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Abstract- In this paper, the approximate solutions of 

differential equation are studied. Then, one-

dimensional diffusion equation is solved by using 

Explicit and Crank- Nicolson methods to obtain 

local truncation errors. These schemes are 

presented using Taylor series expansion. 

 

Indexed Terms- Diffusion equation, explicit 

method, Crank- Nicolson method, local truncation 

error. 

 

I. INTRODUCTION 

 

We shall find the approximate solutions of 

differential equations, that is, to find a function (or 

some discrete approximation to this function) which 

satisfies a given relationship between several of its 

derivatives on some given region of space and / or 

time, along with some boundary conditions along the 

edges of this domain. In general this is a difficult 

problem and only rarely can be found an analytic 

formula for the solution. A finite difference method 

proceeds by replacing the derivatives in the 

differential equations by finite difference 

approximations. This gives a large algebraic system 

of equations to be solved in place of the differential 

equation, something that is easily solved on a 

computer. 

 

Before tackling this problem, we first consider the 

more basic question of how we can approximate the 

derivatives of a known function by finite difference 

formulas based only on values of the function itself at 

discrete points. Besides providing a basis for the later 

development of finite difference methods for solving 

differential equations, this allows us to investigate 

several key concepts such as the order of accuracy of 

an approximation in the simplest possible setting. 

 

Let ( )u x  represent a function of one variable that, 

unless otherwise stated, will always be assumed to be 

smooth, meaning that we can differentiate the 

function several times and each derivative is a well-

defined bounded function over an interval containing 

a particular point of interest x . 

 

Suppose we want to approximate ( )u x  by a finite 

difference approximation based only on values of u at 

a finite number of points near x . One obvious choice 

would be to use  
( ) ( )

( )
u x h u x

D u x
h



 
  (1)  

For some small value of h. 

 

This is motivated by the standard definition of the 

derivative as the limiting value of this expression as

0h . Note that ( )D u x  is the slope of the line 

interpolating u at the points x and x h . 

 

The Equation (1) is a one-sided approximation to u  

since u is evaluated only at values of x x  .  

Another one-sided approximation would be

( ) ( )
( )

u x u x h
D u x

h


 
 . (2) 

 

Each of these formulas gives a first order accurate 

approximation to ( )u x , meaning that the size of the 

error is roughly proportional to h itself. 

Another possibility is to use the centered 

approximation,    
0 ( )D u x

( ) ( )

2

u x h u x h

h

  
  

 1
( ( ) ( ))

2
D u x D u x   .   (3)  

This is the slope of the line interpolating u at x h

and x h , and is simply the average of the two one-

sided approximations defined above. From Figure 1.1 

it should be clear that we would expect 
0 ( )D u x to 

give a better approximation than either of the one-

sided approximations. In fact this gives a second 

order accurate approximation which the error is 

proportional to 
2h  and hence is much smaller than 
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the error in a first order approximation when h is 

small. 

 

 

Figure 1: Various approximations to ( )u x

interpreted as the slope of secant lines. 

 

Other approximations are also possible, for example

 3

1
( ) 2 ( ) 3 ( ) 6 ( ) ( 2 ) (4)

6
D u x u x h u x u x h u x h

h
      

.This is a third order accurate approximation which 

the error is proportional to 
3h  when h is small. 

 

II. DERIVING FINITE DIFFERENCE 

APPROXIMATION 

 

Suppose we want to derive a finite difference 

approximation to ( )u x base on some given set of 

points. We can use Taylor series to derive an 

appropriate formula, using the method of 

undetermined coefficients. As an example, we 

suppose a one-sided approximation to ( )u x base on

( )u x , ( )u x h  and ( 2 )u x h  of the form,

2 ( ) ( ) ( ) ( 2 )D u x au x bu x h cu x h     . (5) 

 

We can determine the coefficients a, b, and c to give 

the best possible accuracy by expanding in Taylor 

series and collecting terms. Equation (5) gives 

2 ( )D u x ( ) ( ) ( 2 )au x bu x h cu x h     .  

2 31 1
( ) ( ) ( ) ( ) ( )

2 6
au x b u x hu x h u x h u x

 
        

 


2 31 1
( ) 2 ( ) (2 ) ( ) (2 ) ( )

2 6
c u x hu x h u x h u x
 

       
 



. 31
( 8 ) ( )

6
b c h u x    . 

If this is going to agree with ( )u x to high order then 

we need, 0a b c   , 
1

2b c
h

                         (6) 

  4 0b c  .  

We might like to require that higher order 

coefficients be zero as well, but since there are only 

three unknowns a, b and c we cannot in general hope 

to satisfy more than three such conditions. Solving 

the linear system (6) gives     3

2
a

h
 , 2

b
h

  , 

1

2
c

h
 . 

 

So that the formula is 

2 ( )D u x
3 2 1

( ) ( ) ( 2 )
2 2

u x u x h u x h
h h h

    
 

 
1

3 ( ) 4 ( ) ( 2 )
2

u x u x h u x h
h

     .           

(7) The error in this approximation is clearly            

2 ( )D u x 31
( ) ( 8 ) ( )

6
u x b c h u x       

2 ( ) ( )D u x u x  31 2 4
( )

6
h u x

h h

 
     


 

2 31
( ) ( )

3
h u x O h   . 

Next, suppose we want to a one-sided approximation 

to ( )u x base on ( )u x , ( )u x h  and ( 2 )u x h . 

2 ( )D u x ( ) ( ) ( 2 )au x bu x h cu x h      

2 31 1
( ) ( ) ( ) ( ) ( )

2! 3!
au x b u x hu x h u x h u x

 
        

 


2 31 1
( ) 2 ( ) (2 ) ( ) (2 ) ( )

2! 3!
c u x hu x h u x h u x
 

       
 



21
( ) ( ) ( 2 ) ( ) ( 4 ) ( )

2
a b c u x b c hu x b c h u x       

31
( 8 ) ( )

6
b c h u x    . 

If this is going to agree with ( )u x to high order then 

we need, 0a b c    

1
2b c

h
  , 4 0b c  . 

Solving this linear system, we get  

3

2
a

h
  , 

2
b

h
 , 

1

2
c

h
   

2 ( )D u x  
1

3 ( ) 4 ( ) ( 2 )
2

u x u x h u x h
h

      . 
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The error in this approximation is 

2 ( ) ( )D u x u x  31
( 8 ) ( )

6
b c h u x     

2 31
( ) ( )

3
h u x O h   . 

 

III. BOUNDARY VALUE PROBLEM FOR 

DIFFUSION EQUATIONS 

 

We shall study finite difference methods for time-

dependent partial differential equations, where 

variations in space are related to variations in time. 

The heat equation (or diffusion equation)         

t xxu k u .           (8)  

This is the classical example of a parabolic equation, 

and many of the general properties seen here carry 

over to the design of numerical methods for other 

parabolic equations. We will assume 1k   for 

simplicity but some comments will be made about 

how the results scale to other values of 0k  . 

             Along with this equation we need 

initial conditions at some time 0t , which we typically 

take to be 
0 0t  , 

( ,0) ( )u x x  (9)  

And also boundary conditions if we are working on a 

bounded domain, 

For example, the Dirichlet conditions 

0(0, ) ( )u t g t For 0t   

1(1, ) ( )u t g t For 0t                                          (10) 

 if 0 1x  .   

 We have already studied the steady state 

version of this equation and spatial discretizations of

xxu . We have also studied discretizations of the time 

derivatives. 

 In practice we generally apply a set of finite 

difference equations on a discrete grid with grid 

points ( , )i nx t  where  

ix ih , 
nt nk . 

Here h x   is the mesh spacing on the x-axis and 

k t   is the time step. Let ( , )n

i i nU u x t  represent 

the numerical approximation at grid point ( , )i nx t . 

Since the heat equation is an evolution equation that 

can be solved forward in time, we set up our 

difference equations in a form where we can march 

forward in time, determining the value 1n

iU   for all i 

from the values
n

iU  at the previous time level, or 

perhaps using also values at earlier time levels with a 

multistep formula 

As an example, 

One natural discretization of Equation (8) would be
1

1 12

1
( 2 )

n n
n n ni i
i i i

U U
U U U

k h



 


   .       (11) 

 This uses our standard centered difference in 

space and a forward difference in time. This is an 

explicit method since we can compute each 
1n

iU 

explicitly in terms of the previous data: 

1

1 12
( 2 )n n n n n

i i i i i

k
U U U U U

h



          (12)

 

 
Figure 2 the stencil of this method 

 

This is a one-step method in time, which is also 

called a two-level method in the context of partial 

differential equations since it involves the solution at 

two different time levels. 

Another one step method, Crank-Nicolson method,                      

Equation (8) can be written as 
1n n

i iU U

k

  2 2 11
( )

2

n n

i iD U D U                    (13) 

 

1 1 1

1 1 1 12

1
( 2 2 )

2

n n n n n n

i i i i i iU U U U U U
h

  

          

 

Which can be rewritten as, or
1 1 1

1 1 1 1(1 2 ) (1 2 ) (14)n n n n n n

i i i i i irU r U rU rU r U rU  

          

where
22

k
r

h
 . This is an implicit method and gives 

a tridiagonal system of equations to solve for all the 

values 1n

iU   simultaneously. 
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In matrix form this is
1

1

1

2

1

3

1

1

1

(1 2 )

(1 2 )

(1 2 )

(1 2 )

(1 2 )

n

n

n

n

m

n

m

Ur r

Ur r r

Ur r r

r r r U

r r U













   
       
    
  
  
    
  

      

  

 

 

0 0 1 1 2

1 2 3

2 3 4

2 1

1 1 1 1

( ) ( ) (1 2 )

(1 2 )

(1 2 )

(1 2 )

(1 2 ) ( ) ( )

n n

n n

n n n

n n n

n n n

m m m

n n

m m n n

r g t g t r U rU

rU r U rU

rU r U rU

rU r U rU

rU r rU r g t g t



 

 

    
 

   
   
 
 
   
 
     



. (15) 

 

The boundary conditions 
0(0, ) ( )u t g t and 

1(1, ) ( )u t g t  come into these equations. 

 

Since a tridiagonal system of m equations can be 

solved with O( )m  work, this method is essentially as 

efficient per time step as an explicit method. The heat 

equation is “stiff”, and hence this implicit method, 

which allows much larger time steps to be taken than 

an explicit method, is a very efficient method for the 

heat equation. 

 

Solving a parabolic equation with an implicit method 

requires solving a system of equations with the same 

structure as the 2-point boundary value problem. 

Similarly, a multidimensional parabolic equation 

requires solving a problem with the structure of a 

multidimensional elliptic equation. 

 

IV. LOCAL TRUNCATION ERRORS AND 

ORDER OF ACCURACY 

 

We can define the local truncation error a usual, we 

insert the exact solution ( , )u x t  of the partial 

differential equation into the finite difference 

equation and determine by how much it fails to 

satisfy the discrete equation. 

 

4.1 Example 

The local truncation error of the Equation (8) is based 

on Equation (4): ( , )n

i i nx t   . The diffusion 

equation is    t xxu u , 

1

1 12

1
( 2 ) 0

n n
n n ni i
i i i

U U
U U U

k h



 


   

2

( , ) ( , ) 1
( ( , )

2 ( , ) ( , )) 0

i n i n
i n

i n i n

u x t k u x t
u x h t

k h

u x t u x h t

 
 

   

2

( , ) ( , )
( , )

1
( ( , ) 2 ( , ) ( , ))

u x t k u x t
x t

k

u x h t u x t u x h t
h

 
 

    

2 3 41 1 1
( , ) ( , )

2! 3! 4!
t tt ttt ttttu x t k u x t ku k u k u k u      

2 3 41 1 1
( , ) ( , )

2! 3! 4!
x xx xxx xxxxu x h t u x t hu h u h u h u      

2 3 41 1 1
( , ) ( , )

2! 3! 4!
x xx xxx xxxxu x h t u x t hu h u h u h u      

 

we can find that,

2 3

2 4

1 1 1
( , )

2! 3! 4!

1 1

12 180

t tt ttt tttt

xx xxxx xxxxxx

x t u ku k u k u

u h u h u

 
      

 

 
    
 





. 

Since
t xxu u , the O(1) terms drop out. By 

differentiating
t xxu u , we find that 

tt txx xxxxu u u   

and so   2 2 41 1
( , ) O( )

2 12
xxxxx t k h u k h

 
      

. 

This method is said to be second order accurate in 

space and first order accurate in time since the 

truncation error is 2O( )h k . 

 The Crank-Nicolson method is centered in 

both space and time,      
1n n

i iU U

k

  2 2 11
( )

2

n n

i iD U D U    

1 1 1

1 1 1 12

1
( 2 2 )

2

n n n n n n

i i i i i iU U U U U U
h

  

        

 

2

1
( , ) ( , ) ( , )

1
( , ) 2 ( , ) ( , )

2

x t u x t k u x t
k

u x h t u x t u x h t
h

   

    

( , ) 2 ( , ) ( , )u x h t k u x t k u x h t k        ,

 
 

Where
2 2

( , ) ( , )
1! 1! 2! 2! 1!1!

x t xx tt xt

h k h k hk
u x h t k u x t u u u u u       

3 3 2 2

3! 3! 2!1! 1!2!
xxx ttt xxt xtt

h k h k hk
u u u u     .
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2 2

( , ) ( , )
1! 1! 2! 2! 1!1!

x t xx tt xt

h k h k hk
u x h t k u x t u u u u u       

3 3 2 2

3! 3! 2!1! 1!2!
xxx ttt xxt xtt

h k h k hk
u u u u     . 

The local truncation error shows that it is second 

order accurate in both space and time, 
2 2( , ) O( )x t k h   .A method is said to be consistent

( , ) 0x t  ask, 0h . 

 

V. CONCLUSION 

 

In this paper, we study derivation of finite difference 

approximation of solution by method of undermined 

coefficients.Then,the diffusion equation has been 

solved by two finite difference techniques to obtain 

local truncation errors. 
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