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Abstract- In this paper, we first consider parabolic 

advection-diffusion problem. And, we study a 

characteristic Galerkin method for non- stationary 

advection diffusion equation. Then, we prove the 

stability and convergency of these method. 
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convergency, characteristic Galerkin method. 

 

I. INTRODUCTION 

 

We assume that  is a bounded domain in R
n, 

n=2, 

3….with Lipschitz boundary and consider the 

parabolic initial boundary value problem: For each 

t [0,T],  we can find u (t) such that  

 

 

T

T

0

u
Lu f in Q (0,T)

t

u 0 on (0,T) , (1)

u u on , for t 0,

 
     


    


  


   

Where L is the second-order elliptic operator  

n

i i 0

i 1

Lw w D (b w) a w.(2)


      

We consider the case in which
L ( )

b  
 = . 

 The "simplified" form considered in (2) is a 

perfect alias of the most general situation in which L 

is given by 
n n

i ij j i i 0

i, j 1 i 1

Lz D (a D z) D (b z) a z,
 

    

whenever the diffusion coefficients 
ija  are smaller 

than the adventive ones ib ,i, j 1,...,n. without 

loss of generality, we suppose that b is normalized to 

L ( )
b 1. 

  

We assume that there exist two positive constants 0

and 1 such that  

0 0 1

1
0 (x) div b(x) a (x)

2
          

For almost every x .  

The parabolic advection-diffusion problem (1) can be 

reformulated in a weak form as follows: 

Given 
2

Tf L (Q )  and 2

0u L ( ),   find

2 0 2u L (0,T;V) C ([0,T];L ( )) I  such that 

     

0

d
u(t), v a u(t), v f (t), v , v V

(3)dt

u(0) u ,


    


 

 Where 1

0V H ( )  .    ) where
1

0V H ( ).   

We write the semi-discrete (continuous in time) 

approximation of the advection-diffusion initial 

boundary value problem (3)

h h h h h

h h

h 0,h

d
(u (t), v ) a(u (t), v ) (f (t), v ) ,

dt

v V , t (0,T) (4)

u (0) u .


  


   





  

 Here 1

h 0V H ( )   is a suitable finite-dimensional 

space and 
0,h hu V  is an approximation of the 

initial datum 0u .  

 

II. A CHARACTERISTIC GALERKIN 

METHOD 

 

We define the characteristic lines associated to a 

vector field b b(t, x).  Being given x  and 

s [0,T],  they are the vector functions 
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X X(t;s, x) such that

 
dX

(t;s, x) b t,X(t;s, x) , t (0,T)
(5)dt

X(s;s, x) x.


  


 

 (3.32) 

The existence and uniqueness of the characteristic 

lines for each choice of s and x hold under suitable 

assumptions on b, for instance b continuous in 

[0,T]    and Lipschitz continuous in , uniformly 

with respect to t [0,T].  

 From a geometric point of view, X(t;s, x)  

provides the position at time t of a particle which has 

been driven by the field b and that occupied the 

position x at the time s. The uniqueness result gives 

in particular that 

 X t;s,X(s; , x) X(t; , x)(6)  
 

For each  t,s, [0,T]  and x .  (1)  

Hence 

 X t;s,X(s; t, x) X(t; t, x) x,   

i.e., for fixed t and s, the inverse function of 

x X(s; t, x)  is given by y X(t;s, y).  

Therefore, we define

 

 

 

u (t, y) u t,X(t;0, y)
(7)

or equivalenty, u (t, x) u t,X(0; t, x) .

 


 

  

From (5), it follows that 

   
n

i
i

i 1

u u dX
(t, y) t,X(t;0, y) D u t,X(t;0, y) (t;0, y)

t t dt

 
 

 


  
u

b u t,X(t;0, y) .(8)
t

 
   

 
  

We can rewrite the non-stationary advection-

diffusion equation as  

0

u
u (divb a ) u f

t


   


      (9)  InQT   

The time derivative is approximated by the backward 

Euler scheme, 

 
   n 1 n

n 1

u t , y u t , yu
t , y .(10)

t t








 
  

If we set  n 1y X 0; t , x ,  we have 

     n 1 n 1 n 1 n 1u t , y u t ,X(0; t , x) u t , x .    

 

From (7), we have 

    n n nu t , y u t ,X(t ;0, y)  

     n n n 1 n n 1X t ;0, y X t ;0,X(0; t , x) X t ; t , x .  

Then we obtain
 

 
   n 1 n n n 1

n 1 n 1

u t , x u t ,X(t ; t , x)u
t ,X(0; t , x) .

t t

 

 




 
We denote a suitable approximation of 

 n n 1X t ; t , x
 by 

nX (x), n 0,1,..., N 1,  us 

can write the following implicit discretization scheme 

for problem (  ).  

If we set 
0

0u u ,  then for n 0,1,..., N 1   we 

solve 

   
n 1 n n

n 1 n 1

n 1 0 n 1

u u X
u div b t a u f t

t


 

 


     

o

In .                                               (11) 

A boundary condition has to be imposed on .  We 

consider the homogeneous Dirichlet condition 

n 1u | 0.

   

 We choose a backward Euler scheme also 

for discretizing 

 

   n 1 n 1

dX
t; t , x b t,X(t; t , x) .(12)

dt
    

   
n 1 n 1

n n

t t

n 1 n 1
t t

dX
t; t , x dt b t;X(t; t , x) dt.

dt

 

    

This produces the following approximation of 

 n n 1X t ; t , x :  

  n

(1) n 1X (x) x b t , x t.(13)     

Here 
n

(1)X  is a second order approximation of 

 n n 1X t ; t , x ,  since we are integrating (12) on the 

time interval  n n 1t , t ,  which has length t .  

     A more accurate scheme is provided by the second 

order Runge-Kutta scheme,  

n

(2) n 1 2 n 1

t
X (x) x b t , x b(t , x) t, (14)

2
 

 
    

 
 (3.41) 

Which gives a third order approximation of 

 n n 1X t ; t , x .
 

 It is necessary to verify that n

(i)X (x)  for 

each x , i 1,2,   so that we can compute 
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n n

(i)u X .o we assume that b(t, x) 0 for each 

t [0,T]  and x .   

As a consequence, 
n

(i)X (x) x  for 

x , i 1, 2.    If we denote by *x   the point 

having minimal distance from x , we have  

 n

(1) n 1X (x) x b t , x t,    

    * *

n 1 n 1b t ,x b t ,x t, x      

   *

n 1 n 1n *

(1) *
x,x*

x x*

b t , x b t , x
X (x) x sup t x x

x x

 





   



 

   *

n 1 Lip( )
b t x x t, 

    

Where
l 2

1 2

1 2

Lip( )
x ,x 1 2

x x

g(x ) g(x )
g sup .

x x








 

We assume that 
Lip( )t [0,T]

max b(t) t 1.(15)

   (3.42) 

Then, we have 

n *

(1)X (x) x x x ,   For each 

n 0,1,..., N 1.   

It follows that 
n

(1)X (x)   for each x .  a 

similar result holds for n

(2)X (x). if we suppose that  

0div b(t, x) a (x) 0   (16) 

For each t [0,T]  and almost every x ,  

stability is proven. In fact, multiplying (11) by 
n 1u 

 

and integrating over  

, we obtain 

 n 1 n n

(1) n 1 n 1 n 1
u u X

u dx u u dx
t



  

 


 

 
o

 

     
2

n 1 n 1

n 1 0 n 1divb t a u dx f t u dx. 

 
 

     
By using Gauss-divergence theorem, we have 

   
2

n 1 n n n 1 n 1 n 1

(1)u dx u X u dx t u u dx   

  
      o

    
2

n 1 n 1

n 1 0 n 1t divb(t ) a u dx t f t u dx. 

 
 

    
By using Hölder's inequality, we have 

  
2 2

n 1 n 1 n n n 1

(1) n 1 00 0 0 0
u t u u X t f t u .  

     o

  

                                                                              (17) 

From (15), it follows that the map n

(1)X  is injective. 

Therefore, we introduce the change of variable 
n

(1)y X (x),  and setting  
1

n n

(1) (1)Y (y) X (y),


  we 

have 

    n
(1)

22
n n n n

(1) (1)
X ( )

u X dx u X (x) dx
 

 o

   n
(1)

122
n n n n n

(1) (1) (1)0 X ( )
u X u (y) det JacX Y (y) dy.(18)




 o o

On the other hand, from (13), we have

    n

(1) n 1det JacX (x) 1 t Jacb t    

   1 n 1 L ( )
1 tC Jacb t

 
   

 

  1 L ( )t [0,T]
1 tC max Jacb t

 
   

  
*

1 11 C t     

  
1 21 C C  0  

For almost every x ,  provided that    

*

1 2t C ,(19)    

Where *

1 L ( )t [0,T]
max Jacb(t)  

  and

1

1 2 1C 0,0 C C    are suitable constants. From 

(18), we have 

   n
(1)

2 12
n n n *

(1) 1 10 X ( )
u X u (y) 1 C t dy




   o  

 
2 2

n n * n

(1) 3 10 0
u X 1 tC u .(20)  o  

Therefore condition (19) implies (15) (if 2C is small 

enough).  

From (17), we finally obtain for each 

n 0,1,..., N 1, 

 

2
n 1

n 1 n n0
(1) n 1n 1 00 0

0

u
u t u X t f t .

u








    o

by using Poincarè's inequality, we have 

 n 1 n 1 n n

(1) n 1 00 0 0
u t u u X t f t 

     o

     
1

1
2 2 2n 1 2 2 n 1 * n2

3 1 n 1 00 0 0
u t u 1 C t u t f t 

         

     
n 1 n 1 kn 1

* *2 2
3 1 0 3 1 k0 0

k 1

1 C t u t 1 C t f t
  



       
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  *3
0 n 1 1 n 10 0t [0,T]

C
u t max f (t) exp t .(21)

2
 



 
   

  
 

Therefore 
2L ( ) -stability holds independently of  .  

 The convergence of 
nu  to  nu t  is proven 

in a similar way. Defining the error function  

 n n

nu t u , ò  from (11), we obtain for 

n 0,1,..., N 1   

    

  

n 1 n n n

n 1 n (1) (1)

n 1

n 1

u t u t X X

t

u t









  



  

o oò ò

ò

     n 1

n 1 0 n 1 n 1divb t a u(t ) f t ,

     ò

 

   
 

      

n

n 1 n (1)

n 1

n 1 0 n 1 n 1

u t u t X
u t

t

div b t a u t f t





  






  

o

  
n 1 n n

(1) n 1 n 1

n 1 0

X
divb t a .

t



 




   



oò ò
ò ò

 

Since 

          n 1 n 1 n 1 0 n 1 n 1

u
t u t div b t a u t f t

t
    


     


and

       n 1 n 1 n 1 n 1

u u
t t b t u t .

t t
   

  
     
  

 

Then, we obtain 

 
n 1 n n

(1) n 1 n 1

n 1 0

X
divb t a

t



 




    

oò ò
ò ò

 

   
     

n

n 1 n (1)

n 1 n 1 n 1

u t u t X u
t b t u t (22)

t t



  

 
   

 

o

 in  .  

Since 

   n 2

(1) n n 1X (x) X t ; t , x O ( t) ,    

it shows that the right hand side in (22) is O ( t).  

Therefore convergence follows from (21) applied to 

n ,ò  recalling that 
0 0.ò  

 

 

III. CONCLUSION 

 

This paper has presented semi- discrete 

approximation of the parabolic problem. And the 

stability and convergency of non- stationary 

advection- diffusion equation is solved by using 

characteristic Galerkin method. 
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