Convergence for Non-Stationary Advection- Diffusion Equation

KHAING KHAING SOE WAI ${ }^{1}$, SAN SAN TINT ${ }^{2}$
${ }^{1,2}$ Department of Engineering Mathematics, Technological University, Myitkyina, Myanmar

Abstract

In this paper, we first consider parabolic advection-diffusion problem. And, we study a characteristic Galerkin method for non- stationary advection diffusion equation. Then, we prove the stability and convergency of these method.

Indexed Terms- Advection- Diffusion Equation, convergency, characteristic Galerkin method.

I. INTRODUCTION

We assume that Ω is a bounded domain in $\mathrm{R}^{\mathrm{n},} \mathrm{n}=2$, 3....with Lipschitz boundary and consider the parabolic initial boundary value problem: For each $t \in[0, T]$, we can find $u(t)$ such that

$$
\left.\begin{array}{rl}
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{Lu} & =\mathrm{f} \quad \text { in } \quad \mathrm{Q}_{\mathrm{T}}=(0, \mathrm{~T}) \times \Omega \\
\mathrm{u} & =0 \text { on } \quad \sum_{\mathrm{T}}=(0, \mathrm{~T}) \times \partial \Omega, \\
\mathrm{u} & =\mathrm{u}_{0} \text { on } \Omega, \text { for } \mathrm{t}=0,
\end{array}\right\}(1)
$$

Where L is the second-order elliptic operator
$L w=-\varepsilon \Delta w+\sum_{i=1}^{n} D_{i}\left(b_{i} w\right)+a_{0} w .(2)$
We consider the case in which $\varepsilon=\|\mathrm{b}\|_{L^{\circ}(\Omega)}$.
The "simplified" form considered in (2) is a perfect alias of the most general situation in which L is given by $L z=-\sum_{i, j=1}^{n} D_{i}\left(a_{i j} D_{j} z\right)+\sum_{i=1}^{n} D_{i}\left(b_{i} z\right)+a_{0} z$, whenever the diffusion coefficients a_{ij} are smaller than the adventive ones $\mathrm{b}_{\mathrm{i}}, \mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{n}$. without loss of generality, we suppose that b is normalized to $\|b\|_{L^{\infty}(\Omega)}=1$.

We assume that there exist two positive constants μ_{0} and μ_{1} such that

$$
0<\mu_{0} \leq \mu(x)=\frac{1}{2} \operatorname{div} b(x)+a_{0}(x) \leq \mu_{1}
$$

For almost every $\mathrm{x} \in \Omega$.
The parabolic advection-diffusion problem (1) can be reformulated in a weak form as follows:
Given $f \in L^{2}\left(Q_{T}\right) \quad$ and $\quad u_{0} \in L^{2}(\Omega)$, find $\mathrm{u} \in \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{V}) \mathrm{I} \mathrm{C}^{0}\left([0, \mathrm{~T}] ; \mathrm{L}^{2}(\Omega)\right)$ such that

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{u}(\mathrm{t}), \mathrm{v})+\mathrm{a}(\mathrm{u}(\mathrm{t}), \mathrm{v}) & =(\mathrm{f}(\mathrm{t}), \mathrm{v}), \forall \mathrm{v} \in \mathrm{~V} \tag{3}\\
\mathrm{u}(0) & =\mathrm{u}_{0},
\end{array}\right\}
$$

Where $\mathrm{V}=\mathrm{H}_{0}^{1}(\Omega)$.
We write the semi-discrete (continuous in time) approximation of the advection-diffusion initial boundary value problem (3)

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{u}_{\mathrm{h}}(\mathrm{t}), \mathrm{v}_{\mathrm{h}}\right)+\mathrm{a}\left(\mathrm{u}_{\mathrm{h}}(\mathrm{t}), \mathrm{v}_{\mathrm{h}}\right)=\left(\mathrm{f}(\mathrm{t}), \mathrm{v}_{\mathrm{h}}\right), \\
& \forall \mathrm{v}_{\mathrm{h}} \in \mathrm{~V}_{\mathrm{h}}, \mathrm{t} \in(0, \mathrm{~T}) \tag{4}\\
& \quad \mathrm{u}_{\mathrm{h}}(0)=\mathrm{u}_{0, \mathrm{~h}} .
\end{align*}
$$

Here $V_{h} \subset H_{0}^{1}(\Omega)$ is a suitable finite-dimensional space and $u_{0, \mathrm{~h}} \in \mathrm{~V}_{\mathrm{h}}$ is an approximation of the initial datum u_{0}.

II. A CHARACTERISTIC GALERKIN METHOD

We define the characteristic lines associated to a vector field $b=b(t, x)$. Being given $x \in \bar{\Omega}$ and $\mathrm{s} \in[0, \mathrm{~T}]$, they are the vector functions

$$
\left.\begin{array}{l}
\mathrm{X}=\mathrm{X}(\mathrm{t} ; \mathrm{s}, \mathrm{x}) \text { such } \\
\frac{\mathrm{dX}}{\mathrm{dt}}(\mathrm{t} ; \mathrm{s}, \mathrm{x})=\mathrm{b}(\mathrm{t}, \mathrm{X}(\mathrm{t} ; \mathrm{s}, \mathrm{x})), \quad \mathrm{t} \in(0, \mathrm{~T}) \tag{5}\\
\mathrm{X}(\mathrm{~s} ; \mathrm{s}, \mathrm{x})=\mathrm{x} .
\end{array}\right\}
$$

that

The existence and uniqueness of the characteristic lines for each choice of s and x hold under suitable assumptions on b, for instance b continuous in $[0, \mathrm{~T}] \times \bar{\Omega}$ and Lipschitz continuous in $\bar{\Omega}$, uniformly with respect to $t \in[0, T]$.

From a geometric point of view, $\mathrm{X}(\mathrm{t} ; \mathrm{s}, \mathrm{x})$ provides the position at time t of a particle which has been driven by the field b and that occupied the position x at the time s . The uniqueness result gives in particular that

$$
\mathrm{X}(\mathrm{t} ; \mathrm{s}, \mathrm{X}(\mathrm{~s} ; \tau, \mathrm{x}))=\mathrm{X}(\mathrm{t} ; \tau, \mathrm{x})(6)
$$

For each $\mathrm{t}, \mathrm{s}, \tau \in[0, \mathrm{~T}]$ and $\mathrm{x} \in \bar{\Omega}$.
Hence
$X(t ; s, X(s ; t, x))=X(t ; t, x)=x$,
i.e., for fixed t and s, the inverse function of $\mathrm{x} \rightarrow \mathrm{X}(\mathrm{s} ; \mathrm{t}, \mathrm{x})$ is given by $\mathrm{y} \rightarrow \mathrm{X}(\mathrm{t} ; \mathrm{s}, \mathrm{y})$.
Therefore, we define

$$
\begin{equation*}
\overline{\mathrm{u}}(\mathrm{t}, \mathrm{y})=\mathrm{u}(\mathrm{t}, \mathrm{X}(\mathrm{t} ; 0, \mathrm{y})) \tag{7}
\end{equation*}
$$

or equivalenty, $u(t, x)=\bar{u}(t, X(0 ; t, x))$.
From (5), it follows that

$$
\begin{gathered}
\frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{t}}(\mathrm{t}, \mathrm{y})=\frac{\partial \mathrm{u}}{\partial \mathrm{t}}(\mathrm{t}, \mathrm{X}(\mathrm{t} ; 0, \mathrm{y}))+\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}} \mathrm{u}(\mathrm{t}, \mathrm{X}(\mathrm{t} ; 0, \mathrm{y})) \frac{\mathrm{dX}}{\mathrm{i}} \\
\mathrm{dt} \\
(\mathrm{t} ; 0, \mathrm{y}) \\
=\left(\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{b} \cdot \nabla \mathrm{u}\right)(\mathrm{t}, \mathrm{X}(\mathrm{t} ; 0, \mathrm{y})) \cdot(8)
\end{gathered}
$$

We can rewrite the non-stationary advectiondiffusion equation as

$$
\begin{equation*}
\frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{t}}-\varepsilon \overline{\Delta \mathrm{u}}+\left(\overline{\operatorname{divb}}+\overline{\mathrm{a}}_{0}\right) \overline{\mathrm{u}}=\overline{\mathrm{f}} \tag{9}
\end{equation*}
$$

The time derivative is approximated by the backward Euler scheme,
$\frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{t}}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{y}\right) \cong \frac{\overline{\mathrm{u}}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{y}\right)-\overline{\mathrm{u}}\left(\mathrm{t}_{\mathrm{n}}, \mathrm{y}\right)}{\Delta \mathrm{t}}$.
If we set $y=X\left(0 ; t_{n+1}, x\right)$, we have
$\overline{\mathrm{u}}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{y}\right)=\overline{\mathrm{u}}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{X}\left(0 ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)\right)=\mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)$.

From (7), we have
$\bar{u}\left(t_{n}, y\right)=u\left(t_{n}, X\left(t_{n} ; 0, y\right)\right)$
$X\left(t_{n} ; 0, y\right)=X\left(t_{n} ; 0, X\left(0 ; t_{n+1}, x\right)\right)=X\left(t_{n} ; t_{n+1}, x\right)$.
Then we obtain
$\frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{t}}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{X}\left(0 ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)\right) \cong \frac{\mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)-\mathrm{u}\left(\mathrm{t}_{\mathrm{n}}, \mathrm{X}\left(\mathrm{t}_{\mathrm{n}} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)\right)}{\Delta \mathrm{t}}$.
We denote a suitable approximation of
$\mathrm{X}\left(\mathrm{t}_{\mathrm{n}} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)$ by $\mathrm{X}^{\mathrm{n}}(\mathrm{x}), \mathrm{n}=0,1, \ldots, \mathrm{~N}-1$, us can write the following implicit discretization scheme for problem ().
If we set $u^{0}=u_{0}$, then for $n=0,1, \ldots, N-1$ we solve
$\frac{\mathrm{u}^{\mathrm{n}+1}-\mathrm{u}^{\mathrm{n}}{ }_{\mathrm{o}} \mathrm{X}^{\mathrm{n}}}{\Delta \mathrm{t}}-\varepsilon \Delta \mathrm{u}^{\mathrm{n}+1}+\left[\operatorname{div} \mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{a}_{0}\right] \mathrm{u}^{\mathrm{n}+1}=\mathrm{f}\left(\mathrm{t}_{\mathrm{n}+1}\right)$
$\operatorname{In} \Omega$.
A boundary condition has to be imposed on $\partial \Omega$. We consider the homogeneous Dirichllet condition $\left.\mathbf{u}^{\mathrm{n}+1}\right|_{\partial \Omega}=0$.

We choose a backward Euler scheme also for discretizing
$\frac{\mathrm{dX}}{\mathrm{dt}}\left(\mathrm{t} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)=\mathrm{b}\left(\mathrm{t}, \mathrm{X}\left(\mathrm{t} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)\right)$.
$\int_{\mathrm{t}_{\mathrm{n}}}^{\mathrm{t}_{\mathrm{n}+1}} \frac{\mathrm{dX}}{\mathrm{dt}}\left(\mathrm{t} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right) \mathrm{dt}=\int_{\mathrm{t}_{\mathrm{n}}}^{\mathrm{t}_{\mathrm{n}+1}} \mathrm{~b}\left(\mathrm{t} ; \mathrm{X}\left(\mathrm{t} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)\right) \mathrm{dt}$.
This produces the following approximation of $X\left(\mathrm{t}_{\mathrm{n}} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)$:

$$
\mathrm{X}_{(1)}^{\mathrm{n}}(\mathrm{x})=\mathrm{x}-\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right) \Delta \mathrm{t} .(13)
$$

Here $X_{(1)}^{n}$ is a second order approximation of $X\left(t_{n} ; t_{n+1}, x\right)$, since we are integrating (12) on the time interval $\left(\mathrm{t}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}+1}\right)$, which has length $\Delta \mathrm{t}$.

A more accurate scheme is provided by the second order Runge-Kutta scheme,
$\mathrm{X}_{(2)}^{\mathrm{n}}(\mathrm{x})=\mathrm{x}-\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1 / 2}, \mathrm{x}-\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right) \frac{\Delta \mathrm{t}}{2}\right) \Delta \mathrm{t}$,
(3.41)

Which gives a third order approximation of $X\left(\mathrm{t}_{\mathrm{n}} ; \mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)$.

It is necessary to verify that $X_{\text {(i) }}^{\mathrm{n}}(\mathrm{x}) \in \Omega$ for each $\mathrm{x} \in \bar{\Omega}, \mathrm{i}=1,2$, so that we can compute
$u^{n}{ }_{o} X_{(i)}^{n}$. we assume that $b(t, x)=0$ for each $t \in[0, T]$ and $x \in \partial \Omega$.

As a consequence, $\quad \mathrm{X}_{\text {(i) }}^{\mathrm{n}}(\mathrm{x})=\mathrm{X} \quad$ for $\mathrm{x} \in \partial \Omega, \mathrm{i}=1,2$. If we denote by $\mathrm{x}^{*} \in \partial \Omega$ the point having minimal distance from $x \in \Omega$, we have

$$
\begin{aligned}
& \left|\mathrm{X}_{(1)}^{\mathrm{n}}(\mathrm{x})-\mathrm{x}\right|=\left|\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)\right| \Delta \mathrm{t} \text {, } \\
& =\left|\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{x}\right)-\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}, \mathrm{x}^{*}\right)\right| \Delta \mathrm{t}, \quad \mathrm{x}^{*} \in \partial \Omega \\
& \left|X_{(1)}^{n}(x)-x\right| \leq \sup _{\substack{x, x^{*} \in \partial \Omega \\
x \neq x^{*}}} \frac{\left|b\left(t_{n+1}, x\right)-b\left(t_{n+1}, x^{*}\right)\right|}{\left|x-x^{*}\right|} \Delta t\left|x-x^{*}\right| \\
& \leq\left|\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}\right)\right|_{\operatorname{Lip}(\bar{\Omega})}\left|\mathrm{x}-\mathrm{x}^{*}\right| \Delta \mathrm{t}, \\
& \text { Where }|g|_{\operatorname{Lip}(\bar{\Omega})}=\sup _{\substack{x_{1}, x_{2} \in \bar{\Omega} \\
x_{1} \neq x_{2}}} \frac{\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|} \text {. }
\end{aligned}
$$

We assume that $\max _{\mathrm{t} \in[0, \mathrm{~T}]}|\mathrm{b}(\mathrm{t})|_{\operatorname{Lip}(\bar{\Omega})} \Delta \mathrm{t}<1 .(15)$
Then, we have
$\left|X_{(1)}^{n}(x)-x\right|<\left|x-x^{*}\right|$, For each
$\mathrm{n}=0,1, \ldots, \mathrm{~N}-1$.
It follows that $\mathrm{X}_{(1)}^{\mathrm{n}}(\mathrm{x}) \in \Omega$ for each $\mathrm{x} \in \Omega$. a similar result holds for $\mathrm{X}_{(2)}^{\mathrm{n}}(\mathrm{x})$. if we suppose that
$\operatorname{div} b(t, x)+a_{0}(x) \geq 0$
For each $t \in[0, T]$ and almost every $x \in \Omega$, stability is proven. In fact, multiplying (11) by $\mathrm{u}^{\mathrm{n}+1}$ and integrating over Ω
, we obtain
$\int_{\Omega} \frac{\left(\mathrm{u}^{\mathrm{n}+1}-\mathrm{u}^{\mathrm{n}} \circ \mathrm{X}_{(1)}^{\mathrm{n}}\right)}{\Delta \mathrm{t}} \mathrm{u}^{\mathrm{n}+1} \mathrm{dx}-\int_{\Omega} \varepsilon \Delta \mathrm{u}^{\mathrm{n}+1} \mathrm{u}^{\mathrm{n}+1} \mathrm{dx}$ $+\int_{\Omega}\left[\operatorname{divb}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{a}_{0}\right]\left(\mathrm{u}^{\mathrm{n}+1}\right)^{2} \mathrm{dx}=\int_{\Omega} \mathrm{f}\left(\mathrm{t}_{\mathrm{n}+1}\right) \mathrm{u}^{\mathrm{n}+1} \mathrm{dx}$. By using Gauss-divergence theorem, we have $\int_{\Omega}\left(\mathrm{u}^{\mathrm{n}+1}\right)^{2} \mathrm{dx}-\int_{\Omega}\left(\mathrm{u}^{\mathrm{n}} \circ \mathrm{X}_{(1)}^{\mathrm{n}}\right) \mathrm{u}^{\mathrm{n}+1} \mathrm{dx}+\varepsilon \Delta \mathrm{t} \int_{\Omega} \nabla \mathrm{u}^{\mathrm{n}+1} \cdot \nabla \mathrm{u}^{\mathrm{n}+1} \mathrm{dx}$ $+\Delta t \int_{\Omega}\left(\operatorname{divb}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{a}_{0}\right)\left(\mathrm{u}^{\mathrm{n}+1}\right)^{2} \mathrm{dx}=\Delta \mathrm{t} \int_{\Omega} \mathrm{f}\left(\mathrm{t}_{\mathrm{n}+1}\right) \mathrm{u}^{\mathrm{n}+1} \mathrm{dx}$. By using Hölder's inequality, we have $\left\|u^{n+1}\right\|_{0}^{2}+\varepsilon \Delta t\left\|\nabla u^{n+1}\right\|_{0}^{2} \leq\left(\left\|u^{n} \circ X_{(1)}^{n}\right\|_{0}+\Delta t\left\|f\left(t_{n+1}\right)\right\|_{0}\right)\left\|u^{n+1}\right\|_{0}$.

From (15), it follows that the map $X_{(1)}^{n}$ is injective. Therefore, we introduce the change of variable $\mathrm{y}=\mathrm{X}_{(1)}^{\mathrm{n}}(\mathrm{x})$, and setting $\mathrm{Y}_{(1)}^{\mathrm{n}}(\mathrm{y})=\left(\mathrm{X}_{(1)}^{\mathrm{n}}\right)^{-1}(\mathrm{y})$, we have
$\int_{\Omega}\left(\mathrm{u}^{\mathrm{n}}{ }_{o} \mathrm{X}_{(1)}^{\mathrm{n}}\right)^{2} \mathrm{dx}=\int_{\mathrm{X}_{(1)}^{\mathrm{n}}(\Omega)}\left(\mathrm{u}^{\mathrm{n}}\left(\mathrm{X}_{(1)}^{\mathrm{n}}(\mathrm{x})\right)\right)^{2} \mathrm{dx}$
$\left\|\mathrm{u}^{\mathrm{n}}{ }_{o} \mathrm{X}_{(1)}^{\mathrm{n}}\right\|_{0}^{2}=\int_{\mathrm{X}_{(1)}^{\mathrm{n}}(\Omega)}\left(\mathrm{u}^{\mathrm{n}}(\mathrm{y})\right)^{2}\left|\operatorname{det}\left(\operatorname{Jac} \mathrm{X}_{(1)}^{\mathrm{n}}\right) \circ \mathrm{Y}_{(1)}^{\mathrm{n}}(\mathrm{y})\right|^{-1} \operatorname{dy} .(18)$
On the other hand, from (13), we have

$$
\begin{aligned}
&\left|\operatorname{det}\left(\operatorname{Jac}_{(1)}^{\mathrm{n}}\right)(\mathrm{x})\right| \geq 1-\Delta \mathrm{t}\left|\operatorname{Jacb}\left(\mathrm{t}_{\mathrm{n}+1}\right)\right| \\
& \geq 1-\Delta \mathrm{tC}_{1}\left\|\operatorname{Jacb}\left(\mathrm{t}_{\mathrm{n}+1}\right)\right\|_{\mathrm{L}^{\infty}(\Omega)} \\
& \geq 1-\Delta \mathrm{tC} \mathrm{C}_{1} \max _{\mathrm{t} \in[0, \mathrm{~T}]}\|\operatorname{Jacb}(\mathrm{t})\|_{\mathrm{L}^{\infty}(\Omega)} \\
&=1-\mathrm{C}_{1} \mu_{1}^{*} \Delta \mathrm{t} \\
& \geq 1-\mathrm{C}_{1} \mathrm{C}_{2}>0
\end{aligned}
$$

For almost every $\mathrm{x} \in \Omega$, provided that
$\mu_{1}^{*} \Delta t \leq C_{2}$, (19)
Where $\quad \mu_{1}^{*}=\max _{\mathrm{t}[[0, \mathrm{~T}]}\|\operatorname{Jacb}(\mathrm{t})\|_{L^{\infty}(\Omega)}$ and $\mathrm{C}_{1}>0,0<\mathrm{C}_{2}<\mathrm{C}_{1}^{-1}$ are suitable constants. From (18), we have
$\left\|u^{\mathrm{n}}{ }_{\circ} \mathrm{X}_{(1)}^{\mathrm{n}}\right\|_{0}^{2} \leq \int_{\mathrm{X}_{(1)}^{\mathrm{n}}(\Omega)}\left(\mathrm{u}^{\mathrm{n}}(\mathrm{y})\right)^{2}\left(1-\mathrm{C}_{1} \mu_{1}^{*} \Delta \mathrm{t}\right)^{-1} \mathrm{dy}$
$\left\|\mathrm{u}^{\mathrm{n}}{ }_{\circ} \mathrm{X}_{(1)}^{\mathrm{n}}\right\|_{0}^{2} \leq\left(1+\Delta \mathrm{tC}_{3} \mu_{1}^{*}\right)\left\|\mathrm{u}^{\mathrm{n}}\right\|_{0}^{2} .(20)$
Therefore condition (19) implies (15) (if C_{2} is small enough).
From (17), we finally obtain for each $\mathrm{n}=0,1, \ldots, \mathrm{~N}-1$,

$$
\left\|u^{\mathrm{n}+1}\right\|_{0}+\varepsilon \Delta \mathrm{t} \frac{\left\|\nabla \mathrm{u}^{\mathrm{n}+1}\right\|_{0}^{2}}{\left\|\mathrm{u}^{\mathrm{n}+1}\right\|_{0}} \leq\left\|\mathrm{u}^{\mathrm{n}}{ }_{0} \mathrm{X}_{(1)}^{\mathrm{n}}\right\|_{0}+\Delta \mathrm{t}\left\|\mathrm{f}\left(\mathrm{t}_{\mathrm{n}+1}\right)\right\|_{0} .
$$

by using Poincarè's inequality, we have
$\left\|\mathrm{u}^{\mathrm{n}+1}\right\|_{0}+\varepsilon \Delta \mathrm{t}\left\|\nabla \mathrm{u}^{\mathrm{n}+1}\right\|_{0} \leq\left\|\mathrm{u}^{\mathrm{n}}{ }_{\mathrm{o}} \mathrm{X}_{(1)}^{\mathrm{n}}\right\|_{0}+\Delta \mathrm{t}\left\|\mathrm{f}\left(\mathrm{t}_{\mathrm{n}+1}\right)\right\|_{0}$
$\left(\left\|u^{n+1}\right\|_{0}^{2}+\varepsilon^{2} \Delta t^{2}\left\|\nabla u^{n+1}\right\|_{0}^{2}\right)^{\frac{1}{2}} \leq\left(1+\mathrm{C}_{3} \mu_{1}^{*} \Delta \mathrm{t}\right)^{\frac{1}{2}}\left\|u^{n}\right\|_{0}+\Delta t\left\|f\left(\mathrm{t}_{\mathrm{n}+1}\right)\right\|_{0}$
$\leq\left(1+\mathrm{C}_{3} \mu_{1}^{*} \Delta \mathrm{t}\right)^{\frac{\mathrm{n}+1}{2}}\left\|\mathrm{u}_{0}\right\|_{0}+\Delta \mathrm{t} \sum_{\mathrm{k}=1}^{\mathrm{n}+1}\left(1+\mathrm{C}_{3} \mu_{1}^{*} \Delta \mathrm{t}\right)^{\frac{\mathrm{n}+1-\mathrm{k}}{2}}\left\|\mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right)\right\|_{0}$
$\leq\left(\left\|\mathrm{u}_{0}\right\|_{0}+\mathrm{t}_{\mathrm{n}+1} \max _{\mathrm{t} \in[0, \mathrm{~T}]}\|\mathrm{f}(\mathrm{t})\|_{0}\right) \exp \left(\frac{\mathrm{C}_{3}}{2} \mu_{1}^{*} \mathrm{t}_{\mathrm{n}+1}\right)$.

Therefore $\mathrm{L}^{2}(\Omega)$-stability holds independently of ε.
The convergence of u^{n} to $u\left(t_{n}\right)$ is proven in a similar way. Defining the error function $\grave{o}^{\mathrm{n}}=\mathrm{u}\left(\mathrm{t}_{\mathrm{n}}\right)-\mathrm{u}^{\mathrm{n}}$, from (11), we obtain for $\mathrm{n}=0,1, \ldots, \mathrm{~N}-1$
$\frac{u\left(t_{n+1}\right)-\hat{o}^{n+1}-\left(u\left(t_{n}\right) o X_{(1)}^{n}-\grave{o}^{n}{ }_{o} X_{(1)}^{n}\right)}{\Delta t}$
$-\varepsilon\left(\Delta \mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)-\Delta \mathrm{o}^{\mathrm{n}+1}\right)$
$+\left(\operatorname{div} b\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{a}_{0}\right)\left(\mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)-\grave{o}^{\mathrm{n}+1}\right)=\mathrm{f}\left(\mathrm{t}_{\mathrm{n}+1}\right)$,
$\frac{\mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)-\mathrm{u}\left(\mathrm{t}_{\mathrm{n}}\right) \circ \mathrm{X}_{(1)}^{\mathrm{n}}}{\Delta \mathrm{t}}-\varepsilon \Delta \mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)$
$+\left(\operatorname{div} b\left(t_{n+1}\right)+a_{0}\right) u\left(t_{n+1}\right)-f\left(t_{n+1}\right)$
$=\frac{\grave{o}^{\mathrm{n}+1}-\grave{o}^{\mathrm{n}}{ }_{\mathrm{o}} \mathrm{X}_{(1)}^{\mathrm{n}}}{\Delta \mathrm{t}}-\varepsilon \Delta \grave{o}^{\mathrm{n}+1}+\left(\operatorname{divb}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{a}_{0}\right) \grave{o}^{\mathrm{n}+1}$.

Since
$-\frac{\partial \bar{u}}{\partial \mathrm{t}}\left(\mathrm{t}_{\mathrm{n}+1}\right)=-\varepsilon \Delta \mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\left(\operatorname{div} \mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{a}_{0}\right) \mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)-\mathrm{f}\left(\mathrm{t}_{\mathrm{n}+1}\right)$
and

$$
-\frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{t}}\left(\mathrm{t}_{\mathrm{n}+1}\right)=-\left(\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}\right) \cdot \nabla \mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)\right)
$$

Then, we obtain
$\frac{\grave{o}^{\mathrm{n}+1}-\grave{o}^{\mathrm{n}}{ }_{\mathrm{o}} \mathrm{X}_{(1)}^{\mathrm{n}}}{\Delta \mathrm{t}}-\varepsilon \Delta \grave{o}^{\mathrm{n}+1}+\left[\operatorname{div} \mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}\right)+\mathrm{a}_{0}\right] \grave{\mathrm{o}}^{\mathrm{n}+1}$
$=\frac{\mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)-\mathrm{u}\left(\mathrm{t}_{\mathrm{n}}\right) \circ \mathrm{X}_{(1)}^{\mathrm{n}}}{\Delta \mathrm{t}}-\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\left(\mathrm{t}_{\mathrm{n}+1}\right)-\mathrm{b}\left(\mathrm{t}_{\mathrm{n}+1}\right) \cdot \nabla \mathrm{u}\left(\mathrm{t}_{\mathrm{n}+1}\right)(22)$
in Ω.
Since
$X_{(1)}^{n}(x)-X\left(t_{n} ; t_{n+1}, x\right)=O\left((\Delta t)^{2}\right)$,
it shows that the right hand side in (22) is $\mathrm{O}(\Delta \mathrm{t})$.
Therefore convergence follows from (21) applied to
$\grave{o ̀}^{\mathrm{n}}$, recalling that $\grave{o}^{0}=0$.

III. CONCLUSION

This paper has presented semi- discrete approximation of the parabolic problem. And the stability and convergency of non- stationary advection- diffusion equation is solved by using characteristic Galerkin method.

REFERENCES

[1] Adams, R.A., "Sobolev Spaces", Academic Press, New York, 1975.
[2] Evans, L.C., "Partial Differential Equations", American Mathematical Society, Providence, New York, 1998.
[3] Griffits, D.F., "An Introduction to Matlab Version 2.2", University of Dundee, Ireland, 1996.
[4] Jungel, A., "Numerical Methods for Partial Differential Equations I": Elliptic and Parabolic Equations, (Lecture Notes), 2001.
[5] Mathews, J.H., "Numerical Methods for Mathematics", Science and Engineering, PrenticeHall International Education, 1992..
[6] Smith, G.D., "Numerical Solution of Partial Differential Equations, Finite Difference Methods", $3^{\text {rd }}$ Ed., Clarendon Press, Oxford, 1985.
[7] Süli, E., "Finite Element Methods for Partial Differential Equations", 2002.
[8] Thomas, J.W., "Numerical Partial Differential Equations, Conservation Laws and Elliptic Equations", Springer-Verlag, New York, 1998.

