
© OCT 2018 | IRE Journals | Volume 2 Issue 4 | ISSN: 2456-8880

IRE 1700753 ICONIC RESEARCH AND ENGINEERING JOURNALS 33

Analysis of Neural Network Back-Propagation Algorithm

ANEKE JUDE I. 1, EZECHUKWU O. A. 2, UWAECHI P. C. 3
1,2,3 Nnamdi Azikiwe University, Awka, Nigeria

Abstract -- Artificial neural networks simulate the neural

systems behaviour by means of the interconnection of the

basic processing units called neurons. The neurons can

receive external signals or signals coming from the other

neurons affected by a factor called weight. The output of

neuron is the result of applying a specific function, known

as transfer function, to the sum of its inputs plus

threshold value called bias. This paper demonstrates the

practical analysis of neural network back-propagation

algorithm. It shows the mathematical process of how the

neural network manages the data fed to it for it to be

trained to recognize patterns, classify data and forecast

future events. Feed forward networks have been employed

along with back propagation algorithm for the pattern

recognition process.

Indexed Terms: Feed forward back propagation

algorithm, neural network, Neuron, Local gradient,

Synaptic weight, Activation function

I. INTRODUCTION

A typical Back Propagation Neural Network is a non-

linear regression technique which attempts to

minimize the global error. Its training includes both

forward and backward propagation, with the desired

output used to generate the error values for back

propagation to iteratively improve the output. The

back propagation neural network must have at least

one input layer and one output layer. The hidden

layers are optional. A Typical back propagation

neural network is shown in the Figure 1 [1]:

The Back propagation neural network consists of four

layers: an input layer with two neurons, hidden layers

with three and two neurons respectively and an

output layer with one neuron. In the Figure 1, we see

that the output of a neuron in a layer goes to all

neurons in the following layer and each neuron has

its own weights. Initially the weights of the input

layer are assumed to be 1 for each input. The output

of the back propagation neural network is reached by

applying input values to the input layer [2], passing

the output of each neuron to the following layer as

input.

Fig. 1: Back propagation neural network

The number of neurons in the input layer depends on

the number of possible inputs we have, while the

number of neurons in the output layer depends on the

number of desired outputs. The number of hidden

layers and how many neurons in each hidden layer

cannot be well defined in advance, and could change

per network configuration and type of data. In

general, the addition of a hidden layer could allow

the network to learn more complex patterns, but at

the same time decreases its performance [3]. Ideally,

we could start a network configuration using a single

hidden layer, and add more hidden layers if we notice

that the network is not learning as well as we like.

The Back-propagation training algorithm could be

summarized as follows: The Input data sample is first

presented to the network and then the network’s

output taken from the output layer is compared with

the desired output and the error is calculated in each

output neuron. And now for each neuron, a scaling

factor called the local error is calculated which

indicates how much higher or lower the output must

be adjusted to match the desired output. The weights

are modified to lower this local error. This process

gets repeated until the error falls within the

acceptable value (pre-defined threshold) which would

indicate that the neural network has been trained

successfully. On the other side, if the maximum

number of iterations is reached, then it indicates that

the training was not successful [4].

© OCT 2018 | IRE Journals | Volume 2 Issue 4 | ISSN: 2456-8880

IRE 1700753 ICONIC RESEARCH AND ENGINEERING JOURNALS 34

II. RESEARCH METHODOLOGY

2.1 Analysis of Back-Propagation Algorithm:

The basic concept behind the successful application

[4] of neural networks in any field is to determine the

weights to achieve the desired target and this process

is called learning or training. The network weights

are modified with the prime objective of

minimization of the error between a given set of

inputs and their corresponding target values.

However, in this work, the back-propagation

algorithm is employed in training all the neural

networks [5]. The steps below are mathematical

calculation and illustration of network back-

propagation algorithm. For this purpose, a NN

architecture of (2-2-2) has been adopted as shown in

Figure 2.

Step 1:

Calculate the local gradients (𝛿𝑜1, 𝛿02, 𝛿ℎ1 𝑎𝑛𝑑 𝛿ℎ2) for

the four nodes n1, n2, n3 and n4 in the network of Figure 2.

𝛿𝑜1 is the local gradient of the first output neuron

𝛿𝑜2 is the local gradient of the second output neuron

𝛿ℎ1 is the local gradient of the first neuron in the hidden

layer

𝛿ℎ2 is the local gradient of the second neuron in the hidden

layer

The neuron activation function used is sigmoid

activation function as written in (1)

 𝑓(𝑣) =
1

1+exp (−𝑣)
 (1)

And its derivative is

 𝑓′(𝑣) = 𝑓(𝑣)[1 − 𝑓(𝑣)] (2)

Fig. 2: Mathematical Illustration of Back-Propagation

Algorithm

First the local gradients of the two output neurons in

Figure 2 are determined as

𝛿𝑜1 = 𝑓′(1 ∗ 𝑏3 + 𝑦1 ∗ 𝑤31 ∗ 𝑦2 ∗ 𝑤32) ∗ (𝑑3 − 𝑦3) (3)

𝛿𝑜2 = 𝑓′(1 ∗ 𝑏4 + 𝑦1 ∗ 𝑤41 ∗ 𝑦2 ∗ 𝑤42) ∗ (𝑑4 − 𝑦4) (4)

Next the local gradients of the two hidden neurons

are determined as

𝛿ℎ1 = 𝑓′(1 ∗ 𝑏1 + 𝑥1 ∗ 𝑤11 ∗ 𝑥2 ∗ 𝑤12) ∗ (𝛿𝑜1 ∗ 𝑤31 +
𝛿𝑜2 ∗ 𝑤41) (5)

𝛿ℎ2 = 𝑓′(1 ∗ 𝑏2 + 𝑥1 ∗ 𝑤21 ∗ 𝑥2 ∗ 𝑤22) ∗ (𝛿𝑜1 ∗ 𝑤32 +
𝛿𝑜2 ∗ 𝑤42) (6)

Where, w is the weight, b is the bias weight, y is the

actual neuron output, and d is the desired (target)

output, see Figure 2.

Step 2:

Adjust the weights of the network using the general

learning rule:

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝛼 ∗ 𝑤(𝑛 − 1) + 𝜂 ∗ 𝛿(𝑛) ∗ 𝑦 (7)

Where, 𝑤(𝑛 + 1) is the new weight, 𝑤(𝑛) is the current

weight, 𝑤(𝑛 − 1) is the previous weight, 𝛼 is the mobility

factor, 𝜂 is the learning rate or the training parameter, 𝛿(𝑛)

is the current local gradient.

Applying (7) to Figure 2, the new weights read:

𝑤13(𝑛 + 1) = 𝑤13(𝑛) + 𝛼 ∗ 𝑤13(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗
𝑦1 (8)

𝑤14(𝑛 + 1) = 𝑤14(𝑛) + 𝛼 ∗ 𝑤14(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜2(𝑛) ∗
𝑦1 (9)

𝑤23(𝑛 + 1) = 𝑤23(𝑛) + 𝛼 ∗ 𝑤23(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗
𝑦2 (10)

𝑤24(𝑛 + 1) = 𝑤24(𝑛) + 𝛼 ∗ 𝑤24(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜2(𝑛) ∗
𝑦2 (11)

𝑤11(𝑛 + 1) = 𝑤11(𝑛) + 𝛼 ∗ 𝑤11(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ1(𝑛) ∗
𝑥1 (12)

𝑤12(𝑛 + 1) = 𝑤12(𝑛) + 𝛼 ∗ 𝑤12(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ2(𝑛) ∗
𝑥1 (13)

𝑤21(𝑛 + 1) = 𝑤21(𝑛) + 𝛼 ∗ 𝑤21(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ1(𝑛) ∗
𝑥2 (14)

𝑤22(𝑛 + 1) = 𝑤22(𝑛) + 𝛼 ∗ 𝑤22(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ2(𝑛) ∗
𝑥2 (15)

𝑏3(𝑛 + 1) = 𝑏3(𝑛) + 𝛼 ∗ 𝑏3(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 1

 (16)

© OCT 2018 | IRE Journals | Volume 2 Issue 4 | ISSN: 2456-8880

IRE 1700753 ICONIC RESEARCH AND ENGINEERING JOURNALS 35

𝑏4(𝑛 + 1) = 𝑏4(𝑛) + 𝛼 ∗ 𝑏4(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜2(𝑛) ∗ 1

 (17)

𝑏1(𝑛 + 1) = 𝑏1(𝑛) + 𝛼 ∗ 𝑏1(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ1(𝑛) ∗ 1
 (18)

𝑏2(𝑛 + 1) = 𝑏2(𝑛) + 𝛼 ∗ 𝑏2(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ2(𝑛) ∗ 1

 (19)

III. RESULTS AND DISCUSSION

With application of specific values to step 1 and 2, a

complete forward and backward sweep of the feed

forward network (2-2-1 architecture) is performed as

shown below using the back-propagation algorithm

as aforementioned. In this case neural network

architecture of (2-2-1) is used as shown in Figure 3.

The values of the initial weights are chosen arbitrary.

Fig. 3: A 2.2.1 NN Architecture with the

corresponding weights shown

Assumptions:

Let the target output (d) = 0.9 and actual output (y) is

unknown,

Learning rate, 𝜂 = 0.25,

Mobility Factor, 𝛼 = 0.0001

The Forward Pass:

𝑣1 = 1 ∗ 𝑏1 + 𝑥1 ∗ 𝑤11 + 𝑥2 ∗ 𝑤12

= 1 ∗ 0.1 + 0.1 ∗ (−0.2) + 0.9 ∗ 0.1 = 0.17

𝑦1 = 𝑓(𝑣1) = 𝑓(0.17) =
1

1+exp (−0.17)
= 0.542

𝑣2 = 1 ∗ 𝑏2 + 𝑥1 ∗ 𝑤21 + 𝑥2 ∗ 𝑤22 = 1 ∗ 0.1 + 0.1 ∗
(−0.1) + 0.9 ∗ 0.3 = 0.36

𝑦2 = 𝑓(𝑣2) = 𝑓(0.36) =
1

1+exp (−0.36)
= 0.589

𝑣3 = 1 ∗ 𝑏3 + 𝑦1 ∗ 𝑤31 + 𝑦2 ∗ 𝑤32 = 1 ∗ 0.2 + 0.542 ∗
(0.2) + 0.589 ∗ 0.3 = 0.485

𝑦3 = 𝑓(𝑣3) = 𝑓(0.485) =
1

1+exp (−0.485)
= 0.619

Please note the activation function, 𝑓(𝑣) used in the

forward pass (feed-forward) and not its derivative

𝑓 ′(𝑣) which is used during the backward pass (back-

propagation).

Now,

The error(𝑒) = target output (𝑑3) − actual

output (𝑦3) = 0.9 − 0.619 = 0.281

Therefore, after the forward pass, there is an error of

0.281 which means the back-propagation is required

to adjust the weights in other to get the weights that

will reduce the error to the global minimum value.

The idea is that the actual output should be equal to

the target output.

The Backward Pass:

Here, we need to go backward to find out the new

weights of the network. This is achieved by applying

back-propagation algorithm. First the local gradients

of the neurons (nodes) are calculated as was done

before but in this case, there are specific values. The

local gradients of the three neurons are as follows

starting with that of the output neuron.

𝛿𝑜1 = 𝑓′(𝑣3) ∗ (𝑑3 − 𝑦3) = 𝑓′(0.4851) ∗ 0.281
= 𝑓(0.4851)[1 − 𝑓(0.4851)] ∗ 0.281
= 0.619[1 − 0.619] ∗ 0.281 = 0.0663

𝛿ℎ1 = 𝑓′(𝑣1) ∗ (𝛿𝑜1 ∗ 𝑤31) = 𝑓′(0.17) ∗ (0.0663 ∗ 0.2)
= 𝑓(0.17)[1 − 𝑓(0.17)] ∗ 0.01362
= 0.542[1 − 0.542] ∗ 0.0136
= 0.0033

𝛿ℎ2 = 𝑓′(𝑣2) ∗ (𝛿𝑜1 ∗ 𝑤32) = 𝑓′(0.36) ∗ (0.0663 ∗ 0.3)
= 𝑓(0.36)[1 − 𝑓(0.36)] ∗ 0.01989
= 0.589[1 − 0.589] ∗ 0.0198
= 0.0049

Next is to adjust the weights of the network using the

learning rule general expression of (7):

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝛼 ∗ 𝑤(𝑛 − 1) + 𝜂 ∗ 𝛿(𝑛) ∗ 𝑦

© OCT 2018 | IRE Journals | Volume 2 Issue 4 | ISSN: 2456-8880

IRE 1700753 ICONIC RESEARCH AND ENGINEERING JOURNALS 36

𝑤31(𝑛 + 1) = 𝑤31(𝑛) + 𝛼 ∗ 𝑤31(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛)
∗ 𝑦1

𝑤31(𝑛 + 1) = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.0663
∗ 0.542 = 0.2090

 𝑤32(𝑛 + 1) = 𝑤32(𝑛) + 𝛼 ∗ 𝑤32(𝑛 − 1) + 𝜂 ∗
𝛿𝑜1(𝑛) ∗ 𝑦2

 𝑤32(𝑛 + 1) = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗
0.0663 ∗ 0.589 = 0.3098

 𝑤11(𝑛 + 1) = 𝑤11(𝑛) + 𝛼 ∗ 𝑤11(𝑛 − 1) + 𝜂 ∗
𝛿ℎ1(𝑛) ∗ 𝑥1

 𝑤11(𝑛 + 1) = (−0.2) + 0.0001 ∗ (−0.2) +
0.25 ∗ 0.0033 ∗ 0.1 = −0.1999

 𝑤21(𝑛 + 1) = 𝑤21(𝑛) + 𝛼 ∗ 𝑤21(𝑛 − 1) + 𝜂 ∗
𝛿ℎ2(𝑛) ∗ 𝑥1

 𝑤21(𝑛 + 1) = (−0.1) + 0.0001 ∗ (−0.1) +
0.25 ∗ 0.0049 ∗ 0.1 = −0.0999

 𝑤12(𝑛 + 1) = 𝑤12(𝑛) + 𝛼 ∗ 𝑤12(𝑛 − 1) + 𝜂 ∗
𝛿ℎ1(𝑛) ∗ 𝑥2

 𝑤12(𝑛 + 1) = (0.1) + 0.0001 ∗ (0.1) + 0.25 ∗
0.0033 ∗ 0.9 = 0.1008

 𝑤22(𝑛 + 1) = 𝑤22(𝑛) + 𝛼 ∗ 𝑤22(𝑛 − 1) + 𝜂 ∗
𝛿ℎ2(𝑛) ∗ 𝑥2

 𝑤22(𝑛 + 1) = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗
0.0049 ∗ 0.9 = 0.3011

𝑏3(𝑛 + 1) = 𝑏3(𝑛) + 𝛼 ∗ 𝑏3(𝑛 − 1) + 𝜂 ∗
𝛿𝑜1(𝑛) ∗ 1

 𝑏3(𝑛 + 1) = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗
0.0663 ∗ 1 = 0.2166

𝑏1(𝑛 + 1) = 𝑏1(𝑛) + 𝛼 ∗ 𝑏1(𝑛 − 1) + 𝜂 ∗
𝛿ℎ1(𝑛) ∗ 1

𝑏1(𝑛 + 1) = 0.1 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.0033 ∗ 1
= 0.1008

𝑏2(𝑛 + 1) = 𝑏2(𝑛) + 𝛼 ∗ 𝑏2(𝑛 − 1) + 𝜂 ∗
𝛿ℎ2(𝑛) ∗ 1

 𝑏2(𝑛 + 1) = 0.1 + 0.0001 ∗ 0.2 + 0.25 ∗

0.0049 ∗ 1 = 0.1012

Now these new weights as calculated above and

shown in Figure 4 are used to perform another

(second) forward pass.

Fig. 4: New weights obtained after the first backward

pass (back-propagation)

Then after one complete forward and backward pass

we have new inputs and output. The results are

compared with the old inputs and output as shown in

Table 1.

Table 1: Comparison of the results obtained after one

complete forward and backward pass

S/N Component Old New (After One

Iteration)

1 𝑣1 0.17 0.1715

2 𝑦1 0.542 0.5428

3 𝑣2 0.36 0.3622

4 𝑦2 0.589 0.5896

5 𝑣3 0.4851 0.5127

6 𝑦3 0.619 0.6254

 𝑒 = 𝑑3 − 𝑦3 0.9 − 0.619
= 0.281

0.9 − 0.6254
= 0.2746

From the Table 1, the error reduced after the first

forward and backward pass from 0.281 𝑡𝑜 0.2746.

The forward and backward passes continue until the

error becomes almost zero. The results obtained after

a few more complete forward and backward passes

are as shown below.

After the second pass (iteration) 𝑒 = 0.2683

After the third pass (iteration) 𝑒 = 0.2623

After the fourth pass (iteration) 𝑒 = 0.2565

After 100 passes (iteration) 𝑒 = 0.0693

After 200 passes (iteration) 𝑒 = 0.0319

After 500 passes (iteration) 𝑒 = 0.0038

© OCT 2018 | IRE Journals | Volume 2 Issue 4 | ISSN: 2456-8880

IRE 1700753 ICONIC RESEARCH AND ENGINEERING JOURNALS 37

Error is getting reduced after each pass until it

converges (target and actual output equal each other).

So, this is how neural network is trained using back-

propagation algorithm.

IV. CONCLUSIONS

Effort has been made to demonstrate how the Back-

propagation training algorithm could be achieved. It

has been shown that neural network synaptic weights

can be updated iteratively. The Input data sample was

first presented to the network and then the network’s

output taken from the output layer was compared

with the desired output and the error was calculated

in each output neuron. And now for each neuron, a

scaling factor called the local error was calculated

which indicated how much higher or lower the output

must be adjusted to match the desired output. The

weights were modified to lower this local error. This

process was repeated until the error falls within the

acceptable value (pre-defined threshold) which would

indicate that the neural network has been trained

successfully. On the other side, if the maximum

number of iterations is reached, then it indicates that

the training was not successful.

REFERENCES

[1] Anderson, J. A. An Introduction to Neural
Networks. Prentice Hall, 2003.

[2] Gaudrat, J., Giusiano B., and Huiart.
Comparison of the performance of multi-

layer perceptron and linear regression for
epidemiological data. Computer Statist. &
Data Anal., 44, 547-70, 2004.

[3] Howard Demuth, Mark Beale, Martin
Hagan. The MathWorks.

[4] Lukowicz M., Rosolowski E. (2013).
Artificial neural network based dynamic

compensation of current transformer errors.
Proceedings of the 8th International
Symposium on Short-Circuit Currents in
Power Systems, Brussels, pp. 19-24.

[5] R.P.Hasbe, A.P.Vaidya, Detection and
classification of faults on 220 KV
transmission line using wavelet transform
and neural network, International Journal of

Smart Grid and Clean Energy, August 2013.

