
© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 150 

Review Paper on Centralized and Distributed 
 Version Control System. 

 

AMRUTA SUDHIR VATARE1, PRATIBHA ADKAR2 
1,2MCA Department Modern College of Engineering Pune, India 

 

Abstract- Version Control System is also called 

Source Code Management System. First Version 

Control System is developed in the early 1970’s when 

the Source Code Control System (SCCS) was 

released. Version Control System is a category of the 

software tools that helps a software team manage 

changes to source code to over time. Version Control 

Software keeps track of every modification to the 

code in a special kind of database. If mistake is made, 

developers can track back the clock and compare 

earlier version of code to help fix the mistake while 

minimizing disruption to all team members. In this 

research paper we included the details information 

about the version controls system and their 

architecture types, advantages of VCS, disadvantages 

of VCS, and applications of VCS. 

 

Index Terms- Importance of Version Control System, 

Centralized VCS, Decentralized VCS, Examples of VCS 

based on both centralized/decentralized architectures 

(Subversion, Git), Advantages and disadvantages of VCS. 

Applications of VCS. 

I. INTRODUCTION 

 

Version control system are a category of software tools 

that helps a software team manage changes to source 

code over time. Version control software keeps track 

of every modification to the code in a special kind of 

database. If a mistake is made, developers can track 

back the clock and compare earlier version of the code 

to help fix the mistake while minimizing disruption to 

all team members. 

 

For almost all software projects, the source code is like 

the crown jewels – a precious asset whose value must 

be protected. For most software teams, the source code 

is a repository of the invaluable knowledge and 

understanding about the problem domain that the 

developers have collected and refined through careful 

effort.  Version control protects source code from both 

catastrophe and the casual degradation of human error 

and unintended consequences. 

Software developers working in the team are 

continually writing new source code and changing 

existing source code. The code for a project, app or 

software component is typically organized in a folder 

structure or “file tree”. One developer in a team may 

be working on a new feature while another developer 

fixes an unrelated bug by changing code, each 

developer may make their changes in several parts of 

the file tree. 

 

Version Control helps teams solves these kinds of 

problems, tracking every individual change by each 

contributor and helping prevent concurrent work from 

conflicting. Changes made in one part of the software 

can be incompatible with those made by another 

developer working at the same time. This problem 

should be discovered and solved in an orderly manner 

without blocking the work of the rest of the team. 

Further, in all software development, any changes can 

introduce new bugs on its own and new software can’t 

be trusted until it’s tested. So, testing and development 

proceed together until a new version is ready. 

 

Good version control software supports a developer’s 

preferred workflow without imposing one way of 

working. Ideally it also works on any platform, rather 

than dictate what operating system or tool chain 

developers must use. Great version control systems 

facilitate a smooth and continuous flow of changes to 

the code rather than the frustrating and clumsy 

mechanism of file locking – giving the green light to 

one developer at the expense of blocking the progress 

of others. 

 

Software teams that do not use any form of version 

control often run into problems like not knowing  

which changes that have keep made are available to 

user or the creation of incompatible changes between 

two unrelated pieces of work that must then be 

painstakingly untangled and reworked. If you’re a 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 151 

developer who has never used version control you may 

have added versions to your files, perhaps with  

suffixes like “final” or “latest” and then had to later 

deal with a new final version. Perhaps you’ve 

commented out code blocks because you want to 

disable certain functionality without deleting the code, 

fearing that there may be a use for it later. Version  

control is a way out of these problems. 

 

Version control software is an essential part of the 

every-day of the modern software team’s professional 

practices. Individuals software developers who are 

accustomed to working with a capable version control 

system in their teams typically recognize the incredible 

value version control also give them even on small 

solo projects. Once accustomed to the powerful 

benefits of version control systems, many developers 

wouldn’t consider working without it even for non-

software projects. 

 

II. IMPORTANCE OF VERSION CONTROL 

SYSTEM. 

 

There are many benefits of using a version control 

system for your projects. These are some of them in 

detail. 

1. Collaboration: - 

Without a VCS in place, you’re probably working  

together in a shared folder on the same set of files. 

Shouting through the office that you are currently 

working on file “xyz” and that, meanwhile, your 

teammates should keep their fingers if us bit ab 

acceptable workflow. It’s extremely error prone as 

you’re essentially doing open-heart surgery all the 

time: sooner or later, someone will overwrite someone 

else’s changes. 

With a VCS, everybody on the team can work 

absolutely freely – on any file at any time. The VCS 

will later allow you to merge all the changes into a 

common version. There’s no question where the latest 

version of a file or the whole project is. It’s in a 

common, central place: your version control system. 

Other benefits of using a VCS are even independent of 

working in a team or on your own. 

2. Storing Versions (Properly): - 

Saving a version of your project after making  

changes is an essential habit. But without a VCS, this 

become tedious and confusing very quickly: 

How much do you save? Only the changed files or 

the complete project? In the first case, you’ll have a 

hard time viewing the complete project at any point in 

time – in the latter case, you’ll have huge amount of 

unnecessary data lying on your hard drive. 

How do you name these versions? If you’re a very 

organized person, you might be able to stick to an 

actually comprehensible naming scheme (if you’re 

happy with “acme-inc-redesign-2013-11- 12-

v23”).However, as  soon as it comes to variants (say, 

you need to prepare one version with the header area 

and one without it), chances are good you’ll eventually 

lose track. 

The most important question, however, is probably 

this one: How do you know what exactly is different  

in these versions? Very few people take the time to 

carefully document each important change and include 

this in a README file in the project folder. 

A version control system acknowledges that there is 

only one project. Therefore, there’s only the one 

version on your disk that you’re currently working on. 

Everything else- all the past versions and variants- are 

neatly packed up inside the VCS. When you need it, 

you can request any version at any time you’ll have a 

snapshot of the complete project right at hand. 

3. Restoring Previous Versions: - 

Being able to restore older versions  of a file (or even 

the whole project) effectively means one thing: you 

can’t mess up! If the changes you’ve made lately prove 

to be garbage, you can simply undo them in a few 

clicks. Knowing this should make you a lot more 

relaxed when working on important bits of a project. 

4. Understanding What Happened: - 

Every time you save a new version of your project, 

your VCS requires you to provide a short description 

of what was changed. Additionally (if it’s a code / text  

file), you can see what exactly was changed in the 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 152 

file’s content. This helps you understand how your 

project evolved between versions. 

5. Backup: - 

A side-effect of using a distributed VCS like Git is 

that it can act as a backup; every team member has a 

full-blown version of the project on his disk – 

including the project’s complete history. Should your 

beloved central server break down (and your backup 

drives fail), all you need for recovery is one of your 

teammates’ local git repository. [1][4] 

III. ARCHITECTURE OF VERSION 

CONTROL SYSTEMS AND EXAMPLES 

 

A) Centralized/client- server version control system 

architecture. 

The historical and most common architecture found 

today is the centralized repository. In this architecture, 

users (clients) connect to a central source(server) for 

access to the repository. 

Essentially “Developers check out source code from 

the central repository into a local sandbox and, after 

making changes, commit it back to the central 

repository”. 

 

Branching is a process where subsections from the 

main source code are developed independently and 

then reassembled back when complete. Branching 

allows developers to edit section (branches) of the 

repository without posing major changes to the main  

source and retaining the revision history of the files. 

Branches can be implemented in this architecture but 

not as efficiently as the Distributed Architecture. 

Traditional VCSs have a centralized server, which acts 

as a source code repository. In addition to store the 

code, these tools maintain the revision history for each 

commit. In below diagram, we have 3 files A, B and 

C; and project changes are committed in four faces i.e. 

initial commit, second, third and fourth commit. When 

there is a change to the file A and C in the second 

commit, only the difference or delta changes are 

applied to the initial file and stored. Similarly, when 

there is another change performed on top of B and C 

files in third commit, only the delta changes from B 

and C are stored as part of the commit.[3][6]  

 

Figure. Working with Centralized VCS. 

 

Figure. Centralized VCS Architecture.  

Notice that at any given point of time, if we want to 

get the current state of the entire code base, we will not 

be able to get since all we can get for a given commit  

is the delta changes from the last time the files was 

committed. For example, when we compare two 

commits, we only get the files that have changes and 

we can see the actual changes done to the files, which 

we refer to as delta. You can ask for some previous 

version of a file(s), but you cannot ask for whole 

workspace what it was before few commits. If you 

want to see how the workspace looks at a given 

commit, you will have to take the base version and 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 153 

path with all the commits done till the desired commit . 

Hence you will be restricted to either get latest 

revision; or base revision. Thus, the VCS stores only 

the differences. [7] 

B) Decentralized/Distributed version control 

system architecture. 

This architecture takes a peer-to-peer approach where 

each peer has a local repository which is similar to the 

original source repository to which they can commit  

their changes. The main difference is that each clone 

is a full-fledged repository not dependent on network 

access or a central server. Synchronization is 

conducted by exchanging patches (changesets) via 

peer to peer, making it possible for independent 

developers to work asynchronously.  

Since Linus Torvalds gave a presentation at Google 

about a distributed version control system called GIT 

in May 2007, the adoption and interest for Distributed 

Version Control Systems has been constantly risin  

Unlike centralized VCS, where all the heavy lifting is 

done at the server side and acts as a single point for all 

the operations and the clients have only the working  

copy of the code-base; in distributed VCS, each client 

(referred as collaborator) has its own local repository 

and will work on its local repository for the most part. 

[2][3]  

 

Figure. Working with Decentralized VCS. 

The whole approach of central VCS is  reversed, and 

each collaborator will have the complete repository on 

his local machine i.e. the complete revision history, all 

the branches, tags, commit information is present on 

the local machine. We do not have a notion of a central 

server, but we can configure any repository to be a 

central repository to treat as a source of truth and to 

integrate with build and deployment tools like Jenkins, 

Chef etc. 

Below is the block diagram of how different  

collaborators work with a distributed version control 

system. 

 

Figure. Decentralized VCS Architecture 

From the above diagram, we can see that, unlike 

traditional VCSs, in distributed VCS, we have 

collaborators work with other collaborators in a 

decentralized system. 

In distributed VCS, clients don’t just check out the 

latest snapshot of the files; rather they fully mirror the 

repository. Thus, if any server dies, and these systems 

were collaborating via it, any of the client repositories 

can be copied back up to the server to restore it. Every 

clone is really a full backup of all the data. Also note 

that the terminology used in distributed VCS differs  

from centralized VCS. Where we use “checkout” and 

“commit” in central VCS; in distributed VCS, we use 

“push” and “pull”. 

1.Push: Send a change to another repository (may  

require permission) 

2. Pull: Grab a change from a repository 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 154 

There are many distributed version control systems 

like Git, Mercurial etc. In upcoming series of posts, I 

will be taking Git and will be referring to Git whenever 

referring to “distributed version control system”.[8] 

C) Example of Centralized VCS -Subversion 

Control System  

Subversion is a free/open source version control 

system (VCS). That is, Subversion manages files and 

directories, and the changes made to them, over time. 

This allows you to recover older versions of your data 

or examine the history of how your data changed. In 

this regard, many people think of a version control 

system as a sort of “time machine.” 

Subversion can operate across networks, which allows 

it to be used by people on different computers. At 

some level, the ability for various people to modify  

and manage the same set of data from their respective 

locations fosters collaboration. Progress can occur 

more quickly without a single conduit through which 

all modifications must occur. And because the work is 

versioned, you need not fear that quality is the trade-

off for losing that conduit—if some incorrect change 

is made to the data, just undo that change. 

Some version control systems are also software 

configuration management (SCM) systems. These 

systems are specifically tailored to manage trees of 

source code and have many features that are specific 

to software development—such as natively 

understanding programming languages or supplying 

tools for building software. Subvers ion, however, is 

not one of these systems. It is a general system that can 

be used to manage any collection of files. For you, 

those files might be source code—for others, anything 

from grocery shopping lists to digital video mixdowns  

and beyond. 

On one end is a Subversion repository that holds all 

your versioned data. On the other end is your 

Subversion client program, which manages local 

reflections of portions of that versioned data. Between 

these extremes are multiple routes through a 

Repository Access (RA) layer, some of which go 

across computer networks and through network 

servers which then access the repository, others of 

which bypass the network altogether and access the 

repository directly.[9][7] 

 

Figure. Subversion VCS Architecture. 

Repository types  

Subversion offers two types of repository storage. 

1. Berkeley DB  

The original development of Subversion used the 

Berkeley DB package. Subversion has some 

limitations with Berkeley DB usage when a program 

that accesses the database crashes or terminates 

forcibly. No data loss or corruption occurs, but the 

repository remains offline while Berkeley DB replays 

the journal and cleans up any outstanding locks. The 

safest way to use Subversion with a Berkeley DB 

repository involves a single server-process running as 

one user (instead of through a shared filesystem). 

2. FSFS 

In 2004, a new storage subsystem was developed and 

named FSFS. It works faster than the Berkeley DB 

backend on directories with a large number of files and 

takes less disk space, due to less logging. Beginning 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 155 

with Subversion 1.2, FSFS became the default data 

store for new repositories. The etymology of "FSFS" 

is based on Subversion's use of the term "filesystem" 

for its repository storage system. FSFS stores its 

contents directly within the operating system's 

filesystem, rather than a structured system like 

Berkeley DB. Thus, it is a "[Subversion] Filesystem 

atop the Filesystem".[10] 

D) Example of Decentralized VCS -Git version 

Control System  

Git is a distributed version-control system for tracking  

changes in source code during software development. 

It is designed for coordinating work among 

programmers, but it can be used to track changes in 

any set of files. Its goals include speed, data integrity, 

and support for distributed, non-linear workflows. 

Git was created by Linus Torvalds in 2005 for 

development of the Linux kernel, with other kernel 

developers contributing to its initial development. Its 

current maintainer since 2005 is Junio Hamano. As 

with most other distributed version-control systems, 

and unlike most client–server systems, every Git  

directory on every computer is a full-fledged  

repository with complete history and full version-

tracking abilities, independent of network access or a 

central server. Git is free and open-source software 

distributed under the terms of the GNU General Public 

License version 2[11] 

1. Role of Git in Development. 

Now that you know what Git is, you should know Git  

is an integral part of Development. Development is the 

practice of bringing agility to the process of 

development and operations. It’s an entirely new 

ideology that has swept IT organizations worldwide, 

boosting project lifecycles and in turn increasing 

profits. Development promotes communication  

between development engineers and operations, 

participating together in the entire service lifecycle , 

from design through the development process to 

production support. 

 

Figure. The diagram shows development life cycle and 

display how git fits in development. 

The diagram above shows the entire life cycle of 

Developments starting from planning the project to its 

deployment and monitoring. Git plays a vital role 

when it comes to managing the code that the 

collaborators contribute to the shared repository. This  

code is then extracted for performing continuous 

integration to create a build and test it on the test server 

and eventually deploy it on the production. 

Tools like Git enable communication between the 

development and the operations  team. When you are 

developing a large project with a huge number of 

collaborators, it is very important to have 

communication between the collaborators while 

making changes in the project. Commit messages in 

Git play a very important role in communicating  

among the team. The bits and pieces that we all deploy 

lies in the Version Control system like Git. To succeed 

in Development, you need to have all of the 

communication in Version Control. Hence, Git plays 

a vital role in succeeding at Development. [12] 

IV. ADVANTAGS AND 

DISADVANTAGES OF VCS 

A) Advantages of Centralized VCS.  

1. All the source code is safely stored in a secure place 

on a centralized server. 

2. If the source code on the local machine is lost due 

to system or hard disk crashes, taking the code from 

the VCS can restore the source code. 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 156 

3. Authentication and authorization can be put in place 

on the VCS. 

4. The VCS takes care of managing the versioning and 

will not allow for commit if there is any conflict. 

5. Maintains the commit log for commit information  

by developers.[1][14] 

B)  Advantages of Distributed VCS.  

Fast 

Each collaborator checks out the codebase into his 

local repository and work on the local repository. 

Hence all the operations will be fast since there won’t 

be any network call to any server. 

Cheap branching and merging 

Since, the codebase is on the local hard disk, creating 

branches and merging is very simple and easy. This is 

one of the powerful features since working with  

branches and merging is too complicated if working  

with centralized repository. 

Local branching 

The developer can create as many local branches and 

work on the branches and then merge it back to the 

main branch. Once the merging is complete, the local 

branch can be safely deleted. The biggest advantage 

here is that the branch will not be visible to others 

unlike the centralized VCS where all the branches 

resides on one single server and creates lot of 

confusions when working on a large project. 

Snapshots instead of difference 

This is one of the key benefits. We can get the 

complete code repository for each commit that we 

have perform. Hence, we can easily revert back to any 

commit without having to deal with applying the 

changes from the base version manually as in case of 

central VCS. 

Simple and productive tool 

Once the developers are comfortable understanding 

the core concepts and features, developers will be 

more productive. Developers can also commit the 

code in modular fashion and collaborate with other 

developers without impacting other developer’s 

workspace. 

Scalable 

“Distributed VCS” are highly scalable when compared 

with “Centralized VCS”, especially in open source 

project where millions of developers contribute and a 

task which cannot be accomplished by a traditional 

version control system. 

Open source 

Git is open source and free. Moreover, developers can 

work on open source projects on various platforms like 

GitHub.[8] 

C) Disadvantages of Centralized VCS.  

• If the main servers are goes down developers 

can’t save versioned changes. This is common 

scenario that we encounter. Almost all the 

operation that we performed like checking the 

file diff, committing, merging etc. all can be 

performed only VCS is up. For some reasons if 

the VCS is temporarily down for example 

network outages, server maintenance, all users 

accessing the VCS is blocked. Even simple 

operation like comparing the files with 

previous versions cannot be done. 

• Remote commits are slow. 

• Unsolicited changes might ruin development. 

• If the central database is corrupted, the entire 

history could be lost (security issues). 

Assumes that there are the 5 developers working with  

the VCS and they all work on features and commit  

their change to the repository. Unfortunately, the VCS 

crash and there is no backup. We are left with restoring 

the VCS with last stable commit. Now since the 

revision history and commit log is maintained on the 

VCS server, and codebase present on the developer’s 

machine in just plain work copy, there is no way we 

can confidently bring the VCS to the last committed  

state. Git is open source and free. Moreover, 

developers can work on open source projects on 

various platforms like GitHub. 

 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 157 

D) Disadvantages of Distributed VCS.  

• It may not always be obvious who did the 

most recent change 

• File locking doesn’t allow different  

developers to work on the same piece of code 

simultaneously. It helps to avoid merge 

conflicts, but slows down development  

• DVCS enables you to clone the repository – 

this could mean a security issue 

• Managing non-mergeable files is contrary to 

the DVCS concept 

• Working with a lot of binary files requires a 

huge amount of space, and developers can't 

do diffs  

• Learning Git will take some steep learning  

curve and often confusion and frustrating for 

developers coming from other traditional 

VCS tools. But once the core concepts are 

understood it’s a charm to work with. 

• Although a lot of tools and plugins are 

available to be integrated with IDE’s not 

many of them are present as in case of SVN 

or perforce. Although the git bash of one of 

the popular tools which can be leveraged if 

coming from Unix background. 

V. APPLICATIONS OF VCS  

A. Software Development 

The primary use of version control systems has 

generally been in software development, where the 

ability to revisit older instances of a file may be useful, 

if not absolutely essential. There are many 

circumstances in which having some sort of file  

versioning is imperative. For example, when a bug 

appears in a piece of software, the first step to tracking 

down the bug is to know what changed in the source 

code since the last working version. If necessary, the 

changes made can be "rolled back", essentially 

removing the changes that introduced the error. 

If a given piece of source code may be edited by 

multiple people, version control systems may assist 

here as well to reduce the number of conversations 

developers need to have with each other over code 

management--leaving more time to discuss design, 

documentation and testing. Some version control 

systems will lock files so that only one person may edit 

it at one time. When done, the user releases the lock 

and the next person may edit the file. Other systems 

allow multiple developers to work on a given file and 

when ready merge the changes in a meaningful way. 

For software projects in which the development team 

is scattered over a large area--be it a city, a country, or 

the globe--managing these changes and meaningful 

information describing them requires a modern  

version control system. 

B. Documentation 

Many documents are "living documents". Since they 

describe things that change, they must themselves 

change, or become useless. The ability to revisit 

historical versions of a document may be used to 

satisfy curiosity or keep up with those changes or 

document changes in the subject itself. 

If a document describes something relatively complex, 

the process of writing and editing it may be an 

interactive one, as with software. As well, multiple 

people may have multiple roles in the document's 

development, and the principle of version control may  

be applied to the document in the same way as they are 

for larger pieces of software. An example is The Linux 

Documentation Project, which is a global effort to 

provide documentation for the Linux operating 

system. 

C. Web Development 

Web development is a field that combines both 

software development and documentation, and many 

content management systems incorporate version 

control mechanisms. If yours does not, or if you don't 

use a content management system, consider using 

version control. 

D. Systems Management 

In a large computing environment, typically there are 

many similar machines whose configurations are 

modifications to a common base. For example, there 

might be a several machines with the same operating 



© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880 

IRE 1701230          ICONIC RESEARCH AND ENGINEERING JOURNALS 158 

system, similar start-up and shutdown scripts, and 

common network configurations, underneath their 

applications and services. It may be useful to manage 

their configurations in a central, version-controlled 

repository, where variations are easily tracked, and 

common elements are easily replicated. If a change is 

made to the configuration that affects all machines, it 

becomes a relatively simple affair to visit each 

machine and update its configuration with the new 

one. 

E. Home Directory Management 

Users with accounts on multiple computer systems 

may find that they spend more time than they would 

like tweaking various aspects of their new computing 

environment, and it would be nice to be able to easily 

distribute this environment and update it when 

necessary. 

It would be possible to use scp (Secure copy protocol) 

to copy files securely between machines, but this is 

less than convenient: every time a change is made, it 

needs to be manually copied from the source to the 

target, and of course there is no revision control in case 

of mistakes or for reference. With Subversion, it is 

simple when logging onto a different machine to 

quickly check for updates via a call to svn up. This 

could be scripted as part of your login script, and if 

your password is cached, it may even be automatic. [6] 

VI. CONCLUSION 

This study set out to investigate to what extent the type 

of VCS affects the choice of CM strategy at software 

development companies, and what VCS features are 

desirable for software development companies. The 

study shows that our initial proposition about the type 

of VCS having a big impact on the process was turned 

on its head. Our results indicate that it is the tool that 

has the biggest effect on the process. 

Whether your development team uses Distributed 

VCS (Git) or Centralised VCS (SVN), you’ll benefit 

from being able to track and review your code for 

better releases. Just be sure to choose an issue tracking 

software that supports your choice, so you’re able to 

properly track that work over time. 

If you’re in the market for issue tracking software, 

Backlog integrates fully with Git and SVN, providing 

your team the ability to set up private repositories, 

propose and compare code changes, leave in-line 

comments on code, and document your work with  

wikis. 

REFERENCES 

[1] Pravin Kumar Sutar., “Git Workflow, From 

Development to Deployment Redefined”, 

International journal of advanced research in 

computer science and application ISSN 2321-

872x ONLINE ISSN 2321-8932. 

 [2] Emil Tsanov, Asen Bozhikov, “Version 

Control in the Cloud” IEEE Transactions on 

Software Engineering, SE-1 No.4,4 December 

1975. 

[3] Candrlic, M. Pavlic, and P. Poscic. “A 

comparison and the desirable features of 

version control tools. In Information  

Technology Interfaces”, 2007. ITI 2007. 29th 

International Conference on, pages 121–126. 

IEEE, 2007  

[4] Brent Laster: - Professional Git 1st Edition, 

ISBN-13:978-1119284970  

[5] https://en.wikipedia.org/wiki/ Version_control 

[6] https://homes.cs.washington.edu/~mernst/ 

advice/version-control.html 

[7] https://howtodoinjava.com/vcs/how-version-

control-system-vcs-works/ 

[8] https://howtodoinjava.com/vcs/how-

distributed-version-control-system-works/ 

[9] http://svnbook.red-bean.com/en/1.6/svn-

book.html#svn.intro.whatis  

[10] https://www.projecthut.com/what-is-svn-

repository/ 

[11] https://www.atlassian.com/git/tutorials/learn-

about-code-review-in-bitbucket-cloud 

[12] https://www.tutorialspoint.com/git/ 

git_basic_concepts.htm  

[13]  https://www.vogella.com/tutorials/Git/ 

article.html  

[14] https://backlog.com/blog/git-vs-svn-version-

control-system/ 

 

 

 

 

 

 


