
© JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880  

IRE 1701310          ICONIC RESEARCH AND ENGINEERING JOURNALS 180 

Merging Small Files for Cloud Storage Using 
Agglomerative Hierarchical Clustering 

 

HTU RA 
University of Computer Studies, Myitkyina 

 
Abstract- Hadoop distributed file system (HDFS) 
was originally designed for large files. HDFS stores 
each small file as one separate block although the 
size of several small files is lesser than the size of 
block size. Therefore, a large number of blocks are 
created with massive small files. When the large 
number of small files is accessed, Name Node often 
becomes the bottleneck. The problem of storing and 
accessing large number of small files is named as 
small file problem. In order to solve this issue in 
HDFS, an approach of merging small files on 
HDFS is proposed. In this paper, small files are 
merged into a larger file based on the agglomerative 
hierarchical clustering mechanism to reduce Name 
Node memory consumption. This approach will 
provide small files for cloud storage. 
 

I. INTRODUCTION 
 

Cloud computing has become increasinglypopular as 
the next infrastructure for hosting data anddeploying 
software and services. Distributed filesystem is the 
foundation of cloud computing andprovides reliable 
and efficient data storage for 
upperapplications.Today most popular storage system 
for cloudcomputing such as Google File System 
(GFS) andHadoop Distributed File System (HDFS) 
are widelyused and well known. However, HDFS is 
more light-weightedand open-source platform. 
Hadoop is a software framework which is anopen 
source that supports big data in 
distributedenvironment. It has two major components 
HDFSand Map Reduce. HDFS has master-
slavearchitecture, with a single master called 
theName Node and multiple slaves called Data 
Nodes.Name Node manages the metadata and 
regulatesclient accesses. The metadata is maintained 
in themain memory of the Name Node to ensure fast 
accessto the client, on read/write requests. Data 
Nodesprovide block storage and service read/write 
requestsfrom clients, and perform block operations 

bycontacting with Name Node.The consumption of 
memory in Name Node isdecided by the number of 
files stored in HDFS. Eachfile requires 150 bytes of 
memory space to storemetadata in Name Node. Data 
Node is responsible forsaving the real and replicated 
data. Each file is splitinto several blocks with the size 
of 128MB. TheData Node keeps on sending the 
heartbeat signal tothe Name Node at regular intervals 
to indicate itsexistence in the system. The heart-beat 
consists ofData Node’s capacity, used space, 
remaining spaceand some other information.There 
are huge numbers of small files in thearea of biology, 
climatology, energy, e-learning, e-businessand e-
library. A small file is a file whosesize is less than the 
HDFS block size. Although thesize of a file is less 
than the HDFS default block size,HDFS creates it as 
one block. When the large numberof small files is 
stored, HDFS is inefficient becauseof high memory 
usage and unacceptable access cost. 
 
Hadoop cannot provide optimal performance forsmall 
files processing. In this paper, file merging willbe 
presented to overcome small file problems inHDFS. 
 
The rest of the paper is organized as follows.Section 
2 is an illustration of related works with theproposed 
topic. Section 3 is the background theory ofthe 
proposed system. The proposed system ispresented in 
section 4. The evaluation results aredescribed in 
section 5. Finally, the paper is concludedin section 6. 
 

II. RELATED WORKS 
 

MENG Bing and et al. [1] provided a solutionto 
reduce Name Node memory consumption, by 
TLBMap File. TLB-Map File merges massive small 
files into large files by Map File mechanism to 
reduce Name Node memory consumption and add 
fast table structure (TLB) in Data Node, and to 
improve retrieval efficiency of small files. A 



© JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880  

IRE 1701310          ICONIC RESEARCH AND ENGINEERING JOURNALS 181 

challenging work is to build up suitable TLB refresh 
cycle. 
 
Zhipeng Gao and et al. [2] defined Logic File Name 
(LFN) and proposed the Small file Merge Strategy 
Based LFN (SMSBL). SMSBL is a new idea and a 
new perspective on hierarchy; it improves the 
correlation of small files in the same block of HDFS 
effectively based different file system hierarchy. This 
system solved small file problem in HDFS and has 
appreciable high hit rate of prefetching files. The 
proposed system needs to combine SMSBL with 
other great solution to improve performance of 
HDFS. 
 
A new structure for HDFS (HDFSX) is presented by 
Passent M EIKafrawy and et al. [3] to avoid higher 
memory usage, flooding network,requests overhead 
and centralized point of failure of the Name Node. In 
the other word, the performance analysis of the 
systems is needed to be developed. Tao Wang and et 
al. [4] defined a user access task. The correlations 
among the access tasks, applications and access files 
are constructed by the improved PLSA, and the 
research object is transferred from file-level to task-
level. Then, an effective strategy is proposed to 
improving small file problem in distributed file 
system. The strategy merges small files in term of 
access tasks and selects a prefetching targets based 
on the transition of the tasks. This strategy reduces 
the MDS workload and the request response delay. 
 
ParthGohil and et al. [5] focused on a MapReduce 
approach to handle small files. This approach 
improves the performance of Hadoop in handling of 
small files by ignoring the files whose size is larger 
than the block size of Hadoop. This also reduces the 
memory required by Name Node to store these files. 
So, it requires very less amount of memory than 
original HDFS but it requires some more memory 
than HAR and Sequence. 
 
Extended Hadoop Distributed File System (EHDFS) 
is used by Tanvi Gupta and et al. [6]. This paper 
focuses on increasing the ‘efficiency’ of the indexing 
mechanism for handling ‘Small files’ on HDFS. This 
also added the concept of ‘Avatar node’ that 
eliminates the single point of failure. 

Kyoungsoo Bok and et al. [7] proposed a distributed 
cache management scheme that considers cache 
metadata for efficient accesses of small files in 
Hadoop Distributed File Systems (HDFS). The 
proposed scheme can reduce the number of metadata 
managed by a Name Node. Many small files are 
merged and stored in a chunk. It also reduces 
unnecessary accesses by keeping the requested files 
using clients and the caches of data nodes and by 
synchronizing the metadata in client caches 
according to communication cycles. 
 
YonghauHuo and et al. [8] used additional hardware 
named SFS (Small File Server) between users and 
HDFS to solve the small file problem. This approach 
includes a file merging algorithm based on temporal 
continuity, an index structure to retrieve small files 
and a prefetching mechanism to improve the 
performance of file reading and writing. 
 

III. BACKGROUND THEORY 
 

Hierarchical clustering is a widely used data analysis 
tool. The idea is to build a binary tree of the data that 
successively merges similar groups of points. This 
tree provides a useful summary of the data. 
Hierarchical clustering only requires a measure of 
similarity between groups of data points. A 
hierarchical classification can be illustrated in several 
ways. The result of hierarchical clustering is a tree-
based representation of the objects, which is also 
known as dendrogram. The dendrogram is a 
multilevel hierarchy where clusters at one level are 
joined together to form the clusters at the next levels. 
This makes it possible to decide the level at which to 
cut the tree for generating suitable groups of a data 
objects. 
 
In data mining and statistics, hierarchical clustering is 
a method of cluster analysis which seeks to build a 
hierarchy of clusters. Strategies for hierarchical 
clustering generally fall into two types: 
agglomerative and divisive. In this system, the 
agglomerative hierarchical clustering is focused to 
merge many small files. A measure of dissimilarity 
between sets of observations is required in order to 
decide which clusters should be combined. In most 
methods of hierarchical clustering, this is achieved by 
use of an appropriate matric and a linkage criterion 



© JUN 201

IRE 1701310          ICONIC RESEARCH AND ENGINEERING JOURNALS

which specifies the dissimilarity of sets as a function 
of the pairwise distances of observations in the sets.
 
Agglomerative hierarchical clustering is a clustering 
algorithm that builds a cluster hierarchy from the 
bottom-up. It starts by adding a cluster for each of the 
data points to be clustered, followed by iterative pair
wise merging of clusters until only one cluster is left 
at the top of the hierarchy. The choice of clusters is 
decided to merge at each iteration base on a distance 
metric. An agglomerative clustering algorithm is 
described in the single-linkage clustering. The single
linkage clustering is the minimum distance between 
elements of each cluster. The dissimilarity values 
between one file and another have to be calculated in 
advance. In this paper, the Euclidean distance 
measure is used to cluster the small files. The 
clustering is based on distance matrix. Only the half 
of the matrix is needed because the distance between 
objects is symmetric. The Euclidean distance 
measure is: 
d(i, j) =

 ( x −  x +  x −  x +. . + x

 
This formula defines data objects i and j with a 
number of dimension equal to p. The distance 
between the two data objects d (i,j) is expressed as 
given the above formula xip is the measurement of 
object i in dimension p. 
 

IV.  PROPOSED SYSTEM ARCHITECTURE
 

HDFS has been adopted to support theInternet 
applications because of its reliable, scalableand low
cost storage capability. It is a file system thatsupports 
for cloud storage. However, it would be 
handle storage and access performance 
whenprocessing a huge number of small files.
system, small files will be clustered into a large fileto 
reduce Name Node memory consumption. Thesmall 
file is a file, whose size is less than 75% ofdefault 
block size (128MB). The proposed 
systemarchitecture is shown in figure 1.
 
In the proposed systemignored to merge if they are 
already larger than thethreshold value. This file is 
directly operated in theoriginal HDFS. The default 
threshold for this systemis set to (0.75) 75% of 

2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456

ICONIC RESEARCH AND ENGINEERING JOURNALS

which specifies the dissimilarity of sets as a function 
of the pairwise distances of observations in the sets. 

clustering is a clustering 
algorithm that builds a cluster hierarchy from the 

up. It starts by adding a cluster for each of the 
data points to be clustered, followed by iterative pair-
wise merging of clusters until only one cluster is left 

op of the hierarchy. The choice of clusters is 
decided to merge at each iteration base on a distance 
metric. An agglomerative clustering algorithm is 

linkage clustering. The single-
linkage clustering is the minimum distance between 
elements of each cluster. The dissimilarity values 
between one file and another have to be calculated in 
advance. In this paper, the Euclidean distance 
measure is used to cluster the small files. The 
clustering is based on distance matrix. Only the half 

the matrix is needed because the distance between 
objects is symmetric. The Euclidean distance 

−  x ) (1) 

This formula defines data objects i and j with a 
number of dimension equal to p. The distance 

the two data objects d (i,j) is expressed as 
is the measurement of 

PROPOSED SYSTEM ARCHITECTURE 

HDFS has been adopted to support theInternet 
applications because of its reliable, scalableand low-

storage capability. It is a file system thatsupports 
would be able to 

handle storage and access performance 
whenprocessing a huge number of small files. In this 
system, small files will be clustered into a large fileto 

Name Node memory consumption. Thesmall 
file is a file, whose size is less than 75% ofdefault 
block size (128MB). The proposed 
systemarchitecture is shown in figure 1. 

In the proposed systemignored to merge if they are 
ue. This file is 

directly operated in theoriginal HDFS. The default 
threshold for this systemis set to (0.75) 75% of 

default block size (128 MB). Ifthe user accesses the 
files, the system will check thesize of file.
 

Figure 1. Proposed system architectur
 

If the file is a small file, the system will
hierarchical structure accordingto the proposed
files merging algorithm. There are four main 
objectives to implement the small files 
merging.Firstly, the distance matrix 
betweencalculated by using Euclidean distance.
Secondly, the distance matrix is created by usin
previous distance results. Next, the small files are 
clustered byusing single-linkage. Finally, the distance 
matrix isupdated depend on the size of cluster and 
distance.The small files are nested in large
files. These larger clusters are joined until its size 
isless than the default block size. Thus, a small 
filebelongs to many clusters depend on its size 
andthreshold value. 
 
4.1 FILE MERGING OPERATION
In this system, file merging operation is proposed in 
Hadoop. The small files are merged into a large file. 
Name Node only maintains the metadata of merged 
files and does not save the original small files. File 
merging reduces the length of the metadata of many 
small files. The data access and latency can be 
improved. The proposed algorithm bases on 
agglomerative hierarchical clustering.
 

| ISSN: 2456-8880 

ICONIC RESEARCH AND ENGINEERING JOURNALS 182 

default block size (128 MB). Ifthe user accesses the 
files, the system will check thesize of file. 

 
Figure 1. Proposed system architecture 

If the file is a small file, the system will put it in the 
to the proposedsmall 

. There are four main 
objectives to implement the small files 
merging.Firstly, the distance matrix 

y using Euclidean distance. 
distance matrix is created by using 

distance results. Next, the small files are 
linkage. Finally, the distance 

matrix isupdated depend on the size of cluster and 
files are nested in large cluster of 

files. These larger clusters are joined until its size 
isless than the default block size. Thus, a small 
filebelongs to many clusters depend on its size 

FILE MERGING OPERATION 
merging operation is proposed in 

Hadoop. The small files are merged into a large file. 
Name Node only maintains the metadata of merged 
files and does not save the original small files. File 
merging reduces the length of the metadata of many 

e data access and latency can be 
improved. The proposed algorithm bases on 
agglomerative hierarchical clustering. 



© JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880  

IRE 1701310          ICONIC RESEARCH AND ENGINEERING JOURNALS 183 

The proposed technique focus on managing metadata 
in Name Node. This technique will solve memory 
consumption on Name Node. The different small 
files may have different size. So, the proposed 
algorithm will overcome the issues of concerned with 
Name Node according to the size of small files. The 
size of small files is the important factor to merge 
these files. The size of cluster should less than or 
equal to default block size. The proposed algorithm 
as follows. 
 
Algorithm 1: Merging Algorithm 
 
Input: Small files S = {F1, F2, F3… Fn} 
 
Output: Cluster hierarchies 
C= {C1, C2… Cm} 
 
Method: 
 
1) For each small file Fi € S Do 
2) For each small file Fj € S Do 
3) Calculate Euclidean distance matrix between 

small files De (Fi , Fj ) by using (1) 
4) End for 
5) End for 
6) Create distance matrix (C, S, De) 
7) C= {{F} | F € S}// initial each file cluster 
8) While sizeOfEachCluster |C| < 128MB Do 
9) {C, C’}= min De (Fi , Fj) {Ci , Cj}€C: Ci ≠Cj 

)//choose cluster by single-linkage 
10) If ( sizeOfCluster |C| + sizeOfCluster |C’| ) <= 

128MB Then 
11) C=({C } ∪ { C’})//clustering 
12) End if 
13) Update distance matrix (C, S, De) 
14) End while 
15) Return C 
 
4.2 CALCULATION STEPS 
The sample input of small files is shown in table 1 to 
trace the different sizes of small files in the proposed 
small files merging algorithm. The Euclidean 
distance matrix of small files is shown in table 2. The 
following are the calculation steps. 
 
 
 
 

Table 1. Sample input size of small files 
 

File  Size(MB) 
F1 40 
F2 10 

F3 50 
F4 20 
F5 60 

F6 30 
 

𝑑(𝐹1, 𝐹2) =  (|40 − 10|)  = 30 

𝑑(𝐹1, 𝐹3) =  (|40 − 50|)  = 10 

𝑑(𝐹1, 𝐹4) =  (|40 − 20|)  = 20 

𝑑(𝐹1, 𝐹5) =  (|40 − 60|)  = 20 

𝑑(𝐹1, 𝐹6) =  (|40 − 30|)  = 10 

 

𝑑(𝐹2, 𝐹3) =  (|10 − 50|)  = 40 

𝑑(𝐹2, 𝐹4) =  (|10 − 20|)  = 10 

𝑑(𝐹2, 𝐹5) =  (|10 − 60|)  = 50 

𝑑(𝐹2, 𝐹6) =  (|10 − 30|)  = 20 

 

𝑑(𝐹3, 𝐹4) =  (|50 − 20|)  = 30 

𝑑(𝐹3, 𝐹5) =  (|50 − 60|)  = 10 

𝑑(𝐹3, 𝐹6) =  (|50 − 30|)  = 20 

𝑑(𝐹4, 𝐹5) =  (|20 − 60|)  = 40 

𝑑(𝐹4, 𝐹6) =  (|20 − 30|)  = 10 

 

𝑑(𝐹5, 𝐹6) =  (|60 − 30|)  = 30 

 
Table 2. Euclidean distance matrix of six small files 
(|C|=6) 
 

 F1 F2 F3 F4 F5 F6 
F1 0 30 10 20 20 10 

F2 30 0 40 10 50 20 
F3 10 40 0 20 10 20 

F4 20 10 20 0 40 10 
F5 20 50 10 40 0 30 
F6 10 10 20 20 30 0 

 
The minimize pairs are F1-F3, F2-F4, F3-F5and F4-
F6 at distance 10. Firstly, F1 and F3 aremerged into a 
single cluster among them called "F1-F3". Then the 
distance from this new compoundcluster is computed 
to all other files. 



© JUN 201

IRE 1701310          ICONIC RESEARCH AND ENGINEERING JOURNALS

Size of cluster (F1-F3) = 90 
 

𝑑(𝐹1 − 𝐹3, 𝐹2) =  (|90 − 10|)  = 80

𝑑(𝐹1 − 𝐹3, 𝐹4) =  (|90 − 20|)  = 70

𝑑(𝐹1 − 𝐹3, 𝐹5) =  (|90 − 60|)  = 30

𝑑(𝐹1 − 𝐹3, 𝐹6) =  (|90 − 30|)  = 60

 
Table 3. After merging F1 with F3 into a new
Cluster (|C|=5) 
 

 F1-F3 F2 F4 F5 

F1-F3 0 80 70 30 
F2 80 0 10 50 
F4 70 10 0 40 

F5 30 50 40 0 
F6 60 10 20 30 

 
The minimize pairs are F2-F4 and F2
10. So, F2 and F4 are merged into a newcluster called 
"F2-F4". Then the distance from this new compound 
cluster is computed to all other filesand clusters to get 
a new distance matrix. 
 
Size of cluster (F1-F3) = 90 
Size of cluster (F2-F4) = 30 

𝑑(𝐹2 − 𝐹4, 𝐹1 − 𝐹3) =  (|30 − 90|)

𝑑(𝐹2 − 𝐹4, 𝐹5) =  (|30 − 60|)  = 30

𝑑(𝐹2 − 𝐹4, 𝐹6) =  (|30 − 30|)  = 0 

 
Table 4. After merging F1 with F3 and F2 with F4 
into a new cluster (|C|=4) 
 

 F1-F3  F2-F4 F5 
F1-F3  0 60 30 
F2-F4 60 0 30 

F5 30 30 0 
F6 60 0 30 

 
Now, the minimize pairs is F2-F4-F6 at
So, F2-F4 and F6 are merged into acluster called "F2
F4-F6". Then the distance fromthis new compound 
cluster is computed to all otherfiles and clusters to get 
a new distance matrix. 
 
Size of cluster (F1-F3) = 90 
Size of cluster (F2-F4-F6) = 60 

2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456

ICONIC RESEARCH AND ENGINEERING JOURNALS

= 80 

= 70 

= 30 

= 60 

Table 3. After merging F1 with F3 into a new 

 F6 

 60 
 10 
 20 

30 
 0 

F4 and F2-F6 atdistance 
into a newcluster called 

new compound 
cluster is computed to all other filesand clusters to get 

|)  = 60 

= 30 

 

Table 4. After merging F1 with F3 and F2 with F4 

 F6 
 60 
 0 

 30 
 0 

F6 atdistance 0. 
F4 and F6 are merged into acluster called "F2-

F6". Then the distance fromthis new compound 
cluster is computed to all otherfiles and clusters to get 

𝑑(𝐹2 − 𝐹4 − 𝐹6, 𝐹1 − 𝐹3) = (

 

𝑑(𝐹2 − 𝐹4 − 𝐹6, 𝐹5) =  (|60 −

 
Table 5. After merging F1 with F3 and F2 
With F6 into a new cluster (|C|=3)
 

 F1-F3  F2-F4
F1-F3  0 30 
F2-F4-F6 30 0 

F5 30 0 
 
Now, the minimize pairs is F2-F4
So, F2-F4- F6 and F5 are merged into acluster called 
"F2-F4-F6-F5". Then the distance fromthis new 
compound cluster is computed to all otherfiles and 
clusters to get a new distance matrix.
 
Size of cluster (F1-F3) = 90 
Size of cluster (F2-F4-F6-F5) = 120
𝑑(𝐹2 − 𝐹4 − 𝐹6 − 𝐹5, 𝐹1 − 𝐹3)

(|120 − 90|) =30 

 
Table 6. After merging F1 with F3 and F2 
with F5 into a new cluster (|C|=2)
 

 F1-F3  
F1-F3 0 

F2-F4-F6-F5 30 
 

Figure 2. File merging dendrogram of six small files
 

Finally, the file merging dendrogram of smallfiles is 
shown in figure 2. According to the 
proposedalgorithm, the sample input from table 1 
will havetwo clusters output. 
 
 
 
 

| ISSN: 2456-8880 

ICONIC RESEARCH AND ENGINEERING JOURNALS 184 

(|60 − 90|) =30 

− 60|)  = 0 

Table 5. After merging F1 with F3 and F2 -F4 
With F6 into a new cluster (|C|=3) 

F4-F6 F5 
30 
0 

0 

F4-F6-F5 atdistance 0. 
F6 and F5 are merged into acluster called 
F5". Then the distance fromthis new 

compound cluster is computed to all otherfiles and 
clusters to get a new distance matrix. 

F5) = 120 
) =

Table 6. After merging F1 with F3 and F2 -F4-F6 
with F5 into a new cluster (|C|=2) 

F2-F4-F6-F5 
30 

0 

 
Figure 2. File merging dendrogram of six small files 

the file merging dendrogram of smallfiles is 
shown in figure 2. According to the 
proposedalgorithm, the sample input from table 1 



© JUN 201

IRE 1701310          ICONIC RESEARCH AND ENGINEERING JOURNALS

V. EVALUATION 
 

The proposed algorithm will be implemented and 
tested in simulated cloud environment. In this paper, 
the strategy of small files merging will reduce the 
usage of metadata stored on Name Node
processing time will also be optimized by comparing 
the original Hadoop and existing approach. Client 
will achieve better performance on access
files into HDFS. 
 
To evaluate the small file merging algorithm, Web 
Yahoo Web Scope dataset [10] is used. This dataset 
consists of Language Data, Graphic and Social Data, 
Rating and Classification Data, Competition Data, 
Advertising and Market Data and Computing System 
Data. Among them, small files sizes are used to trace 
the proposed method. 
 
In the proposed approach, file size having greater 
than threshold which is ignored to merge. In the 
evaluation, the main memory usage is measured by 
different file ranges. The metadata of each file 
consumes 150 bytes of the memory of 
Firstly, there are two clusters for 6 files. The size of 
these files range from 10MB to 60MB. The size of 
cluster 1 and cluster 2 are 90MB and 120MB 
respectively. So, the memory of Name Node
needed 300 bytes to store the metadata of two 
clusters. The original HDFS takes 900 bytes to store 
the metadata of 6 small files into Name Node
 
Secondly, there are three clusters for 8 files. The size 
of these files range from 14MB to 81MB. The size of 
cluster 1, cluster 2 and cluster 3 are 97MB, 90MB 
and 81MB respectively. So, the memory of 
Node is only needed 450 bytes to store the metadata 
of three clusters. The original HDFS takes 1200 bytes 
to store the metadata of 8 small files into 
Node. 
 
Finally, there is only one cluster for 11 files. The size 
of these files range from 14KB to 14MB. The size of 
cluster is 50.857MB. So, the memory of 
is only needed 150 bytes. The original HDFS takes 
1650 bytes to store the metadata of 11 small files into 
Name Node. If the numbers of small files increase, 
the memory of Name Node usage increases. It is 
depicted in figure 3. 

2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456

ICONIC RESEARCH AND ENGINEERING JOURNALS

The proposed algorithm will be implemented and 
t. In this paper, 

the strategy of small files merging will reduce the 
Name Node. The 

processing time will also be optimized by comparing 
the original Hadoop and existing approach. Client 
will achieve better performance on accessing small 

To evaluate the small file merging algorithm, Web 
Yahoo Web Scope dataset [10] is used. This dataset 
consists of Language Data, Graphic and Social Data, 
Rating and Classification Data, Competition Data, 

Data and Computing System 
Data. Among them, small files sizes are used to trace 

In the proposed approach, file size having greater 
than threshold which is ignored to merge. In the 
evaluation, the main memory usage is measured by 
different file ranges. The metadata of each file 
consumes 150 bytes of the memory of Name Node. 

ere are two clusters for 6 files. The size of 
these files range from 10MB to 60MB. The size of 
cluster 1 and cluster 2 are 90MB and 120MB 

Name Node is only 
needed 300 bytes to store the metadata of two 

HDFS takes 900 bytes to store 
Name Node. 

Secondly, there are three clusters for 8 files. The size 
of these files range from 14MB to 81MB. The size of 
cluster 1, cluster 2 and cluster 3 are 97MB, 90MB 

ly. So, the memory of Name 
is only needed 450 bytes to store the metadata 

of three clusters. The original HDFS takes 1200 bytes 
to store the metadata of 8 small files into Name 

Finally, there is only one cluster for 11 files. The size 
files range from 14KB to 14MB. The size of 

cluster is 50.857MB. So, the memory of Name Node 
is only needed 150 bytes. The original HDFS takes 
1650 bytes to store the metadata of 11 small files into 

. If the numbers of small files increase, 
usage increases. It is 

 

Figure 3. Name Node Memory Consumption of
Different file sizes

 
VI. CONCLUSION

 
In this paper, the small file problem of HDFSis 
focused. By eliminating the number of small filesinto 
a large file by the proposed 
agglomerativehierarchical merging approach, the 
memoryconsumption of Name Node
reduced. Theperformance of the proposed system can 
be betterthan the original HDFS. Furthermore, this 
paperprovides a new way of solving for Hadoop in
storageof massive small files. As a future work, 
manyexperiments have to be done in order to get 
theefficiency of proposed algorithm on 
HDFS.Moreover, a prefetching mechanism will 
beconsidered as a future work to retrieve small 
filesfrom the merged large file when the clients 
accessthese small files. 
 

REFERENCES
 

[1] B. Meng, W.B. Guo, G.S. Fan and N.W. Qian, “A 
novel approach for efficient accessing of small 
files in HDFS: TLB-Map File
Engineering, Artificial Intelligence, Networking 
and Parallel/Distributed Computing (SNPD), 
2016 17th IEEE/ACIS International Conference 
on (pp. 681-686). 

[2] Z. Gao, Y. Qin and K. Niu, “An effective merge 
strategy based hierarchy for improving small file 
problem on HDFS”. In Cloud Computing and 
Intelligence Systems (CCIS), 2016 4
International Conference on (pp. 327

| ISSN: 2456-8880 

ICONIC RESEARCH AND ENGINEERING JOURNALS 185 

 
Figure 3. Name Node Memory Consumption of 

Different file sizes 

CONCLUSION 

In this paper, the small file problem of HDFSis 
focused. By eliminating the number of small filesinto 

by the proposed 
agglomerativehierarchical merging approach, the 

Name Node in HDFS is 
reduced. Theperformance of the proposed system can 
be betterthan the original HDFS. Furthermore, this 
paperprovides a new way of solving for Hadoop in 
storageof massive small files. As a future work, 
manyexperiments have to be done in order to get 
theefficiency of proposed algorithm on 
HDFS.Moreover, a prefetching mechanism will 
beconsidered as a future work to retrieve small 

file when the clients 

REFERENCES 

B. Meng, W.B. Guo, G.S. Fan and N.W. Qian, “A 
novel approach for efficient accessing of small 

Map File”. In Software 
Engineering, Artificial Intelligence, Networking 

Parallel/Distributed Computing (SNPD), 
2016 17th IEEE/ACIS International Conference 

Z. Gao, Y. Qin and K. Niu, “An effective merge 
strategy based hierarchy for improving small file 
problem on HDFS”. In Cloud Computing and 

Systems (CCIS), 2016 4th 
International Conference on (pp. 327-331). 



© JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880  

IRE 1701310          ICONIC RESEARCH AND ENGINEERING JOURNALS 186 

[3] P.M. ElKafrawy, A.M. Sauber, and M.M. Hafez, 
“HDFSX: Big data Distributed File System with 
small files support”. In Computer Engineering 
Conference (ICENCO), 2016 12th International 
(pp. 131-135). 

[4] T. Wang, S. Yao, Z. Xu, L. Xiong, X. Gu and X. 
Yang, “An effective strategy for improving small 
file problem in distributed file system”. 
InInformation Science and Control Engineering 
(ICISCE), 2015 2nd International Conference 
on(pp. 122-126). 

[5] P. Gohil, B. Panchal, and J.S. Dhobi, “A novel 
approach to improve the performance of Hadoop 
in handling of small files”. In Electrical,Computer 
and Communication Technologies (ICECCT), 
2015 IEEE International Conferenceon (pp. 1-5). 

[6] T. Gupta, and S.S. Handa, “An Extended HDFS 
with an AVATAR NODE to handle both small 
files and to eliminate single point of failure”. In 
Soft Computing Techniques and Implementations 
(ICSCTI), 2015 InternationalConference on (pp. 
67-71). 

[7] K. Bok, J. Lim, H. Oh, and J. Yoo, “An efficient 
cache management scheme for accessing small 
files in Distributed File Systems”. In Big Data 
and Smart Computing (BigComp), 2017 IEEE 
International Conference on (pp. 151-155). 

[8] Y. Huo, Z. Wang, X. Zeng, Y. Yang, W. Li and 
C. Zhong, “SFS: A massive small file processing 
middleware in Hadoop”. In Network Operations 
and Management Symposium (APNOMS), 2016 
18th Asia-Pacific (pp. 1-4). 

[9] G. Prasad, “An Efficient Approach to Optimize 
the Performance of Massive Small Files in 
Hadoop MapReduce Framework”, 2017. 

[10] https://webscope.sanbox.yahoo.com. 


