has led to a significant

increase in development and, more importantly, usage of

web applications that allow users to create their own

content and impact their life. Almost every Internet user

uses a web browser to access any content on the Internet.

Each web application is designed and developed to be

executed inside the web browser. Browser extensions are

remarkably popular, with one in three users running at

least one extension. Browser extensions allow for

customization of the browser by adding functionality. The

way these extensions are integrated strongly differs in the

four major browsers i.e. Google Chrome, Mozilla Firefox,

Apple Safari, and Internet Explorer. In this paper, there is

an analysis of popular web browsers and their architecture.

It also includes analysis of different browser extensions

and their architecture with their security.

I. INTRODUCTION

Online banking, social networking and information

retrieval are some of the terms which are confronted

us every day. During the last years, several services of

the Internet have become ubiquitous. Web browsers

are the platform which allows users to browse web

pages and other resources such as images, sound files,

videos on the Internet. Web browsers are the

intermediary applications between a user and the web

server. Understanding of browser vulnerability

requires the knowledge of architectural design of

browsers. Basically a browser is a software or software

application program which is used for retrieving or

extracting information resources on World Wide Web.

It consists of three main parts: i) controller ii) client

program and iii) interpreter.

Figure 1: Functionality of Web Browser

The controller handles the other two parts i.e.

interpreter and client program. A controller takes

inputs from the standard input devices and uses a client

program (http, ftp, telnet etc.) to access any document.

As soon as the document is accessed, controller makes

use of an interpreter (html, cgi or java etc.) to display

it on the screen. Hence, it acts as an interface between

a user and the World Wide Web. The major use case

for web browsers is displaying web pages by rendering

markup language content. When speaking about the

Internet this markup language is the Hyper Text

Markup Language (HTML) which is an international

standard of W3C. Web Browser is a software

application that resides on a computer and is used to

display and locate web pages. Web user’s access

information from web servers by using a client

program called Browser. A web browser is a software

application for traversing, presenting, and retrieving

information resources on the World Wide Web. The

information resources are identified by using Uniform

Resource Identifier (URI/URL) and may be a web

page, image, video or another piece of content.

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 42

Browser Extensions (often called plug-ins or add-ons)

are small pieces of code that let developers add

additional functionality to the browser.

Offline content is stored in your computer in the form

of web pages and to access them we need a browser to

view it. The purpose of the browser is to take

information which is sent to the computer and present

it in a readable and useable format. The browser also

connects you to different websites (web servers) and

they reply with the requested information. If you are

going to use the internet, firstly you have a browser on

your desktop and if there is no browser then every

operating system must have one built-in browser into

it. The Internet Explorer for Windows OS, Mozilla

Firefox for Linux and if you want Google Chrome then

you need to install it.

II. CLASSIFICATION

 The three varieties of classification browser are:

1. Standard Browser: The Standard browser

displays the classification which schedules the

links to other areas of classification and to the

classification tables. When you click on a table

link in the Standard browser, the data on the

screen is replaced with the contents of the table.

All classification number calculations and

additions must be performed manually.

2. Enhanced Browser: The Enhanced browser is

used to add support for a calculator that

automatically merges classification table data

into the main classification display. When you

click on a table link in the Enhanced browser, the

table is loaded in such a way that the table data

seems to be a part of the schedules data. To avoid

cluttering the screen, the Enhanced browser will

not apply a table and it displays its content unless

we click on a particular table link. Once we click

on the link, the table will be merged into the

current display with calculated classification

numbers. The one time Class Web will

automatically apply tables when you enter a

classification number into the LC Class prompt

at the top of the screen. In that case, any

appropriate tables will be applied to get you to

the most specific record possible for a given class

number.

3. Hierarchy Browser: The Hierarchy browser is a

browser which automatically takes table links as

we move around in the data. We navigate

hierarchically by moving down one level at a

time and by moving up one or more levels at

once. Like the Enhanced browser, when we

typed a number into the LC Class prompt at the

top of the screen, then the software will apply as

many tables as necessary to get the most specific

possible record. The Hierarchy browser keeps

track of the current level and limits the display to

the level of classified data. By clicking on a link

that says Hide subtopics, Show subtopics

or Apply table, through this we can change the

maximum depth that the browser will go when

creating the display.

III. BASIC ARCHITECTURE OF WEB BROWSER

1. User Interface: It is the space where interaction

between users and the browser happens. Most of

the browsers have common inputs for a user

interface. Some of them are - an address bar, next

and back buttons, and buttons for home, refresh

and stop, choices to bookmark web pages, and so

forth.

Figure 2: Architecture of Web Browser

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 43

2. Browser Engine: It is a bridge between a user

interface and rendering engine. It is in charge of

querying and manipulating the rendering engine

according to the inputs from various user

interfaces.

3. Rendering Engine: It is able to render the content

available for the web representation of resources.

It will start parsing the HTML document and turn

the tags to DOM nodes in a tree called Content

tree. It will also parse the style data both in

external CSS files and in style elements.

4. Network: The fraction of the code written in the

browser, responsible for sending various network

calls. For example sending the HTTP requests to

the server.

5. Java Script Interpreter: It is the part of the

browser written to interpret the JavaScript code

exhibited in a web page.

6. Display Backend: This draws basic widgets on

the browser like combo boxes, windows, etc.

7. Data Persistence: It is the small database created

on the local drive of the computer where the

browser is installed. This database stores various

files like cache, cookies, etc.

IV. FUNCTIONALITY OF WEB

BROWSER

The ways in which users interact with browsers

nowadays require some functionality features which

modern browsers must provide. All of these features

target on making surfing the Internet more convenient

for users. Some of them are visible in which the

features influence the way users can interact with the

browser, while others stay invisible to users running in

the background of the browser.

When we browse into our browser’s address bar some

communication starts between Browser and Server.

 Figure 3: Functionality of Web Browser

 HTTP request contains 3 parts:

 Request Line: It includes command, web

page request, and HTTP version number.

 Request Header: It includes browser in

use, data and some other information.

 Request Body (Optional): It contains

information that was sent to the server.

 HTTP response contains 3 parts:

 Response Status: It includes HTTP

version number, status code and reason

phrase i.e. description of status code.

 Response Header: It includes optional

information including server being used,

date, URL of web page.

 Response body: In includes the website

(in HTML).

V. DETAILED STUDY ON WEB

BROWSERS

Mainly we use four browsers i.e. Google Chrome,

Mozilla Firefox Internet Explorer and Apple Safari.

1. Google Chrome: It is a web browser developed

by Google that uses the WebKit layout engine

and application framework. It was first released

as beta version for Microsoft Windows on 2

September 2008, and the public stable release

was on 11 December 2008. The latest stable

major version is Goggle Chrome 15. Being

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 44

available for Windows, Mac, and Linux, Google

Chrome is the third most widely used web

browser having a usage share of 20.9% [23].

Chrome ships with the open-source WebKit

layout engine. HTML5 is also supported by this

browser.

Private browsing is possible in Incognito mode. After

leaving Incognito mode, Chrome deletes cookies and

undoes changes to the browsing history and download

history made in private browsing mode. Changes

made to the bookmarks and general settings are

persistent.

Architecture of Google Chrome:[8]

Figure 3: Architecture of Google Chrome Browser

Rendering engine: It converts HTTP responses into

rendered bitmaps, browser kernel interacts with the

OS, while the plug-ins module is responsible for

execution of each plug-in. The rendering engine runs

in a sandbox with restricted privileges, deprived of

access to the OS resources. Each isolated web program

in the browser is assigned to its own rendering engine.

The rendering engine is responsible for parsing web

content, creating DOM tree representation in the

memory, manipulating the DOM tree while executing

script instructions. Also, the rendering engine enforces

SOP and interacts directly with untrusted web content.

Browser kernel: It runs with full user privileges on

behalf of the user. It manages each instance of the

rendering engine and implements browser kernel

APIs. The browser kernel is responsible for storage

management because such an activity requires file

system access. By accessing the storage, browser

kernel comes in contact with sensitive data, like

cookies, bookmarks, passwords, etc. Furthermore, the

browser kernel is responsible for executing network

operations, e.g. downloading images sending them to

a rendering engine for decoding. Also, browser kernel

interacts with the OS, handles user inputs and forwards

them to the rendering engine assigned to the focused

window.

Plug-ins: It runs in their own process, independent

from the rendering engine and browser kernel. Web

compatibility requires plug-ins to run outside the

sandbox, because plug-ins may require access to a

microphone, web cam or local file system. Thus, plug-

ins cannot be placed inside the rendering engine since

rendering engine runs in a sandbox. Plug-ins could be

placed within the browser kernel, but in this case, a

crash in plug-ins would take down the entire browser.

2. Mozilla Firefox: It is a free and open source Web

Browser developed for Windows, OS X and Linux

with a mobile version for Android, by the Mozilla

Foundation and its subsidiary, the Mozilla

Corporation. Firefox uses the Gecko layout engine

to render web pages and the Jager Monkey

JavaScript engine, which implements current and

anticipated web standards. Firefox does not

provide a feature to display the users' most popular

websites like the other browsers do. Instead of that,

Mozilla's browser provides a feature called

Panorama that allows users to organize open tabs

by grouping them. Firefox also provides auto-

completion for online forms and an intelligent

address bar called Awesome Bar. The Awesome

Bar looks for possible matches to user requests in

the browsing history, bookmarks, and the opened

tabs.

A mode for private browsing is available. Mozilla

simply calls it Private Browsing. Private Browsing

prevents data from being stored on the user's machine

while activated. Nevertheless, bookmarks and

downloaded files will not be deleted after leaving the

private browsing mode.

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 45

Architecture of Mozilla Firefox:[7]

Figure 4: Architecture of Mozilla Firefox Browser

 User Interface: The User Interface layer is the

upper layer of the browser which gives setting up

the configuration of the browser, handling the

visualization of the web pages, web page

bookmark and saving options. The User Interface

consists of two sub-layers User Interface and

Cross Platform Front End (XPFE).XPFE is a

development tool based on XML and allows to

develop different Mozilla application such as

Firefox, Thunderbird. Most parts of Mozilla

Firefox is written in XUL (XML User interface

Language), HTML and CSS.

 Gecko: Gecko consists of a browser engine and

rendering engine. The browser engine goes about

as a high level interface to the rendering engine,

provides different browser action like Back,

Forward, Reload and Stop along with a different

error message.

 HTML Parser: It parses the HTML document

and generates the layout for web pages.

 XML Parser: It parses the XML document

which is responsible for displaying in the user

interface.

 Content Model: It arranges parsed web page

data based on Document Object Model.

 JavaScript Interpreter: This component

executes the JavaScript code embedded in a

webpage. It includes Spider Monkey which is

a C implementation of JavaScript. In Mozilla

Firefox JavaScript interpreter is strongly

included in Gecko.

 Data persistence: The Data Persistence

component manages user data in a persistent

and secure manner.

3. Internet Explorer: Internet Explorer is a standout

amongst the most generally utilized web

browsers, attaining a peak of 95% during 2002

and 2003. Its usage share has since declined with

the launch of Firefox and Chrome. Its latest

stable version, Windows Internet Explorer 9, was

released in March 2011 and is available for

Windows operating systems only. The

MSHTML layout engine and the Chakra

JavaScript engine form the backbone of the

Windows Internet Explorer. When opening a

new tab Internet Explorer displays the most

popular websites of the user on that page. The

features for auto-completion, the intelligent

address bar and the integrated search tool are

incorporated into a combined search and address

bar. The auto completion mechanism is called

AutoComplete and is responsible for auto-

completion of the address bar, Internet form

fields, as well as usernames and passwords.

Internet Explorer's private browsing mode is

called InPrivate. InPrivate mode focuses on the

threat model of a local attacker and thus only

prevents browsing data from being stored

locally. When enabling InPrivate browsing,

Internet Explorer opens a new browser window

for which private browsing is enabled. Such

windows can be recognized by the “InPrivate"

label in the address bar.

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 46

 Architecture of Internet Explorer:[7]

Figure 5: Architecture of Internet Explorer Browser

 IExplore.exe: It is a small component that is

reliant on the other main components of IE. The

main job of this component is rendering,

navigation, protocol implementation, and so on.

 BrowseUI.dll: This is referred as the “chrome"

and provides the user interface to IE. It includes

the IE address bar, status bar, menus, and so on.

 ShDocVW.dll: It is a core component of IE and

is of 32bit, protected by the OS. Since IE is

integrated with Windows OS, ActiveX Control

interfaces are hosted by this dll. It provides

navigation and history. Microsoft Excel,

Microsoft Word, Microsoft Visio, and many non-

Microsoft applications also expose active

document interfaces so that they can be hosted by

it.

 MSHTML.dll: It takes care of HTML and

Cascading Style Sheets (CSS) parsing i.e., it is

responsible for rendering web pages. It is also

32bit dll. MSHTML.dll exposes interfaces to

host, as an active document. MSHTML.dll may

be called upon to host other components

depending on the HTML document's content.

 UrlMon.dll: It provides functionality for MIME

handling and code download.

 WinInet.dll: Windows Internet Protocol handler.

It implements the HTTP and FTP protocols along

with cache management.

4. Apple Safari: It is a web browser developed by

Apple Inc. and included with the OS and iOS

operating systems. Apple's Safari web browser

was first released exclusively for Mac OS users

in January 2001. In June 2007 the first version

for Windows was released. Apple's browser is

the fourth most widely used web browser. Safari

employs the WebKit layout engine and the Nitro

JavaScript engine. A feature called Top Sites

displays the most popular sites of a user. This

feature also allows to browse the browsing

history in the cover flow design known from

iTunes. Safari provides an auto-completion

function that automatically fills incomplete

webforms. This functionality is called AutoFill

and can be configured in the preferences.

Furthermore, there is an intelligent address bar

that tries to find matches to user requests in the

bookmarks and the browsing history. Safari

private browsing provides the option to manually

clear the browsing history and other data that

websites could use to track users. Privacy

protection also includes blocking third-party

tracking cookies by default.

Architecture of Safari:

 Figure 6: Architecture of Safari Browser

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 47

 Rendering Engine: It is composed of the

KHTML core engine wrapped in the KWQ

adapter. KWQ is written in objective C++,

allowing it to present an objective C API to

KHTML, which is written in C++. This was

needed for integrating Safari into OS.

 XML Parser: It is provided by the Expat

XML parser, used in place of the XML Parser

provided by the Qt toolkit.

 Display Backend: It is composed of two

libraries: Carbon and Cocoa. Carbon

provides a lower-level C API for display

routines, while Cocoa provides a higher-level

Objective C API.

 Data Persistence: It is handled by three

separated system that are built into OS:

Keychains, Preferences, and Caches. The use

of these services allows Safari to integrate

smoothly with other OS applications.

VI. VULNERABILITIES IN WEB BROWSER

Vulnerability is the weakness or design flaw of a

software program that can be used by an attacker to

reduce the system performance or to get the

unauthorized access by exploiting it.

1. Cross-site Scripting Vulnerability: Cross-Site

Scripting (XSS) attacks are a type of injection, in

which malicious scripts are injected into trusted

websites. XSS attacks occur when an attacker uses

a web application to send malicious code,

generally in the form of a browser side script, to a

different end user. The main cause of cross site

scripting vulnerability is dynamic web pages

because pages are generated by the web server, it

is up to the client browser to interpret the page. If

it is a static web page it will not be an easy job for

the attacker to inject something malicious in the

page because the server will have the full control

over how the client browser will interpret it. But in

case of dynamic pages server does not have full

control over it. So, it leaves behind an opportunity

for the attacker to inject some malicious code

which can be detected neither by the server nor by

the client browser interpreter.

 Figure 7: Hierarchy diagram of vulnerabilities

2. Denial of Service Vulnerability: Denial-of-

Service attack is a cyber-attack where the

committer seeks to make a machine or network

resource unavailable to its intended users by

temporarily or indefinitely disrupting services of

a host connected to the Internet. The main cause

of DoS vulnerability in web browsers is infinite

looping in JavaScript. And as there is no

limitation on windows a JavaScript can open on

the monitor. Taking advantage of this feature, a

hacker can inject malicious code to open the

window repeatedly. It creates a DOS attack on

the victim machine. This attack prevents

legitimate users from accessing information from

a server or from some other machine.

3. Buffer Overflow Vulnerability: Buffer overflow

vulnerability occurs due to boundary checking

error. If the buffer takes the user supplied input

which is greater than the buffer size, there will be

a buffer overflow vulnerability. In IE this bug

takes advantage of the way it handles long string

written in JavaScript code. As a result the

browser crashes, potentially compromising

malicious code.

4. Remote Code Execution or Memory Corruption

Vulnerability: Remote code execution is a

security vulnerability that allows an attacker to

execute codes from a remote server. Most of the

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 48

browsers are vulnerable to remote code

execution and memory corruption. Some of the

recent vulnerabilities of this type that are exist in

these browsers are listed below:

a. Html Object Memory Corruption

Vulnerabilities: HTML object memory

corruption vulnerability is associated with a

pointer of a deleted HTML object. Intruder can

use the pointers of deleted objects to run arbitrary

code due to incorrectly initialized memory and

improper handling of objects in memory.

b. Race Condition Memory Corruption

Vulnerability: The cause of Race condition

memory corruption vulnerability is a bit

different. The way Internet Explorer accesses an

object that may have been corrupted due to a race

condition may invoke its existence. It’s

Exploitation and the consequences are similar to

the HTML Object or Uninitialized memory

corruption vulnerability.

c. Post Encoding Information Disclosure

Vulnerability: An information disclosure

vulnerability leaks sensitive information. It

occurs while submitting data to the server.

Exploitation may occur if a user visits a web page

which is specifically crafted to take advantage of

these vulnerabilities. Successful exploitation of

this vulnerability could result in an attacker

viewing content from the local computer or

another browser window in another domain or

Internet Explorer zone.

d. Overflow Remote Code Execution Vulnerability:

Overflow Remote Code Execution vulnerability

is due to an integer overflow error in Web Open

Font Format (WOFF) decoder which is the

abbreviation for Mozilla Web Open Fonts

Format. WOFF is a simple compressed file

format for fonts. The WOFF decoder handles the

size of tables which are specified in the font file

an integer overflow vulnerability may exist. This

error could result in a buffer overflow

vulnerability on a subsequent memory allocation.

VII. ATTACKS AGAINST WEB BROWSER

1. Browser bugs exploitation: It takes advantage of

programming errors in the browser or in the

internet protocols properties. Among the most

famous feats we find the user’s home page

hacking by replacing it with that of the hacker

and complicate the reset by the user. Generally,

codes attacks are based on vulnerabilities already

present within browsers, usually a design error or

unexpected behavior. On another hand, there are

some methods based on the browser and

extensions interactions that require high level

privileges for functioning. However, these

transactions make the browser more sensitive to

attacks.

Figure 8: Attacks on Web Browser

2. URL spoofing: URL spoofing is used by phishers

mainly aiming the theft of users’ identities

through the collection of their confidential data.

This attack previously involves creating a

website similar to that of the victim. Therefore,

spoofing attacks use usurped URLs, usually

those of e-commerce, banks, etc., and encourage

Attacks
on Web
Browser

Cross
Site

Scripting
Flight

Cookies

Browser
Bugs

Exploitati
on

Adding
Malicious
Code in

WebPages

URL
Spoofing

Plug-ins
Attack

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 49

victims to enter their confidential information

(passwords, accounts numbers etc.).

3. Adding malicious code in web pages: This type

of attacks is based on including executable codes

or scripts on a previously compromised web site.

Some interpreted codes or scripts can truly

improve the navigation ergonomics. Their use by

an unscrupulous user is a significant flow. An

HTML or JavaScript code combined with

malicious ActiveX or Java code can potentially

crash the browser.

4. Flight cookies attacks: As files written on the

user’s computer by a remote web server in order

to back up a connection context, and seen their

transitions usually clear on the network; the

cybercriminals’ choice of using cookies gives a

free access to the user’s machine present on the

network. Cookies can be considered as a breach

in the confidentiality of communication. Theft of

stored data affects the privacy of its victims and

allows retrieval of the required information for a

web site authentication.

5. Plug-ins attacks: The cybercriminals do not only

look for the browser vulnerabilities, but they are

also interested in the bugs of the browser plug-

ins to help them to carry out drive-by downloads

and click jacking attacks. Frequently, users

enable scripting when the site does not load

correctly. Therefore, this attack is based

essentially on a known vulnerability.

Particularly, companies should be wary of Java

which is considered as the most susceptible

language for carrying out an attack and one of the

preferred cyber criminal’s languages.

6. Cross-Site scripting: A Cross-Site Scripting

(XSS) attack consists in injecting arbitrary script

in a web page to cause a malicious action. XSS

attacks aim to run a script allowing data

transmitting from a website to another. The XSS

vulnerabilities are divided into two types:

standing XSS attacks correspond to cases where

the malicious script is stored on the remote

server. This implies the script running at any time

by all the users of the website. The second type

corresponds to non-standing XSS which consists

in injecting the malicious script in the URL. The

use of these XSS attacks can be interpreted by

sessions and cookies flight or delivering a

website unreachable. In the following, we give a

simple example of a XSS attack which consists

in creating a fake image in JavaScript and which

allows the user’s cookies collection.

VIII. BROWSER EXTENSION

It is a small piece of code that let developers to add an

additional functionality to the browser. It is also called

Plug-in or Add-ons. We have to create a set of rules to

maintain the principle of least privileges in the

browser. The extension allows user to modify the

browser behavior on certain websites. While usage of

extension is widespread on the desktop but it is still in

the native stage on mobile browsers. Only a few

mobile browsers such as Mozilla Firefox for android

and Dolphin support third party extension.

Role of Extensions in Web Browser:

Browser extensions allow for customization of the

browser by adding functionality. The way these

extensions are integrated strongly differs in the four

major browsers. One example for this diversity is the

possibility to add themes to the browser. Firefox and

Chrome allow this feature while Internet Explorer and

Safari do not. Although this example clearly shows the

difference in the extensibility of the four browsers,

themes stay out of the focus of this work. Browser

extensions modify the core browser user experience by

changing the browser’s user interface and interacting

with websites.

Internet Explorer’s extension model:[10]

Internet Explorer supports several extension

mechanisms out of which browser helper objects i.e.

BHOs are probably the most commonly used. BHOs

have virtually unrestricted access to IE’s event model

and have been used by malware writers in the past to

create password capturing programs and key loggers.

This is especially true because some BHOs run

without making any change in the user interface.

For instance, the ClSpring Trojan [4] uses BHOs to

install scripts which provide a number of instructions

to be performed such as adding and deleting registry

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 50

values and downloading additional executable files

which is all completely transparent to the user. Even if

the BHO is completely benign, but buggy, its presence

might be enough to open up exploits in another fully

patched browser.

Firefox’s extension model:[10]

Firefox extensions are typically written in JavaScript

and can modify Firefox browser in sort of unrestricted

ways. This flexibility comes with few security

guarantees. Extensions run with the same privilege as

the browser process, so malicious extension can cause

random damage. Firefox extensions often employ

highly dynamic programming techniques that make it

difficult to reason about their behavior. To protect end-

users, Firefox relies on a community review process to

determine which extensions are safe. Only extensions

deemed safe are added to Mozilla’s curated extension

gallery. Firefox usually refuses to install extensions

that do not originate from this gallery. Users are thus

protected from unreviewed extensions, but reviews

themselves as error-prone and sometimes malicious

extensions are accidentally added to the gallery. An

example of this is Mozilla Sniffer, an extension which

was downloaded close to 2,000 times, before being

removed from the gallery after it was deemed

malicious.

Architecture of Firefox Extension:[13]

1. Extension Privileges: To improve the browser

functionality and get customizable features,

Firefox extensions execute with the full chrome

privileges by invoking XPCOM interface. The

XPCOM interface includes services such as file

system access, process launching, network

access, Browser components and APIs access.

2. JavaScript: The JavaScript functions can be used

for code injection and privilege escalation

attacks. The Firefox automatically wraps the

object to prevent malicious script from accessing

the properties and methods of the document

object.

3. XPCOM: The Firefox extension can use

XPCOM interface to interact with low layer

libraries, like network, I/O, file system, etc.

Figure 7: Architecture of Mozilla Firefox Extension

4. API’s: XMLHttpRequest is a JavaScript API that

allows a client side JavaScript code to

communicate over HTTP and HTTPS channel. It

can be used to send same domain as well as

cross-domain HTTP/S requests.

Chrome’s Extension Model:

Chrome extensions are written in JavaScript and

hosted on extension pages, but they have access to

APIs that are not available to web pages. An extension

page run in the context of the extension process,

different from the browser processes and has the

ability to both access and augment the browser UI.

Extension pages can register to listen to special

browser events such as tab switching, window closing,

etc.

Extension manifests: Extensions specify their

resources and the capabilities they require in an

extension manifest file. When a user tries to install an

extension, Chrome reads the extension manifest and

displays a warning and the warning raised by Chrome

before the extension is installed.

Contents

XPConnec

Script Layer
Javascript Python

Extension

CSS XUL XBL RDF XUL XBL RDF

XPCOM Components

 Browser Components

 User interface API Chrome

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 51

Over-privileged extensions: Chrome’s model also

allows extensions to request rights over other

resources, including, the privilege to access “your data

on all websites”. Many simple, seemingly benign

operations require extensions to request access to this

very coarse privilege. In all the cases, manifests are

uninformative and the extensions require manual code

review.

Extension study: We conducted a simple analysis of

the manifests for over 1,139 popular Chrome

extensions, to determine how many require the

capability to read and write to all websites.

Architecture of Chrome’s Extension:

Figure 8: Architecture of Google Chrome’s Extension

Architecture of Google Chrome Extension is divided

into three parts i.e.

1. Content Script: Content scripts incorporate any

sort of JavaScript file that runs in the context of

web pages and allow for direct interaction with

web pages. Each content script can directly

access the DOM of a single web page. However,

content scripts cannot use variables and functions

defined by web pages.

2. Core Extension: The extension core holds the

user interface of an extension and can access the

APIs requested in the manifest file. This part of

the extension is implemented in HTML and

JavaScript. Although holding the main logic of

the extension, the extension core cannot directly

interact with web content. The extension core

needs to communicate with a content script

through the message APIs or execute a XML

Http Request.

3. Browser API: It can be integrated to extensions

via NPAPI plug-ins and make the only

possibility for an extension to execute arbitrary

code and to access the user's file system outside

the extension's folder. By default, it can only

interact with the extension core but developers

can expose browser API’s directly to web

content.

Safari Extension Model:[14]

Safari implements the principle of least privilege by

strongly restricting extensions in their privileges.

Safari extensions can neither access the file system

outside the extension's folder, nor access user-related

data such as cookies, bookmarks, or the browsing

history. Safari extensions cannot execute native code

and furthermore, extensions lack the ability to manage

proxy settings, to add themes to the browser, to push

notifications, to communicate with other extensions,

to access the clipboard, to access the application cache

of the browser, and to access functions and variables

defined in web page scripts.

Architecture of Safari Extension:[14]

 Figure 9: Architecture of Safari Extension

Safari

Application

Webpage
Content

Menus
Window
s
Tabs
Toolbars
Popovers

Extension

Injected Scripts

Injected Style sheets

Global HTML Page
Extension bar Pages
Popover Pages

Tab Proxy

Webpa
ge
Proxy

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 52

Architecture of Safari is divided into two parts i.e.

1. Application Part: It can hold any global page

or extension bar. Application part interacts

with Safari applications and can access Safari

application and Safari Extension classes.

2. Content Part: It can hold injected scripts and

injected style sheets. Content part interacts

with web content and has access to Safari

Content Extension class. In this extension

parts can interact with each other by sending

messages over message proxies. There are

two message proxies i.e.

a) Tab Proxy: It is responsible for

forwarding messages from the

content part to the application part.

b) Webpage Proxy: It forwards

messages from the content part to

the application parts and vice versa.

IX. RELATED WORK

A. Existing javascript security methods are

inadequate for preventing javascript injection

attacks that can exploit vulnerable extensions.

Anton et.al. [5] present a runtime protection

mechanism based on code randomization

technique which is coupled with a static analysis

technique to protect browser extensions from

javascript attacks. The protection is applied at

runtime by separating malicious code from the

randomization extension code. The protection

mechanism is evaluated on the set of vulnerable

and non-vulnerable firefox extensions. Their

results indicate that the approach would be a

viable extension. Their approach were also be

able to reduce false positives and achieve

maximum compatibility with existing extensions

and the burden of rewriting an extension for a

new API from developers is evacuated.

B. Man-in-the-Browser is a Trojan horse that infects

a web browser and has the ability to tamper the

contents of web pages and transactions. This

attack is a serious threat for online services.

Sampsa Rauti et.al. [12] explains that the

problem is raised by the powerful browser

extensions and viable attack surface of internet

applications. Browser extension is not only the

way to realize man-in-the-browser attack.

Techniques like Modifying payload, Modifying

DOM tree, Modifying Ajax transmission

mechanism, Modifying Ajax application

functionality have flaws as well, because these

are implemented on the target site in javascript

which can be overwritten by the attacker. But the

dynamical changes in implementation limits the

attacker’s time frame and make this job harder.

C. Colluding browser extension attack is an attack

in which one extension interacts with another

installed extension and share their object or

information. Anil Saini et.al. [14] extends the

concept of colluding extension and demonstrate

a new attack that can leverage the concept and

causes the privacy leakage in a web browser. In

this paper, object reference sharing, event

notification and preference overriding is

identified. There is also a proof-of-concept

explaining how multiple extensions can collude

with each other for adjusting the browser for data

leakage. In this paper, possible approaches are

there to mitigate the colluding browser extension

attack.

D. SABRE [11] tracks the flow of JavaScript

objects from sensitive sources to sinks inside the

Mozilla Firefox browser by employing a

dynamic taint analysis technique. White listing is

used to separate benign extension flows from

malicious ones. However, the whitelist approach

essentially delegates the responsibility of

deciding the maliciousness of an extension to a

user. Similarly, a dynamic taint analysis based

approach detects vulnerable extensions. This

approach attempts to prevent unprivileged data

from being compiled into privileged bytecode. It

also identifies and prevents privileged caller

functions from accidentally calling unprivileged

code.

E. IBEX [10] is a general purpose browser

extension development system that provides

verifiable security guarantees. It provides an API

that lets extensions to use common browser

functionalities. Privileges of an extension are

specified in a custom policy language. The

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 53

extension code can then be formally verified

against the specified policy. A cross-compiler is

available to deploy the same extension in Internet

Explorer, Google Chrome, Mozilla Firefox and

C3 (an experimental browser). However, to use

IBEX, extension developers need to write their

extensions in a verifiable language other than

JavaScript. Moreover, each browser provides

unique APIs for its extension system that is

constantly updated with new features, making it

difficult to develop extensions using a general

purpose system like IBEX.

X. ATTACKS ON BROWSER

EXTENSION

Two possible attacks on extensions in web browsers

are:

1. Malicious Extension: These types of extensions

are written by well-meaning developers who are

not security experts. We generally do not

consider malicious extensions because

preventing malicious extensions require

completely different tactics such as warnings,

user education, security scans of the market,

feedback and rating, etc.

2. Non-Malicious Extension: They are of two types:

a) Network Attackers: People who use insecure

networks may encounter network attackers.

Network attacker’s goal is to collect personal

information or credentials from a target user. To

achieve this goal, network attacker will read and

alter HTTP traffic to mount man-in-middle

attack.

b) Web Attackers: Users may visit websites which

are having advertisements. The website can

launch a cross-site scripting attack on an

extension if the extension treats the website’s

data or functions as trusted. The goal of web

attacker is to gain access to browser user data

(such as history) or another site’s password. For

example NPAPI (Netscape plug-in application

programming interface), Adobe flash player,

PPAPI (Pepper plug-in application programming

interface), Coincidence detector, etc.

XI. BROWSER SECURITY

 Some software features which provide

functionality to a web browser, such as Java,

ActiveX, Scripting (JavaScript, VBScript, etc.),

may also introduce vulnerabilities to the

computer system.

 These vulnerabilities may be introduced because

of poor design, poor implementation, or an

insecure configuration.

 For these reasons, we should understand which

browser support which features and the risks they

introduce.

 Some web browsers permit us fully disable the

use of these technologies, while others may

permit you to enable features on a per-site basis.

Six ways through which security can be enhanced:

1. Configure your browser’s security and

privacy settings.

2. Keep your browser updated.

3. Sign up for alerts.

4. Be cautious when installing plug-ins.

5. Make sure you have an Antivirus installed.

6. Install security plug-ins.

Security concepts for keeping extension secured:

1. Isolated Worlds: The isolated world’s

mechanism is intended to protect content

scripts from web attackers. Extension content

script can’t access the direct document object

module of the current running page instead of

this it can access a copy of it.

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 54

2. Privilege Separation: Chrome’s Extension

run in two different privilege modes. One is

Content Script and the other one is Core

Extension Script. Content Script can access

API’s by using a message passing interface to

talk to the core extension script. While Core

Extension Script has an access to the chrome

native API’s but content script does not have

an access on it.

3. Sandboxing: Running code or programs in a

sandbox means running the code or program

in a virtual, isolated environment.

Sandboxing prevents negative impacts of

untrusted code to the host machine.

4. Private Browsing: Browser extensions

should generally not be able to circumvent

the goals of private browsing by collecting

data or sending data to locations excluded by

private browsing.

5. Permission Model: By default, extensions are

not able to use parts of the browser API

which impact users’ security or privacy. In

order to gain access to the APIs, developer

must specify the desired permissions in a file

which is packaged with the extension.

Chrome extensions already have a privilege

model, where extensions are required to pre-

declare their needed privileges and are

limited to the browser.

If vulnerability is found in the Core

extension, the attacker will be limited by the

privileges which are attained by the

extension.

REFERENCES

[1] A. Grosskurth and M. W. Godfrey, "A
reference architecture for Web browsers,"
21st IEEE International Conference on

Software Maintenance (ICSM'05), 2005, pp.
661-664.

[2] Dormann, Will, and Jason Rafail. "Securing

your web browser." CERT, 2006.

[3] Barth, A., Felt, A. P., Saxena, P., &
Boodman, A. “Protecting Browsers from
Extension Vulnerabilities”. In NDSS, 2010

[4] A. Barua, M. Zulkernine and K.
Weldemariam, "Protecting Web Browser
Extensions from JavaScript Injection

Attacks," 2013 18th International Conference
on Engineering of Complex Computer
Systems, Singapore, 2013, pp. 188-197.

[5] Nicholas Carlini, Adrienne Porter Felt, and

David Wagner. 2012. An evaluation of the
Google Chrome extension security
architecture. In Proceedings of the 21st
USENIX conference on Security symposium

(Security'12). USENIX Association,
Berkeley, CA, USA, 7-7.

[6] Dhruwajita Devi, Dhrubajyoti Pathak, and
Sukumar Nandi. 2010. Vulnerabilities in Web

Browsers

[7] M. Šilić, J. Krolo and G. Delač, "Security
vulnerabilities in modern web browser
architecture," The 33rd International

Convention MIPRO, Opatija, Croatia, 2010,
pp. 1240-1245.

[8] A. Zammouri and A. A. Moussa,

"SafeBrowse: A new tool for strengthening
and monitoring the security configuration of
web browsers," 2016 International
Conference on Information Technology for
Organizations Development (IT4OD), Fez,

2016, pp. 1-5.

[9] A. Guha, M. Fredrikson, B. Livshits and N.
Swamy, "Verified Security for Browser

Extensions," 2011 IEEE Symposium on
Security and Privacy, Berkeley, CA, 2011,
pp. 115-130.

[10] M. Dhawan and V. Ganapathy, "Analyzing

Information Flow in JavaScript-Based
Browser Extensions," 2009 Annual
Computer Security Applications Conference,
Honolulu, HI, 2009, pp. 382-391.

[11] Sampsa Rauti and Ville Leppänen. 2012.
Browser extension-based man-in-the-
browser attacks against Ajax applications
with countermeasures. In Proceedings of the

13th International Conference on Computer
Systems and Technologies (CompSysTech
'12), Boris Rachev and Angel Smrikarov
(Eds.). ACM, New York, NY, USA, 251-258.

[12] Anil Saini, Manoj Singh Gaur, and Vijay
Laxmi. 2013. The darker side of Firefox
extension. In Proceedings of the 6th
International Conference on Security of

© AUG 2018 | IRE Journals | Volume 2 Issue 2 | ISSN: 2456-8880

IRE 1700736 ICONIC RESEARCH AND ENGINEERING JOURNALS 55

Information and Networks (SIN '13). ACM,
New York, NY, USA, 316-320.

[13] Anil Saini, Manoj Singh Gaur, Vijay Laxmi,
Mauro Conti, Colluding browser extension
attack on user privacy and its implication for
web browsers, Computers & Security,

Volume 63, November 2016, Pages 14-28

