
© FEB 2019 | IRE Journals | Volume 2 Issue 8 | ISSN: 2456-8880

IRE 1700906 ICONIC RESEARCH AND ENGINEERING JOURNALS 1

Phishing Attack Detection Using Enhanced Classification
Method

N.JAYAKANTHAN

 Department of Computer Applications, Kumaragurur College of Technology, Coimbatore

Abstract - Phishing attack is major issue. The attacker

steals the information from the user’s machine or insert

a malware in that system. When the users are attracted to

visit the web page the script is executed to carried out the

its task. To detect and prevent these attack various tools

and methods are developed. Various phishing detection

techniques are proposed. But the phishing attacks are not

completely detected because the attacker dynamically

changing their approaches. In this paper we propose a

dynamic approach which solution to any type of phishing

attack. Our idea is to analyze the static and dynamic

features of the web page to differentiate phishing and

genuine web page using machine learning algorithms.

The proposed approach correctly detects all phishing and

genuine website without any false positive and negatives.

It overcomes many drawbacks of the existing signature-

based approaches.

Index Terms- Phishing, Web, Malware, Detection

I. INTRODUCTION

The goal of phishing attacks is to steal user identities

and credentials. Phishing is the act of attempting to

acquire information such as usernames, passwords,

and credit card details (and sometimes, indirectly,

money) by masquerading as a trustworthy entity in

an electronic communication. Communications

purporting to be from popular social web sites,

auction sites, online payment processors or IT

administrators are commonly used to lure the

unsuspecting public. Phishing emails may contain

links to websites that are infected with malware [1].

Phishing is typically carried out by e-mail spoofing

or instant messaging and it often directs users to enter

details at a fake website whose look and feel are

almost identical to the legitimate one. Phishing is an

example of social engineering techniques used to

deceive users and exploits the poor usability of

current web security technologies. Attempts to deal

with the growing number of reported phishing

incidents include legislation, user training, public

awareness, and the goal of phishing attack

 Unfortunately, no existing technical mechanism

fully solves this problem. For example, SSL only

authen- ticates a web server’s IP address or hostname

to a browser and protects the communication channel

as well. Nonethe- less, it provides no guarantee the

HTML files sent by the web server are not

misleading. [2]Some schemes are proposed to enable

a user to authenticate a server with a priori secu- rity

association. However, those schemes are not

applicable to websites which a user visits for the first

time. Moreover, it requires user awareness of

existence of the authentication Nonetheless, if the

user is already alerted, a simple URL checking can

prevent the phishing attack. (HTTP Transaction) A

request sent from the browser to the server and the

corresponding response from the server to the

browser, both. When a phishing site maliciously

claims a false identity, it always demonstrates

abnormal behaviors compared to a honest site, which

are indicated by some web DOM objects in the page

and HTTP transactions.

 The advantage of this approach includes that it does

not rely on any prior knowledge of the server or

users’ security expertise, the adversary has much less

adaptability since the detection is independent of any

specific phishing strategy and it causes no changes

on users’ existing navigation behavior.

Given the rising threat posed by malicious web

pages, it is not surprising that researchers have

started to investigate techniques to protect web users.

Currently, the most widespread protection [3] is

based on URL blacklists. These blacklists (such as

Google Safe Browsing) store URLs that were found

to be malicious. The lists are queried by a browser

before visiting a web page. When the URL is found

on the blacklist, the connection is terminated, or a

warning is displayed. Of course, to be able to build

and maintain such a blacklist, automated detection

© FEB 2019 | IRE Journals | Volume 2 Issue 8 | ISSN: 2456-8880

IRE 1700906 ICONIC RESEARCH AND ENGINEERING JOURNALS 2

mechanisms are required that can find on the Internet

web pages containing malicious content.

Unfortunately, for obvious reasons, very few details

have been revealed about Google’s filter. In

particular, the authors only provide examples of

three page features and report that they use a

proprietary machine-learning framework. The very

existence of Google’s blacklist provides evidence

that the overall system i.e. combining the filter with

the back-end analysis tools works.

II. LITERATURE SURVEY

In the last few years, the detection of web pages that

launch drive-by-download attacks has become an

active area of research and several new approaches

have been proposed. Dynamic approaches. Dynamic

approaches use honey client systems to visit web

pages and determine if they are malicious or not. In

high-interaction honey clients, the analysis is

performed by using traditional browsers running in a

monitored environment and detecting signs of a

successful drive-by-download attack (e.g., changes in

the file system, the registry, or the set of running

processes) [4,7,9,10]. In low-interaction honey clients,

the analysis relies on emulated browsers whose

execution during the visit of a web page is monitored

to detect the manifestation of an attack (e.g., the

invocation of a vulnerable method in a plugin) [5,6,8,

11]. Both high- and low-interaction systems require to

fully execute the contents of a web page. This includes

fetching the page itself, all the resources that are linked

from it, and, most importantly, interpreting the

associated dynamic content, such as JavaScript code

[12]. These approaches usually yield good detection

rates with low false positives, since, by performing

dynamic analysis, they have complete “visibility” into

the actions performed by an attack. The down-side is

that this analysis can be relatively slow, because of the

time required by the browser (either simulated or real)

to retrieve and execute all the contents comprising a

web page, taking from a few seconds to several

minutes, depending on the complexity of the analyzed

page. Scalability issues with today’s honeyclient

systems (relatively slow processing speed combined

with relatively high hardware requirements) motivated

our work on a filtering system[13]. Our filter achieves

higher performance by forgoing dynamic analysis

(e.g., the interpretation of JavaScript code), and

relying instead on static analysis only. Static

approaches [14] to the detection of drive by download

attacks rely on the analysis of the static aspects of a

web page, such as its textual content, features of its

HTML and JavaScript code, and characteristics of the

associated URL. Understand the scientific terms and

jargon related to your research work.

III. METHODOLOGY

Now it is the time to articulate the research work with

ideas gathered in above steps by adopting any of. In

this section, we evaluate both the two-stage correlate-

and filter algorithm and the underlying decentralized

CIDS architecture. We first conduct a study of the

feasibility of using the proposed two-stage correlate-

and-filter algorithm by comparing it against a fully

centralized scheme. We compare these two schemes in

terms of their detection accuracy and message

exchange rate using a simulation based on a real-world

intrusion dataset. We then evaluate the fully

decentralized CIDS architecture by conducting a

large-scale experiment on Planet Lab [3] using a real-

world worm outbreak dataset. In this section, we first

introduce the real-world intrusion dataset used in the

experiments. Then we report on the simulation results

of the proposed two stage correlate-and-filter

algorithm for non-stealthy attack scenarios using the

naive threshold selection scheme and in stealthy attack

scenarios using the probabilistic threshold selection

scheme respectively.

Algorithm

Detection system di:

for each time interval do

collect raw alerts ri locally

 SAi = local alert report on di

 SAi (correlate-and-filter ri

for each vij = SAi do

look up the destination node for pij

dt = lookup(srcIP of vij)

subscribe(vij , nij , di) on dt

 end for

end

Our simulation program is written in Java and run on

a Sun T-2000 server, which contains an 8-core 1 GHz

Ultra SPARC CPU, 16 GB of RAM, and the Solaris

© FEB 2019 | IRE Journals | Volume 2 Issue 8 | ISSN: 2456-8880

IRE 1700906 ICONIC RESEARCH AND ENGINEERING JOURNALS 3

10 operating system. The dataset is stored in a mysql

relational database.

We simulate 2n participating IDSs by varying n from

3 to 7. Each simulated IDS is assigned a unique

provider-id which is a field of the alert table in the

database. Each IDS periodically queries the database

using this provider-id and a specified time interval.

Then these raw alerts will be processed by two

different simulated processes: the two-stage correlate

and filter process and the centralized correlate-and-

filter process. In this simulation, we consider the alert

patterns and messages generated by the centralized

process as our gold standard for calculating the

detection accuracy and message exchange rate.

According to performance analysis in normal case, in

attack case and in IDS case we observe that DDOS

attack affected the network and our scheme is

successfully defense the network and also provides the

protection against them. In case of attack we observe

that the routing load is very high because attacker node

are continuously transmit the routing packets to their

neighbored and every node in network are reply to

attacker node by that heavy congestion is occur.

Packet delivery fraction and end to end delay are also

goes low, which shows that packets are not deliver

accurately and number of dropped data is goes high

approximately twice to the normal condition.

IV. IMPLEMENTATION AND

ENVIRONMENT

We implemented Dynamic attack detector, and we

used it as a for our existing dynamic analysis tool,

called Wepawet. It can be used unchanged as a filter

for any of the other, publicly available honey client

systems. The crawls are seeded by using the current

Twitter, Google, and Wikipedia trends as search

terms. These trends are used as a basis for the searches

because most malware campaigns use Search Engine

Optimization (SEO) techniques to increase their

ranking in the search engines’ results associated with

popular terms [15, 16]. Another source of seeds for our

crawler is a list of links extracted from a feed of spam

emails. The list of links is updated daily and provides

us with an average of 2,000 URLs per day. We

modified the crawler to be able to set the “Referrer”

header when fetching a seed URL. This header has to

be set to the search engine from which the seed URL

was extracted. This is necessary because some

malicious web pages deliver malicious content only

when the request appears to be the result of a user

clicking on the search results. The crawler fetches

pages and submits them as input to Prophiler, which

analyzes each page and extracts and stores all the

features. Once all features have been extracted from a

page, Prophiler uses the models learned in the previous

training phase to evaluate its maliciousness. If a page

has been identified as likely malicious, it is forwarded

to the dynamic analysis tool (Wepawet, in our case).

This tool then confirms that the page is indeed

malicious, or it flags it as a false positive.

V. CONCLUSION

The proposed mechanism eliminates the need for a

centralized trusted authority which is not practical in

ADHOC network due to their self organizing nature.

The results demonstrate that the presence of a DDOS

increases the packet loss in the network considerably.

The proposed mechanism protects the network

through a self organized, fully distributed and

localized procedure. The additional certificate

publishing happens only for a short duration of time

during which almost all nodes in the network get

certified by their neighbors. After a period of time each

node has a directory of certificates and hence the

routing load incurred in this process is reasonable with

a good network performance in terms of security as

compare with attack case. We believe that this is an

acceptable performance, given that the attack

prevented has a much larger impact on the

performance of the protocol. We introduce a

probabilistic approach to estimate the optimal

threshold for local correlation in stealthy attack

scenarios. In comparison to a centralized correlate-and

filter algorithm, our evaluation using a real-world

intrusion dataset shows that our decentralized

approach reduces alert messages significantly with

little degradation in detection accuracy in most attack

scenarios. The proposed probabilistic scheme achieves

a significant improvement in detection accuracy

compared to a naive threshold selection scheme that

uses the same local and global threshold. For future

work, we will consider how to optimize the load

distribution in the fully decentralized CIDS

architecture, and how to make the support threshold

adaptive to different types of attack scenarios.

© FEB 2019 | IRE Journals | Volume 2 Issue 8 | ISSN: 2456-8880

IRE 1700906 ICONIC RESEARCH AND ENGINEERING JOURNALS 4

REFERENCES

[1] G. O. C. Estan, S. Savage, and G. Varghese,

“Automatically inferring patterns of resource

 consumption in network traffic,” in

Proceedings of the 2003 Conference on

Applications,Technologies, Architectures, and

Protocols for Computer Communications

(SIGCOMM), 2003, pp. 137–148.

[2] W.-K. “CERT Incident Note IN-99-07,” 1999.

[Online]. Available:

http://www.cert.org/incident

[3] H. “Planetlab testbed,” http://www.planet-

lab.org.

[4] M. Locasto, J. Parekh, A. Keromytis, and S.

Stolfo, “Towards Collaborative Security and

 P2P Intrusion Detection,” in Proceedings of

the 2005 IEEE Workshop on Information

 Assurance and Security, 2005.

[5] E. H. Miller, ―A note on reflector arrays

(Periodical style—Accepted for publication), ‖

IEEE Trans. Antennas Propagate., to be

published.

[6] J. Y. Hu, D. M. Chiu, and J. C. Lui, “Adaptive

Flow Aggregation - A New Solution for Robust

Flow Monitoring under Security Attacks,” in

Tenth IEEE/IFIP Network Operations and

Management Symposium (NOMS), 2006, pp.

424–435.

[7] J. Jung, B. Krishnamurthy, and M. Rabinovich,

“Flash crowds and denial of service attacks:

characterization and implications for CDNs

and web sites,” in Proceedings of the 11th

International Conference on World Wide Web

(WWW), 2002, pp. 293–304.

[8] J. “CERT Advisory CA-1996-21 TCP SYN

Flooding and IP Spoofing Attacks,” 1996.

 [Online]. Available:

http://www.cert.org/advisories/CA-1996-

21.html.

[9] CERT Advisory CA-2003-20 W32/Blaster

worm,” 2003. [Online]. Available:

http://www.cert.org/advisories/CA-

200320.html

[10] S. Gibson, “Distributed Reflection Denial of

Service - Description and analysis of a potent,

increasingly prevalent, and worrisome Internet

attack,” 2002. [Online]. Available:

http://www.grc.com/dos/drdos.html.

[11] S. S. Katti, B. Krishnamurthy, and D. Katabi,

“Collaborating against common enemies,” in

 Internet Measurement Conference, 2005.

[12] S. S. S. Axelsson, “The Base-Rate Fallacy and

Its Implications for the Difficulty of Intrusion

 Detection,” in ACM Conference on Computer

and Communications Security, 1999, pp. 1–7.

[13] S. G. K. Bhattacharyya and R. A. Johnson,

Statistical concepts and methods. New York:

 Wiley, 1977.

[14] S. G. K. D. Karger, E. Lehman, T. Leighton, R.

Panigrahy, M. Levine, and D. Lewin,

“Consistent hashing and random trees:

distributed caching protocols for relieving hot

spots on the World Wide Web,” in

Proceedings of the Twenty-Ninth Annual ACM

Symposium on Theory of Computing, 1997,

pp. 654–663.

[15] “Dshield org,” http://www.dshield.org.

[16] C. V. Zhou, S. Karunasekera, and C.

Leckie, “Evaluation of a Decentralized

Architecture for Large Scale Collaborative

Intrusion Detection,” in the Tenth IFIP/IEEE

International Symposium on Integrated

Network Management (IM), Germany, 2007,

pp. 80–89.

