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Abstract- In this paper, we first consider parabolic
advection-diffusion problem. And, we study a
characteristic Galerkin method for non- stationary
advection diffusion equation. Then, we prove the
stability and convergency of these method.

Indexed Terms- Advection- Diffusion Equation,
convergency, characteristic Galerkin method.

I INTRODUCTION

We assume that Q is a bounded domain in R™ n=2,
3....with Lipschitz boundary and consider the
parabolic initial boundary value problem: For each
t [0, T], we can find u (t) such that

%”J,Lu:f in Q,=(0T)xQ

u=0on Y =(0,T)xaQ, (1)

-
u=u,onQ, for t=0,

Where L is the second-order elliptic operator

Lw = —Aw + > D, (bw) + a,w.(2)

i=1

We consider the case in which € = ||b

Q)
The "simplified" form considered in (2) is a
perfect alias of the most general situation in which L
is given by | 7 = —iDi(aiijz) + iDi(biz) +a,Z,
i,j=1 i=1
whenever the diffusion coefficients a; are smaller
than the adventive ones b,,1,]=1...,n. without

loss of generality, we suppose that b is normalized to
b

@) L
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We assume that there exist two positive constants [,

and L, such that
0<p, Su(x) = %div b(x) +a,(x) <,

For almost every X € Q).
The parabolic advection-diffusion problem (1) can be
reformulated in a weak form as follows:

Given fel®(Q;) and u,el’(Q), find
uel?(0,T;V) 1 C°([0,T];L?()) such that
%(u(t),v) +a(u(t),v)=(f(t),v), weV
u(0) =u,,
Where V = H} (Q) .

We write the semi-discrete (continuous in time)
approximation of the advection-diffusion initial

boundary value problem 3

% (U, (1), vy) +auy, (t),vy) = (F(1),vy),

vv,eV,, te(0,T) 4
u,(0) = ug,.

Here V, — H} () is a suitable finite-dimensional
space and Uy, €V, is an approximation of the

initial datum U,.

1. A CHARACTERISTIC GALERKIN
METHOD

We define the characteristic lines associated to a
vector field b = b(t,X). Being given x € Qand

se[0,T], they are the vector functions
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X = X(t;s,x) such that

dXx
—(t;5,x) = b(t,X(t;s,%x)), te(0,T
g (G900 =b(EX(Es), teOD| o
X(s;s,X) = X.

The existence and uniqueness of the characteristic
lines for each choice of s and x hold under suitable
assumptions on b, for instance b continuous in
[0,T] x Q and Lipschitz continuous inQ, uniformly
with respect to t<[0, T].

From a geometric point of view, X(t;s,X)

provides the position at time t of a particle which has
been driven by the field b and that occupied the
position x at the time s. The uniqueness result gives
in particular that

X(t;5,X(s;7, X)) = X(t; 7, X)(6)

Foreach t,s,7€[0,T] and x € Q.

Hence

X(t;8,X(s;1,X)) = X(t;1,X) = X,

i.e., for fixed t and s, the inverse function of
X — X(s;t,X) isgiven by y— X(t;s,y).
Therefore, we define

U(t,y) = u(t,X(t;0,y)) @
orequivalenty, u (t,x) = U(t, X(0;t,x)).
From (5), it follows that

n

—(t y) = (t X(t;0,y)) + >_Dyu(t, X(t;0, y)) %, (t 0,y)

@t‘ Tb- Vuj(t,X(t;O,y)).(B)

We can rewrite the non-stationary advection-
diffusion equation as

g_‘t‘—aﬁ L@vb+a)u=F (9 Inq

The time derivative is approximated by the backward
Euler scheme,

ou

U(tml! y)_U(tn ! y) (10)

—(t, ., Y)=
at( ) At
If we set Y = X( ,tn+1,X), we have

U(tsY) = Tty X051, X)) = U(t,.4,X).

From (7), we have
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U(tn,Y) — u(tn,X(tn;Oa y))

X(t,;0,y) = X(t,;0,X(0;t,.;, X)) = X(t,;t,,1,X).
Then we obtain (3.32)

ou u(tmlvx)_ ( X(t n+l? ))

,X(0;t,,,,X)) =

6’[ ( n+l ( 1 )) At

We denote a suitable approximation of
X(t,it,.,x) by X"(x), n=0,1..,N-1us
can write the following implicit discretization scheme
for problem ().

If we set uozuo, then for n=0,1,..., N-1 we

solve

un+1_un Xn . . .
To—sAu” f+[divib(t,,,) +a, [u™ =f(t,,)
InQ . (11)

A boundary condition has to be imposed on 0Q. We
consider the homogeneous Diricibt  condition
un+l |5Q — 0

We choose a backward Euler scheme also
for discretizing

dd>t< ( ! n+1’X) b(t X(t1tn+1yx))-(12)

tha1 dX n+1
[ (Bt x)dt —j b(t;X(t;t,,,,X))dt.

This produces the following approximation of
X(ty;t1 %)

n’ “n+l?

Xy (x) = x=b(t,,;,x)At.(13)

Here X?l) is a second order approximation of

n

X(t it ), since we are integrating (12) on the

n’ “n+l?

time interval (t t ) which has length At.

n? - n+l

A more accurate scheme is provided by the second
order Runge-Kutta scheme,

(2)(X) =X- b( nsy2r X~ b(t,.. )AztjAt (14)

(3.41)
Which gives a third order approximation of

X(ty;tyX).
It is necessary to verify that X7 (x)e Q for

each xeQ, i=12 so that we can compute
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u" oX().we assume that b(t,x)=0for each
te[0,T] and xe 0Q.

As a  consequence, Xy (X) =x for
xe 0Q, i=12. If we denote by x" € dQ the point
having minimal distance from X € Q2 , we have

b () =X| = [b(t,.1, x)| At
‘b n+1? )_b( n+11

i, (x|« up Ib(t,. —bftn+l,x*)
X,X*€6Q) |X X|

XEX*

‘At X" e 60

<|b(t,.,) LIP(Q)‘ —X ‘At
|9(x,)—9(x,)|
wherelg = sp R
X1 #X,

We assume that
max [b(t)], s,

Then, we have

At<1.(15)

X () — X‘ ‘x x‘ For each
n=0,1..,N-1.
It follows that Xp,
similar result holds for X{,) (x).if we suppose that
divb(t,x)+a,(x)=0 (16)

For each te[0,T] and almost every XeQ,

(X) e Q for each Xe Q.a

stability is proven. In fact, multiplying (11) by u"*
and integrating over Q
, We obtain

l"|n+1 u 0><nl
( ()) n+1dX J' 6Aun+lun+ldx

J.Q At
+f [divb(t,.,)+a,](u™ ) dx = [ f(t,,)u" dx.

By using Gauss-divergence theorem, we have
+1 2 +1 +1 +1
jﬂ(u” ) dx—j u oX?l)) u" dx+gAt.[ vu™ vu™ dx

+Atjg(divb(tn+1)+ao)( n+1) dx = Atj n+1 dx.
By using Holder's inequality, we have

Thas 2 + sAt"Vu”+1 Z S( n Lt At|[f (t

n+1

n+l

u

)

17)

n+1 o'
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From (15), it follows that the map Xy is injective.
Therefore, we introduce the change of variable
y =X, (X), and setting Yo, (y):(xg))’l(y), we

have

I(u ox(”l) dX:IX?1>(Q)( ( (1)(X)))

n 2 n n
- j XW(u v)) ‘det(JacX oY(l)(y)‘ dy.(18)
On the other hand, from (13), we have

‘det JacXp, (x)‘ > 1-At[Jacb(t, ., )

@1l

>1- AtC,|Jach(t,,,)

L*(Q)

> 1— AtC, max ||Jacb

te[O T]
=1-C,u At
>1-CC,>0

For almost every X € €, provided that
. 3.42)
1, At<C,,(19)
Where p; = max|[Jachb(t)

te[0,T]

L” (@)

and

L (Q)

C,>0,0<C, < C;' are suitable constants. From

(18) we have
<QMWWW@wmwrw

®lo

< (1+ AtCypy ) [u”

®1lo
Therefore condition (19) implies (15) (if C2 is small
enough).

From (17), we finally obtain for each
n=01..,N-1

H n+1||?
0

n+1

u

n
o X Mo

+ gAt
0

+ At”f

n+l ”*1

u

0
by using Poincare's inequality, we have
L+ eat|vum <

n+1

u

+ AtHf

n+l

Mlo

n+l n

u Vu n+l

1
O) <(1+ CSulAt)

T 82A'[2‘

+ At ||f

n+1

n+l n+1-k

(1+CsulAt) 2 Jlu], +AIZ(1+Csu1At) 2 |If ()],
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C,
<l toa max 0O, o0 St 2

Therefore L*(€2)-stability holds independently of .

The convergence of U" to u(tn) is proven
in a similar way. Defining the error function
o"=u(t,)-u", from (11), we obtain for
n=01.,N-1

U (ty)=0" = (u(t, )0 XG) =07 0 X7y )
At
—&(Au(t,.,)—A0")
+(divi(t,,,)+a, ) (u(t,,) —0"") =f(t,,,),

() 86Xl
n+1

At
a,)u(t,,,)-f(t,.,)

+(divb(t )+
o' 0" o X{. N+ . n-+
=T(l) AO l+(d|Vb(tn+l)+a ) l.

Since

,%U(tm) =—eAu(t,,,)+(div b(t,,)+a,)u(t,,)—f(t.,)
and

ou ou

Tt,.) - —(E(tml)er(tml)Vu(tm)j.

Then we obtain

0 =" o X

(Y] +
At —eAd" 1+[d'Vb )+ :|°n+1
u tn+ —u tn OXn ou
- ( 1) At( ) (1)_E(tn+1)_b(tn+l) (”+1)(22)
inQ.
Since

Xy () = X(t,3t,,,X) = O((A1)?),
it shows that the right hand side in (22) is O (At).
Therefore convergence follows from (21) applied to

0", recalling that 0° =0.
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I1l.  CONCLUSION

This paper has presented semi- discrete
approximation of the parabolic problem. And the
stability and convergency of non- stationary
advection- diffusion equation is solved by using
characteristic Galerkin method.
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