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Abstract -- Artificial neural networks simulate the neural 

systems behaviour by means of the interconnection of the 

basic processing units called neurons. The neurons can 

receive external signals or signals coming from the other 

neurons affected by a factor called weight. The output of 

neuron is the result of applying a specific function, known 

as transfer function, to the sum of its inputs plus 

threshold value called bias. This paper demonstrates the 

practical analysis of neural network back-propagation 

algorithm. It shows the mathematical process of how the 

neural network manages the data fed to it for it to be 

trained to recognize patterns, classify data and forecast 

future events. Feed forward networks have been employed 

along with back propagation algorithm for the pattern 

recognition process. 

 

Indexed Terms: Feed forward back propagation 

algorithm, neural network, Neuron, Local gradient, 

Synaptic weight, Activation function 

 

I. INTRODUCTION 

 

A typical Back Propagation Neural Network is a non-

linear regression technique which attempts to 

minimize the global error. Its training includes both 

forward and backward propagation, with the desired 

output used to generate the error values for back 

propagation to iteratively improve the output. The 

back propagation neural network must have at least 

one input layer and one output layer. The hidden 

layers are optional. A Typical back propagation 

neural network is shown in the Figure 1 [1]: 

 

The Back propagation neural network consists of four 

layers: an input layer with two neurons, hidden layers 

with three and two neurons respectively and an 

output layer with one neuron. In the Figure 1, we see 

that the output of a neuron in a layer goes to all 

neurons in the following layer and each neuron has 

its own weights. Initially the weights of the input 

layer are assumed to be 1 for each input. The output 

of the back propagation neural network is reached by 

applying input values to the input layer [2], passing 

the output of each neuron to the following layer as 

input. 

 
Fig. 1: Back propagation neural network 

 

The number of neurons in the input layer depends on 

the number of possible inputs we have, while the 

number of neurons in the output layer depends on the 

number of desired outputs. The number of hidden 

layers and how many neurons in each hidden layer 

cannot be well defined in advance, and could change 

per network configuration and type of data. In 

general, the addition of a hidden layer could allow 

the network to learn more complex patterns, but at 

the same time decreases its performance [3]. Ideally, 

we could start a network configuration using a single 

hidden layer, and add more hidden layers if we notice 

that the network is not learning as well as we like. 

 

The Back-propagation training algorithm could be 

summarized as follows: The Input data sample is first 

presented to the network and then the network’s 

output taken from the output layer is compared with 

the desired output and the error is calculated in each 

output neuron. And now for each neuron, a scaling 

factor called the local error is calculated which 

indicates how much higher or lower the output must 

be adjusted to match the desired output. The weights 

are modified to lower this local error. This process 

gets repeated until the error falls within the 

acceptable value (pre-defined threshold) which would 

indicate that the neural network has been trained 

successfully. On the other side, if the maximum 

number of iterations is reached, then it indicates that 

the training was not successful [4]. 
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II. RESEARCH METHODOLOGY 

 

2.1 Analysis of Back-Propagation Algorithm: 

The basic concept behind the successful application 

[4] of neural networks in any field is to determine the 

weights to achieve the desired target and this process 

is called learning or training. The network weights 

are modified with the prime objective of 

minimization of the error between a given set of 

inputs and their corresponding target values. 

However, in this work, the back-propagation 

algorithm is employed in training all the neural 

networks [5]. The steps below are mathematical 

calculation and illustration of network back-

propagation algorithm. For this purpose, a NN 

architecture of (2-2-2) has been adopted as shown in 

Figure 2. 

 

Step 1: 

Calculate the local gradients (𝛿𝑜1, 𝛿02, 𝛿ℎ1 𝑎𝑛𝑑 𝛿ℎ2) for 

the four nodes n1, n2, n3 and n4 in the network of Figure 2.  

𝛿𝑜1 is the local gradient of the first output neuron 

𝛿𝑜2 is the local gradient of the second output neuron 

𝛿ℎ1 is the local gradient of the first neuron in the hidden 

layer 

𝛿ℎ2 is the local gradient of the second neuron in the hidden 

layer 

 

The neuron activation function used is sigmoid 

activation function as written in (1) 

 

 𝑓(𝑣) =
1

1+exp (−𝑣)
   (1) 

And its derivative is 

  𝑓′(𝑣) = 𝑓(𝑣)[1 − 𝑓(𝑣)]  (2) 

 

 

Fig. 2: Mathematical Illustration of Back-Propagation 

Algorithm 

First the local gradients of the two output neurons in 

Figure 2 are determined as 

𝛿𝑜1 = 𝑓′(1 ∗ 𝑏3 + 𝑦1 ∗ 𝑤31 ∗ 𝑦2 ∗ 𝑤32) ∗ (𝑑3 − 𝑦3)  (3) 

𝛿𝑜2 = 𝑓′(1 ∗ 𝑏4 + 𝑦1 ∗ 𝑤41 ∗ 𝑦2 ∗ 𝑤42) ∗ (𝑑4 − 𝑦4)  (4) 

Next the local gradients of the two hidden neurons 

are determined as 

𝛿ℎ1 = 𝑓′(1 ∗ 𝑏1 + 𝑥1 ∗ 𝑤11 ∗ 𝑥2 ∗ 𝑤12) ∗ (𝛿𝑜1 ∗ 𝑤31 +
𝛿𝑜2 ∗ 𝑤41) (5) 

𝛿ℎ2 = 𝑓′(1 ∗ 𝑏2 + 𝑥1 ∗ 𝑤21 ∗ 𝑥2 ∗ 𝑤22) ∗ (𝛿𝑜1 ∗ 𝑤32 +
𝛿𝑜2 ∗ 𝑤42) (6) 

Where, w is the weight, b is the bias weight, y is the 

actual neuron output, and d is the desired (target) 

output, see Figure 2. 

 

Step 2: 

Adjust the weights of the network using the general 

learning rule: 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝛼 ∗ 𝑤(𝑛 − 1) + 𝜂 ∗ 𝛿(𝑛) ∗ 𝑦    (7) 

Where, 𝑤(𝑛 + 1) is the new weight, 𝑤(𝑛) is the current 

weight, 𝑤(𝑛 − 1) is the previous weight, 𝛼 is the mobility 

factor, 𝜂 is the learning rate or the training parameter, 𝛿(𝑛) 

is the current local gradient. 

Applying (7) to Figure 2, the new weights read: 

𝑤13(𝑛 + 1) = 𝑤13(𝑛) + 𝛼 ∗ 𝑤13(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗
𝑦1     (8) 

𝑤14(𝑛 + 1) = 𝑤14(𝑛) + 𝛼 ∗ 𝑤14(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜2(𝑛) ∗
𝑦1     (9) 

𝑤23(𝑛 + 1) = 𝑤23(𝑛) + 𝛼 ∗ 𝑤23(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗
𝑦2     (10) 

𝑤24(𝑛 + 1) = 𝑤24(𝑛) + 𝛼 ∗ 𝑤24(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜2(𝑛) ∗
𝑦2     (11) 

𝑤11(𝑛 + 1) = 𝑤11(𝑛) + 𝛼 ∗ 𝑤11(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ1(𝑛) ∗
𝑥1     (12) 

𝑤12(𝑛 + 1) = 𝑤12(𝑛) + 𝛼 ∗ 𝑤12(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ2(𝑛) ∗
𝑥1     (13) 

𝑤21(𝑛 + 1) = 𝑤21(𝑛) + 𝛼 ∗ 𝑤21(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ1(𝑛) ∗
𝑥2     (14) 

𝑤22(𝑛 + 1) = 𝑤22(𝑛) + 𝛼 ∗ 𝑤22(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ2(𝑛) ∗
𝑥2     (15) 

𝑏3(𝑛 + 1) = 𝑏3(𝑛) + 𝛼 ∗ 𝑏3(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 1 

     (16) 
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𝑏4(𝑛 + 1) = 𝑏4(𝑛) + 𝛼 ∗ 𝑏4(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜2(𝑛) ∗ 1 

     (17) 

𝑏1(𝑛 + 1) = 𝑏1(𝑛) + 𝛼 ∗ 𝑏1(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ1(𝑛) ∗ 1 
     (18) 

𝑏2(𝑛 + 1) = 𝑏2(𝑛) + 𝛼 ∗ 𝑏2(𝑛 − 1) + 𝜂 ∗ 𝛿ℎ2(𝑛) ∗ 1 

     (19) 

 

III. RESULTS AND DISCUSSION 

 

With application of specific values to step 1 and 2, a 

complete forward and backward sweep of the feed 

forward network (2-2-1 architecture) is performed as 

shown below using the back-propagation algorithm 

as aforementioned. In this case neural network 

architecture of (2-2-1) is used as shown in Figure 3. 

The values of the initial weights are chosen arbitrary. 

 

 

Fig. 3: A 2.2.1 NN Architecture with the 

corresponding weights shown 

 

Assumptions: 

Let the target output (d) = 0.9 and actual output (y) is 

unknown, 

Learning rate, 𝜂 = 0.25, 

Mobility Factor, 𝛼 = 0.0001 

The Forward Pass: 

𝑣1 = 1 ∗ 𝑏1 + 𝑥1 ∗ 𝑤11 + 𝑥2 ∗ 𝑤12   

= 1 ∗ 0.1 + 0.1 ∗ (−0.2) + 0.9 ∗ 0.1 = 0.17  

𝑦1 = 𝑓(𝑣1) = 𝑓(0.17) =
1

1+exp (−0.17)
= 0.542  

𝑣2 = 1 ∗ 𝑏2 + 𝑥1 ∗ 𝑤21 + 𝑥2 ∗ 𝑤22 = 1 ∗ 0.1 + 0.1 ∗
(−0.1) + 0.9 ∗ 0.3 = 0.36  

𝑦2 = 𝑓(𝑣2) = 𝑓(0.36) =
1

1+exp (−0.36)
= 0.589  

𝑣3 = 1 ∗ 𝑏3 + 𝑦1 ∗ 𝑤31 + 𝑦2 ∗ 𝑤32 = 1 ∗ 0.2 + 0.542 ∗
(0.2) + 0.589 ∗ 0.3 = 0.485  

𝑦3 = 𝑓(𝑣3) = 𝑓(0.485) =
1

1+exp (−0.485)
= 0.619  

 

Please note the activation function, 𝑓(𝑣) used in the 

forward pass (feed-forward) and not its derivative 

𝑓 ′(𝑣) which is used during the backward pass (back-

propagation).  

Now,  

The error(𝑒) = target output (𝑑3) − actual 

output (𝑦3) = 0.9 − 0.619 = 0.281 

Therefore, after the forward pass, there is an error of 

0.281 which means the back-propagation is required 

to adjust the weights in other to get the weights that 

will reduce the error to the global minimum value. 

The idea is that the actual output should be equal to 

the target output. 

The Backward Pass: 

Here, we need to go backward to find out the new 

weights of the network. This is achieved by applying 

back-propagation algorithm. First the local gradients 

of the neurons (nodes) are calculated as was done 

before but in this case, there are specific values. The 

local gradients of the three neurons are as follows 

starting with that of the output neuron. 

𝛿𝑜1 = 𝑓′(𝑣3) ∗ (𝑑3 − 𝑦3) = 𝑓′(0.4851) ∗ 0.281
= 𝑓(0.4851)[1 − 𝑓(0.4851)] ∗ 0.281
= 0.619[1 − 0.619] ∗ 0.281 = 0.0663 

𝛿ℎ1 = 𝑓′(𝑣1) ∗ (𝛿𝑜1 ∗ 𝑤31) = 𝑓′(0.17) ∗ (0.0663 ∗ 0.2)
= 𝑓(0.17)[1 − 𝑓(0.17)] ∗ 0.01362
= 0.542[1 − 0.542] ∗ 0.0136
= 0.0033 

𝛿ℎ2 = 𝑓′(𝑣2) ∗ (𝛿𝑜1 ∗ 𝑤32) = 𝑓′(0.36) ∗ (0.0663 ∗ 0.3)
= 𝑓(0.36)[1 − 𝑓(0.36)] ∗ 0.01989
= 0.589[1 − 0.589] ∗ 0.0198
= 0.0049 

Next is to adjust the weights of the network using the 

learning rule general expression of (7): 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝛼 ∗ 𝑤(𝑛 − 1) + 𝜂 ∗ 𝛿(𝑛) ∗ 𝑦 
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𝑤31(𝑛 + 1) = 𝑤31(𝑛) + 𝛼 ∗ 𝑤31(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛)
∗ 𝑦1 

𝑤31(𝑛 + 1) = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.0663
∗ 0.542 = 0.2090 

 𝑤32(𝑛 + 1) = 𝑤32(𝑛) + 𝛼 ∗ 𝑤32(𝑛 − 1) + 𝜂 ∗
𝛿𝑜1(𝑛) ∗ 𝑦2  

 𝑤32(𝑛 + 1) = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗
0.0663 ∗ 0.589 = 0.3098 

 𝑤11(𝑛 + 1) = 𝑤11(𝑛) + 𝛼 ∗ 𝑤11(𝑛 − 1) + 𝜂 ∗
𝛿ℎ1(𝑛) ∗ 𝑥1 

 𝑤11(𝑛 + 1) = (−0.2) + 0.0001 ∗ (−0.2) +
0.25 ∗ 0.0033 ∗ 0.1 = −0.1999 

 𝑤21(𝑛 + 1) = 𝑤21(𝑛) + 𝛼 ∗ 𝑤21(𝑛 − 1) + 𝜂 ∗
𝛿ℎ2(𝑛) ∗ 𝑥1 

 𝑤21(𝑛 + 1) = (−0.1) + 0.0001 ∗ (−0.1) +
0.25 ∗ 0.0049 ∗ 0.1 = −0.0999 

 𝑤12(𝑛 + 1) = 𝑤12(𝑛) + 𝛼 ∗ 𝑤12(𝑛 − 1) + 𝜂 ∗
𝛿ℎ1(𝑛) ∗ 𝑥2 

 𝑤12(𝑛 + 1) = (0.1) + 0.0001 ∗ (0.1) + 0.25 ∗
0.0033 ∗ 0.9 = 0.1008 

 𝑤22(𝑛 + 1) = 𝑤22(𝑛) + 𝛼 ∗ 𝑤22(𝑛 − 1) + 𝜂 ∗
𝛿ℎ2(𝑛) ∗ 𝑥2  

 𝑤22(𝑛 + 1) = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗
0.0049 ∗ 0.9 = 0.3011  

𝑏3(𝑛 + 1) = 𝑏3(𝑛) + 𝛼 ∗ 𝑏3(𝑛 − 1) + 𝜂 ∗
𝛿𝑜1(𝑛) ∗ 1    

 𝑏3(𝑛 + 1) = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗
0.0663 ∗ 1 = 0.2166 

𝑏1(𝑛 + 1) = 𝑏1(𝑛) + 𝛼 ∗ 𝑏1(𝑛 − 1) + 𝜂 ∗
𝛿ℎ1(𝑛) ∗ 1    

𝑏1(𝑛 + 1) = 0.1 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.0033 ∗ 1
= 0.1008 

𝑏2(𝑛 + 1) = 𝑏2(𝑛) + 𝛼 ∗ 𝑏2(𝑛 − 1) + 𝜂 ∗
𝛿ℎ2(𝑛) ∗ 1    

 𝑏2(𝑛 + 1) = 0.1 + 0.0001 ∗ 0.2 + 0.25 ∗

0.0049 ∗ 1 = 0.1012 

 

Now these new weights as calculated above and 

shown in Figure 4 are used to perform another 

(second) forward pass. 

 

 
 

Fig. 4: New weights obtained after the first backward 

pass (back-propagation) 

 

Then after one complete forward and backward pass 

we have new inputs and output. The results are 

compared with the old inputs and output as shown in 

Table 1. 

 

Table 1: Comparison of the results obtained after one 

complete forward and backward pass 

 

S/N Component Old New (After One 

Iteration) 

1 𝑣1 0.17 0.1715 

2 𝑦1 0.542 0.5428 

3 𝑣2 0.36 0.3622 

4 𝑦2 0.589 0.5896 

5 𝑣3 0.4851 0.5127 

6 𝑦3 0.619 0.6254 

 𝑒 = 𝑑3 − 𝑦3 0.9 − 0.619
= 0.281 

0.9 − 0.6254
= 0.2746 

 

From the Table 1, the error reduced after the first 

forward and backward pass from 0.281 𝑡𝑜 0.2746. 

The forward and backward passes continue until the 

error becomes almost zero. The results obtained after 

a few more complete forward and backward passes 

are as shown below. 

After the second pass (iteration) 𝑒 =  0.2683 

After the third pass (iteration) 𝑒 =  0.2623 

After the fourth pass (iteration) 𝑒 =  0.2565 

After 100 passes (iteration) 𝑒 =  0.0693 

After 200 passes (iteration) 𝑒 =  0.0319 

After 500 passes (iteration) 𝑒 =  0.0038 
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Error is getting reduced after each pass until it 

converges (target and actual output equal each other). 

So, this is how neural network is trained using back-

propagation algorithm. 

 

IV. CONCLUSIONS 

 

Effort has been made to demonstrate how the Back-

propagation training algorithm could be achieved. It 

has been shown that neural network synaptic weights 

can be updated iteratively. The Input data sample was 

first presented to the network and then the network’s 

output taken from the output layer was compared 

with the desired output and the error was calculated 

in each output neuron. And now for each neuron, a 

scaling factor called the local error was calculated 

which indicated how much higher or lower the output 

must be adjusted to match the desired output. The 

weights were modified to lower this local error. This 

process was repeated until the error falls within the 

acceptable value (pre-defined threshold) which would 

indicate that the neural network has been trained 

successfully. On the other side, if the maximum 

number of iterations is reached, then it indicates that 

the training was not successful. 

  

REFERENCES 

 

[1] Anderson, J. A. An Introduction to Neural 
Networks. Prentice Hall, 2003. 

[2] Gaudrat, J., Giusiano B., and Huiart. 
Comparison of the performance of multi-

layer perceptron and linear regression for 
epidemiological data. Computer Statist. & 
Data Anal., 44, 547-70, 2004. 

[3] Howard Demuth, Mark Beale, Martin 
Hagan. The MathWorks. 

[4] Lukowicz M., Rosolowski E. (2013). 
Artificial neural network based dynamic 

compensation of current transformer errors. 
Proceedings of the 8th International 
Symposium on Short-Circuit Currents in 
Power Systems, Brussels, pp. 19-24. 

[5] R.P.Hasbe, A.P.Vaidya, Detection and 
classification of faults on 220 KV 
transmission line using wavelet transform 
and neural network, International Journal of 

Smart Grid and Clean Energy, August 2013. 


