No Separable Components, Chordality and 2-Factors in Tough Graphs

SAN SAN TINT ${ }^{1}$, KHAING KHAING SOE WAI ${ }^{2}$
${ }^{1,2}$ Department of Engineering Mathematics, Technological University, Myitkyina, Myanmar.

Abstract

In this paper we mention non separable components of longest cycles. And then we establish chordality and 2-factor in tough graph. A graph G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k. Finally the result reveals that all 3/2-tough 5-chordal graph G with a 2-factor are obtained.

Indexed Terms- non separable components, 2-factor, induced subgraph, toughness, maximum degree, minimum degree, longest cycle, chordal graph, Tutte pair.

I. INTRODUCTION

A graph is finite if its vertex set and edge set are finite. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $\mathrm{E}(\mathrm{H}) \subseteq \mathrm{E}(\mathrm{G})$. A complete graph G is a simple graph in which every pair of vertices is adjacent. A bipartite graph is one whose vertex set can be partitioned into two subsets X and Y, so that each edge has one end in X and one end in Y ; such a partition $\quad(\mathrm{X}, \mathrm{Y})$ is called a bipartition of the graph. A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y : if $|X|=m$ and $|Y|=n$, such a graph is denoted by $K_{m, n}$.

Suppose that V^{\prime} is a nonempty subset of V . The subgraph of G whose vertex set is V^{\prime} and whose edge set is the set of those edges of G that have both ends in V^{\prime} is called the subgraph of G induced by V^{\prime} and is denoted by $G\left[V^{\prime}\right]$; we say that $G\left[V^{\prime}\right]$ is an induced subgraph of G. Now suppose that E^{\prime} is a nonempty subset of E . The subgraph of G whose vertex set is the set of ends of edges in E^{\prime} and whose edge set is E^{\prime}, is called the subgraph of G induced by E^{\prime} and is denoted by $G\left[E^{\prime}\right] ; G\left[E^{\prime}\right]$ is an edge -
induced subgraph of G. A vertex-cut in a graph G is a set U of vertices of G such that $G-U$ is disconnected. A complete graph has no vertex-cut.

The vertex-connectivity or simply the connectivity $\kappa(\mathrm{G})$ of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $\kappa(G)=n$ -1 if $G=K_{n}$ for some positive integer n. Hence $\kappa(\mathrm{G})$ is the minimum number of vertices whose removal results in a disconnected or trivial graph. If G is either trivial or disconnected, $\kappa(\mathrm{G})=0 . \mathrm{G}$ is said to be k - connected if $\kappa(\mathrm{G}) \geq \mathrm{k}$. All non-trivial connected graphs are 1 -connected. If G is non complete graph and t is a nonnegative real number such that $\quad t \leq \frac{|S|}{\omega(G-S)}$ for every vertex - cut S of G, then G is defined to be t-tough. If G is at - tough graph and s is a nonnegative real number such that $\mathrm{s}<$ t, then G is also s-tough. The maximum real number t for which a graph G is a t-tough is called the toughness of G and is denoted by $t(G)$. A connected graph with at least one cut vertex is called a separable graph, otherwise it is no separable.). The degree (or valence) of a vertex v in G is the number of edges of G incident with v , each loop counting as two edges.

We denote by $\delta(\mathrm{G})$ and μ_{G} the minimum and maximum degrees, respectively of vertices of G . The set of neighbours of a subgraph H of G , denoted $\mathrm{N}(\mathrm{H})$, is the set of vertices in $\mathrm{V}(\mathrm{G})-\mathrm{V}(\mathrm{H})$ adjacent to at least one vertex of $H ; d(H)=|N(H)|$ is the degree of a subgraph H of G.

II. NONSEPARABLE COMPONENTS

We still have to investigate non separable components of longest cycles. For an induced subgraph H of G , we set
$X(H)=\left\{x \in N_{G-H}(H):\left|N_{H}\left(x, x^{\prime}\right)\right| \geq 2\right.$ for each $\left.x^{\prime} \in N_{G-H}(H)-\{x\}\right\} \mu_{H}(D+2) \geq(t+1) D+t\left(\mu_{H}-2\right)+2 \mu_{H}$

And $Y(H)=\left\{y \in V(H): N_{G-H-X(H)}(y) \neq \varnothing\right\}$.

Notice that, in fact, $\left|\mathrm{N}_{\mathrm{G}-\mathrm{H}-\mathrm{X}(\mathrm{H})}(\mathrm{y})\right| \geq 2$ for all $\mathrm{y} \in \mathrm{Y}$ (H).

If V
(H) $=Y$
(H), set $\mu_{\mathrm{H}}=\max _{\mathrm{v} \in \mathrm{V}(\mathrm{H})} \mathrm{d}(\mathrm{v})$.

Otherwise, let $\mu_{\mathrm{H}}=|\mathrm{X}(\mathrm{H}) \cup \mathrm{Y}(\mathrm{H})|$.

If $\mathrm{N}_{\mathrm{G}-\mathrm{H}}(\mathrm{H}) \neq \mathrm{V}(\mathrm{G}-\mathrm{H})$ and $\mathrm{V}(\mathrm{H}) \neq \mathrm{Y}(\mathrm{H})$, then $\mathrm{X}(\mathrm{H}) \bigcup \mathrm{Y}(\mathrm{H})$ is a vertex-cut of G. Anyway, $\mu_{\mathrm{H}} \geq \kappa_{\mathrm{G}} \geq 2 \mathrm{t}$, where κ_{G} denotes the connectivity of G.

2.1 Lemma

Let C be a cycle in a graph G such that $\mathrm{h}=\mathrm{c}(\mathrm{G})-|\mathrm{C}|$, and let H be a component of $\mathrm{G}-\mathrm{C}$. Further, let $\mathrm{x}_{1}, \mathrm{x}_{2}$ be distinct vertices on C and let $v_{1} \in N_{H}\left(x_{1}\right)$, $\mathrm{V}_{2} \in \mathrm{~N}_{\mathrm{H}}\left(\mathrm{X}_{2}\right)$. Let P be a longest $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$-path in H , and let $\mathrm{Q}=\mathrm{Q}\left[\mathrm{z}_{1}, \mathrm{z}_{2}\right]$ be a C -arc from $\mathrm{C}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ to $\mathrm{C}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right]$ such that $\mathrm{Q} \cap \mathrm{P}=\varnothing$. Then
(i) $\left|\mathrm{C}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right| \geq \mathrm{D}_{\mathrm{H}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+1-\mathrm{h}$ And
(ii)
$\left|\mathrm{C}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right)\right|+\left|\mathrm{C}\left(\mathrm{x}_{2}, \mathrm{z}_{2}\right)\right| \geq \mathrm{D}_{\mathrm{H}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+1+(|\mathrm{Q}|-2)-\mathrm{h}$.

2.2 Lemma

Let C be a longest cycle in a 2 -connected graph G , and let H be a 2-connected component of $\mathrm{G}-\mathrm{C}$ such that
$|\mathrm{C}|<(\mathrm{t}+1)\left(\mu_{\mathrm{H}}+\mathrm{D}(\mathrm{H})\right)+\mathrm{t}$. Then $\mathrm{D}<2 \mathrm{t}$ and
$|C| \geq \mu_{H}(\mathrm{D}(\mathrm{H})+2)+\min (\mathrm{D}(\mathrm{H})+2, \mathrm{t}+1)$.
Proof

We fix a cyclic orientation on C and abbreviate $\mathrm{X}=\mathrm{X}$ $(H), Y=Y(H)$, and $D=D(H)$. Note that $D \geq 2$, since H is 2-connected.

If $\mathrm{D} \geq 2 \mathrm{t}$ and (1), we obtain a contradiction to the hypothesis of Lemma 2.2, since
$\mu_{\mathrm{H}}(\mathrm{D}+2)=\frac{\mu_{\mathrm{H}}+2}{2} \mathrm{D}+\mathrm{D} \frac{\mu_{\mathrm{H}}-2}{2}+2 \mu_{\mathrm{H}}$

$$
\geq(t+1)\left(D+\mu_{H}\right) .
$$

Therefore, it suffices to show (1).

For $x \in N_{C}(H)$, let x^{*} denote the first vertex on $C(x$, $x]$ such that $X^{*} \in N_{C}(H)$. Let X denote the set of all X $\in \mathrm{N}_{\mathrm{C}}(\mathrm{H})$ such that $\left|\mathrm{N}_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{*}\right)\right| \geq 2$ and label
$X=\left\{x_{1}, \ldots, x_{m}\right\}$, according to the given orientation.
Then $\left|\mathrm{C}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{*}\right)\right| \geq \mathrm{D}+1$ Lemma 2.1 therefore

$$
\begin{equation*}
|\mathrm{C}|=\mathrm{m}(\mathrm{D}+2)+\mathrm{R}_{1} \text {, where } \mathrm{R} 1 \geq 2\left|\mathrm{~N}_{\mathrm{c}-\mathrm{x}}(\mathrm{H})\right| \cdot \tag{2}
\end{equation*}
$$

If $m>\mu_{H}$, then (2) immediately yields (1). For the rest of the proof, let $\mathrm{m}=\mu_{\mathrm{H}}$. Then, for each $\mathrm{y} \in \mathrm{Y}$, there exists a unique vertex $\hat{y} \in \mathrm{~N}_{\mathrm{C}-\mathrm{x}}(\mathrm{y}) \cap \hat{\mathrm{X}}$ and, therefore, $\left|\mathrm{N}_{\mathrm{H}}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{k}}\right)\right| \geq 2$ for any $\operatorname{distinct}_{\mathrm{x}_{\mathrm{j}}}, \mathrm{x}_{\mathrm{k}} \in \mathrm{X}$.

Consider a C -arc $\mathrm{Q}=\mathrm{Q}\left[\mathrm{z}_{\mathrm{j}}, \mathrm{Z}_{\mathrm{k}}\right]$ between distinct segments $C\left(X_{j}, X_{j+1}\right)$ and $C\left(x_{k}, x_{k+1}\right)$ such that $\mathrm{Q} \cap \mathrm{V}(\mathrm{H})=\varnothing$.By Lemma 2.1, we have
$\left|\mathrm{C}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}}\right)\right|+\left|\mathrm{C}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{z}_{\mathrm{k}}\right)\right| \geq \mathrm{D}+1$.
Since $\left|\mathrm{N}_{\mathrm{H}}\left(\mathrm{x}_{\mathrm{j}+1}, \mathrm{x}_{\mathrm{k}+1}\right)\right| \geq 2$, we are allowed to use the same argument with the orientation of C reversed. Therefore

$$
\begin{align*}
& \left|\mathrm{C}\left(\mathrm{z}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}+1}\right)\right|+\left|\mathrm{C}\left(\mathrm{z}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}\right)\right| \geq \mathrm{D}+1 \text { and, by (3) } \\
& \left|\mathrm{C}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}+1}\right)\right|+\left|\mathrm{C}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}\right)\right| \geq 2 \mathrm{D}+4 \tag{4}
\end{align*}
$$

If $R_{1} \leq 1$, then clearly $N_{C}(H)=X$ and, by (4), there is no C -arc Q between distinct segments of the for $\mathrm{C}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}+1}\right)$. In this case, $\mathrm{t} \leq \frac{\mathrm{m}}{\mathrm{m}+1}$ and (2) yields a contradiction, since
$m(D+2) \geq 2 m+2 D=\frac{2 m+1}{m+1}(m+D)+\frac{1}{m+1}(m+$
D) $>(\mathrm{t}+1)\left(\mu_{\mathrm{H}}+\mathrm{D}\right)+1$.

For the rest of the proof, let us assume $2 \leq R_{1}<t+1$.

For $h \quad=\quad 0, \quad 1, \quad$ set $X_{h}=\left\{\mathrm{x}_{\mathrm{j}} \in \mathrm{X}:\left|\mathrm{C}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}+1}\right)\right|=\mathrm{D}+1+\mathrm{h}\right\}$, and let $\mathrm{X}_{2}=\hat{\mathrm{X}}-\left(\mathrm{X}_{0} \cup \mathrm{X}_{1}\right)$.

For $\mathrm{X}_{\mathrm{i}} \in \mathrm{X}_{0}$, set $\mathrm{W}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}+1}$. If $\mathrm{X}_{1} \neq \varnothing$ pick $\mathrm{X}_{\mathrm{s}} \in \mathrm{X}_{1}$, set $\varepsilon=1$ and $\mathrm{W}_{\mathrm{S}}=\mathrm{X}_{\mathrm{s}+1}^{-}$.

If $X_{1}=\varnothing$, set $\varepsilon=0$. Further, let $W_{i}=X_{i}^{++}$for $x_{i} \in \hat{X}-\left(X_{0} \cup\left\{x_{s}\right\}\right)$.

It readily follows from (3) and (4) that there is no Carc Q between distinct segments of the form $C\left(x_{i}, W_{i}\right)$. Therefore, $G-V\left(\bigcup_{i=1}^{m} C\left[w_{i}, x_{i+1}\right]\right)$ has at least $m+$ 1 components and, consequently,
$t(m+1) \leq|C|-\left|V\left(\bigcup_{i=1}^{m} C\left(x_{i}, w_{i}\right)\right)\right|$.
Hence $|\mathrm{C}| \geq(\mathrm{t}+1) \mathrm{m}+\mathrm{t}+\left(\left|\mathrm{X}_{0}\right|+\varepsilon\right) \mathrm{D}$.

As $\left|\mathrm{X}_{1}\right|+2\left|\mathrm{X}_{2}\right| \leq \mathrm{R}_{1}<\mathrm{t}+1 \leq \frac{\mathrm{m}+2}{2}$. We have $\left|\mathrm{X}_{1}\right|+2\left|\mathrm{X}_{2}\right| \leq \frac{\mathrm{m}+1}{2}$, by (5) and the hypothesis of
Lemma 2.2 also $\left|\mathrm{X}_{0}\right|+\varepsilon<\mathrm{t}+1$, and, hence,
$\left|\mathrm{X}_{0}\right|+\varepsilon \leq \frac{\mathrm{m}+1}{2}$. Now
$\left|\mathrm{X}_{0}\right|+\left|\mathrm{X}_{1}\right|+2\left|\mathrm{X}_{2}\right|+\varepsilon \leq \mathrm{m}+1$ and $\left|\mathrm{X}_{2}\right|+\varepsilon \leq 1$.
On the other hand, $\left|X_{2}\right|+\varepsilon \geq 1$, since $R_{1}>0$.
Consequently, $\left|\mathrm{X}_{2}\right|+\varepsilon=1$ and
$\left|\mathrm{X}_{0}\right|+\varepsilon=\left|\mathrm{X}_{1}\right|+2\left|\mathrm{X}_{2}\right|=\frac{\mathrm{m}+1}{2}$.

If $X_{2}=\varnothing$ then $Y=\varnothing$, and $G-X=G-X$ has at least $\left|X_{0}\right|+2$ components. In this event,
$1<\mathrm{t} \leq \frac{\mathrm{m}}{\left|\mathrm{X}_{0}\right|+2}=\frac{2\left|\mathrm{X}_{0}\right|+1}{\left|\mathrm{X}_{0}\right|+2}<2$,
But $\left|\mathrm{X}_{0}\right|+\varepsilon=\left|\mathrm{X}_{0}\right|+1<\mathrm{t}+1$ and, therefore, $\left|\mathrm{X}_{0}\right|=1$, A contradiction.

Hence, in fact, $\left|\mathrm{X}_{2}\right|=1$ and $\varepsilon=0$. Consequently, $X_{1}=\varnothing$ and, by (6), $m=3 \geq 2$ t. Since $D \geq 2$,
We obtain from (2)
$|C|=\frac{5}{2}(\mathrm{D}+3)-\frac{5}{2}+\frac{1}{2}(\mathrm{D}+2)+\mathrm{R}_{1} \geq(\mathrm{t}+1)(\mathrm{m}+$ D) $+\frac{3}{2}$. This contradiction completes the proof of Lemma 2.2.

III. CHORDALITY AND 2-FACTORS IN TOUGH GRAPH

G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k .

Let G be a graph. If A and B are subsets of V or subgraphs of G, and $v \in V$, we use $e(v, B)$ to denote the number of edges joining v to a vertex of B, and e (A, B) to denote $\sum_{v \in A} e(v, B)$. For disjoint subsets A, B of $\mathrm{V}(\mathrm{G})$ let odd (A, B) denote the number of components H of $G-(A \cup B)$ with $e(H, B)$ odd, and let
$\vartheta(A, B)=2|A|+\sum_{y \in B} d_{G-A}(y)-2|B|-\operatorname{odd}(A, B)$.

A Tutte pair for a graph G is a pair (A, B) of disjoint subsets of $V(\mathrm{G})$ with $\vartheta(\mathrm{A}, \mathrm{B}) \leq-2$.

We define a Tutte pair (A, B) to be minimal if $\vartheta\left(\mathrm{A}, \mathrm{B}^{\prime}\right) \geq 0$ for any proper subset $\mathrm{B}^{\prime} \subseteq \mathrm{B}$.

We also define a Tutte pair (A, B) to be a strong Tutte pair if B is an independent set.

3.1 Lemma

Let v be a simplicial vertex in a non-complete graph G. Then $t(G-v) \geq t(G)$.

Proof

First denote $G-v$ by G_{v}. Note that if G_{v} is complete,
then $\mathrm{t}\left(\mathrm{G}_{\mathrm{v}}\right)=\frac{\left|\mathrm{V}\left(\mathrm{G}_{\mathrm{v}}\right)\right|-1}{2}=\frac{|\mathrm{V}(\mathrm{G})|-2}{2} \geq \mathrm{t}(\mathrm{G})$.

Suppose $\mathrm{t}\left(\mathrm{G}_{\mathrm{v}}\right)<\mathrm{t}(\mathrm{G})$. Then there exists $\mathrm{X} \subseteq \mathrm{V}\left(\mathrm{G}_{\mathrm{v}}\right.$) such that $\omega\left(G_{v}-X\right) \geq 2$ and $\frac{|X|}{\omega\left(G_{v}-X\right)}<t(G)$. However $\omega(\mathrm{G}-\mathrm{X}) \geq \omega\left(\mathrm{G}_{\mathrm{v}}-\mathrm{X}\right) \geq 2$, since the neighbours of v in G induced a complete subgraph. But this gives $\frac{|X|}{\omega(G-X)} \leq \frac{|X|}{\omega\left(G_{v}-X\right)}<t(G)$, a contradiction.

3.2 Theorem

Let G be any graph. Then
(i) For any disjoint set $\mathrm{A}, \mathrm{B} \subseteq \mathrm{V}(\mathrm{G}), \vartheta(\mathrm{A}, \mathrm{B})$ is even;
(ii) The graph G does not contain a 2-factor if and only if $\vartheta(\mathrm{A}, \mathrm{B}) \leq-2$ for some disjoint pair of sets A , $\mathrm{B} \subseteq \mathrm{V}(\mathrm{G})$.

3.3 Lemma

Let G be a graph having no 2-factor. If (A, B) is a minimal Tutte pair for G, then B is an independent set.

3.4 Theorem

Let G be a $\frac{3}{2}$-tough 5 -chordal graph. Then G has a 2factor. Proof Let G be a $\frac{3}{2}$-tough 5-chordal graph having no 2-factor and (A, B) be a strong Tutte pair for G , existing by Lemma 3.3 Thus $\vartheta(\mathrm{A}, \mathrm{B}) \leq-2$. Let $C=V(G)-(A \cup B)$. Since B is an independent set of vertices, $\sum_{y \in B} d_{G-A}(y)=e(B, C)$. Hence by Theorem $3.2,2|\mathrm{~A}|+\mathrm{e}(\mathrm{B}, \mathrm{C}) \leq 2|\mathrm{~B}|+\operatorname{odd}(\mathrm{A}, \mathrm{B})-2$.

Among all possible choices, we choose G and the strong Tutte pair (A, B) as follows:
(i) $|\mathrm{V}(\mathrm{G})|$ is minimal;
(ii) $|\mathrm{E}(\mathrm{G})|$ is maximal, subject to (i);
(iii) $|\mathrm{B}|$ is minimal, subject to (i) and (ii);
(iv) $|\mathrm{A}|$ is maximal, subject to (i), (ii) and (iii).

We now show that G has properties (a)-(g) below.
(a) For any $\mathrm{x} \in \mathrm{B}$ and any component H of [C], $\mathrm{e}(\mathrm{x}, \mathrm{H}) \leq 1$.
Proof of (a)

Let $\mathrm{x} \in \mathrm{B}$ with $\mathrm{d}_{\mathrm{G}-\mathrm{A}}(\mathrm{x})=\mathrm{k}$ and let $\mathrm{C}_{1}, \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{j}}$ denote the components of [C] to which x is adjacent. If $\mathrm{j} \leq \mathrm{k}-1$, delete x from B and add x to C (thus redefining B and C). Since odd (A, B) has decreased by at most $j \leq k-1$, it is easy to check that $\vartheta(A, B)$ has increased by at most 1 . Thus we still have ϑ (A, B) ≤-2 by Theorem 3.2 (i) and we contradict (iii).

(b) The vertices of A are complete.

Proof of (b)

If not, form a new graph G^{\prime} by adding the edges required to make the vertices of a complete. Clearly G^{\prime} is still $\frac{3}{2}$-tough and (A, B) is still a strong Tutte pair for G^{\prime}. Obviously, no chordless cycle of G^{\prime} can contain a vertex of A. Since G is 5-chordal, it follows that G^{\prime} is also 5-chordal. Thus we contradict (ii).
(c) For any $\mathrm{y} \in \mathrm{C}, \mathrm{e}(\mathrm{y}, \mathrm{B}) \geq 1$.

Proof of (c)

Suppose that $\mathrm{e}(\mathrm{y}, \mathrm{B}) \geq 2$ for some $\mathrm{y} \in \mathrm{C}$. Delete y from C and add y to A (thus redefining A and C). It is easy to check that (A, B) remains a strong Tutte pair. Thus we contradict (iv).
(d) Each component of [C] is a complete graph. Proof of (d)
If not, form a new graph G^{\prime} by adding the edges required to make each component $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{s}}$ of [C] a complete graph. Clearly, G^{\prime} is still $\frac{3}{2}$-tough and (A, B) is still a strong Tutte pair for G^{\prime}. Assuming G^{\prime} is not 5-chordal, let C^{*} be a shortest chordless cycle in G^{\prime} of length at least 6 . Clearly C^{*} cannot contain a vertex of A, nor can it have more than two vertices from any component of $[\mathrm{C}]$. Since B is independent, C^{*} is of the form $\mathrm{C}^{*}: \mathrm{b}_{1} \mathrm{~T}_{1}^{\prime} \mathrm{b}_{2} \mathrm{~T}_{2}^{\prime} \ldots \mathrm{b}_{\mathrm{k}} \mathrm{T}_{\mathrm{k}}^{\prime} \mathrm{b}_{1}$,
Where, $1 \leq i \leq k$, each T_{i}^{\prime} represents an edge $t_{i}^{1} t_{i}^{2}$ of a component C_{i} in G^{\prime}.

Form the cycle $\mathrm{C}^{* *}$ in G by taking C^{*} and substituting T_{i} for $T_{i}^{\prime}(1 \leq i \leq k)$, where T_{i} is a shortest $\left(t_{i}^{1}, t_{i}^{2}\right)$ -path in C_{i} in G . The graph G is 5-chordal so $\mathrm{C}^{* *}$ has a chord. Since any chord of $C^{* *}$ must join a vertex of B
and a vertex of C and C^{*} is a chordless cycle in G^{\prime}, we may assume, without loss of generality, that there exists a chord $b_{1} u$ of $C^{* *}$ such that $-u$ is an internal vertex of some T_{i}, say of T_{m}, and -the cycle $b_{1} T_{1} b_{2} T_{2} \ldots b_{m} U b_{1}$, where U is the $\left(\mathrm{t}_{\mathrm{m}}^{1}, \mathrm{u}\right)$-subpath of T_{m}, is chordless.
By (a) we have $1<\mathrm{m}<~ \mathrm{k}$. But then $\mathrm{b}_{1} \mathrm{~T}_{1}^{\prime} \mathrm{b}_{2} \mathrm{~T}_{2}^{\prime} \ldots \mathrm{b}_{\mathrm{m}} \mathrm{t}_{\mathrm{m}}^{1} \mathrm{u} \mathrm{b}_{1}$ is a chordless cycle in G^{\prime} of length at least 6 which is shorter than C^{*}, contradicting the choice of C^{*}. Thus G^{\prime} is 5-chordal and we contradict
(ii).
(e) For any $y \in C, e(y, B)=1$ (and thus e $(B, C)=$ $|C|)$.

Proof of (e)
Suppose now that C contains a vertex y with $\mathrm{e}(\mathrm{y}, \mathrm{B})=$ 0 . It follows from (b) and (d) that v is simplicial. Hence by Lemma 3.1, $\mathrm{t}(\mathrm{G}-\mathrm{y}) \geq \mathrm{t}(\mathrm{G})$. Furthermore, (A, B) is still a strong Tutte pair for the

5-chordal graph $G-y$. Hence, by (i), the graph $G-$ y contradicts the choice of G.
(f) $|B| \geq 2$.

Proof of (f)
We saw earlier that $|\mathrm{B}|>|\mathrm{A}| \geq 0$, and so $|\mathrm{B}| \geq 1$. Suppose $B=\{x\}$. Since (A, B) is a Tutte pair with $|B|$ $=1$ and
$|A|=0$, we have e $(B, C) \leq$ odd (A, B) by (7).
If e $(B, C) \geq 2$,
Then $\omega(G-B) \geq$ odd $(A, B) \geq e(B, C) \geq 2>|B|$, and
G is not 1 -tough. If e $(\mathrm{B}, \mathrm{C})=1$, then G is not 1 -tough either. Hence $|\mathrm{B}| \geq 2$.
(g) $\operatorname{Odd}(\mathrm{A}, \mathrm{B})=\omega([\mathrm{C}])$.

Proof of (g)

Suppose there exists a component C_{i} in [C] with e $\left(\mathrm{C}_{\mathrm{i}}\right.$, $B)=\left|C_{i}\right|$, an even integer. Let y be any vertex in C_{i}. Add y to A, thus redefining A and C , it is easy to see that (A, B) is still a strong Tutte pair for G. Thus we contradict (iv).

Hence G and its minimal Tutte pair (A, B) has properties $(\mathrm{a})-(\mathrm{g})$. Set $\mathrm{s}=\omega([\mathrm{C}])=\operatorname{odd}(\mathrm{A}, \mathrm{B})$.

Consider the components $\mathrm{C}_{1}, \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{s}}$ of [C] and let y_{j} $\in V\left(C_{j}\right)$. Define $X=A \cup C-\left\{y_{1} \ldots y_{s}\right\}$. Since B is independent and e $\left(y_{i}, B\right)=1$ for $1 \leq i \leq s$, we have $\omega(G-X)=|B| \geq 2$. For convenience let $a=|A|$,
$\mathrm{b}=|\mathrm{B}|$ and $\mathrm{c}=|\mathrm{C}|$. Using properties (e), (g) and inequality (7), we have

$$
\begin{align*}
\frac{3}{2} & \leq \frac{|X|}{\omega(G-X)}=\frac{a+c-s}{b} \\
& =\frac{a+e(B, C)-\operatorname{odd}(A, B)}{b} \leq \frac{2 b-a-2}{b} . \tag{8}
\end{align*}
$$

Hence $\mathrm{b} \geq 2 \mathrm{a}+4$.

Claim. $\mathrm{b} \geq \mathrm{c}-\mathrm{s}+1$.
Once the claim is established, it follows that
$\frac{3}{2} \leq \frac{|X|}{\omega(G-X)}=\frac{a+c-s}{b} \leq \frac{a+b-1}{b}$.
Thus $\quad b \leq 2 a-2$.
(9)

The fact that (8) and (9) are contradictory completes the argument.
Proof of Claim

Form a bipartite graph F from G by deleting A and contracting each component of $[\mathrm{C}]$ into a single vertex. By (a), F has no multiple edges. The key observation is that since G is 5-chordal, F is a forest. Otherwise, let C_{F} be a shortest cycle in F. Then C_{F} is of the form $\mathrm{C}_{\mathrm{F}}: \mathrm{b}_{1} \mathrm{~T}_{1} \mathrm{~b}_{2} \mathrm{~T}_{2} \ldots \mathrm{~b}_{\mathrm{p}} \mathrm{T}_{\mathrm{p}} \mathrm{b}_{1}$,

Where each $\mathrm{T}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{p}$, represents the contracted component C_{i}. By (d) and (e), it follows that the 2 edges incident with each T_{i} in C_{F} correspond to edges $b_{i} t_{i}^{1}, b_{i+1} t_{i}^{2}$, where $t_{i}^{1} t_{i}^{2}$ in an edge in C_{i}. If follows that G has a chordless cycle of length at least 6, a contradiction. Hence
$\sum_{\mathrm{v} \in \mathrm{C}} \mathrm{d}_{\mathrm{F}}(\mathrm{v})=\mathrm{c}=|\mathrm{E}(\mathrm{F})| \leq|\mathrm{V}(\mathrm{F})|-1=\mathrm{b}+\mathrm{s}-1$.
Thus $\mathrm{b}+\mathrm{s}-1 \geq \mathrm{c}$ and the claim is established.

IV. CONCLUSION

We conclude that deal with toughness relate to cycles structure are expressed. It is shown that $3 / 2$-tough 5chordal graph G has a 2-factor.

REFERENCES

[1] Bauer, D. and Schmeichel, E., "Toughness, Minimum Degree and the Existence of 2-Factors", J. Graph Theory, pp. 241-256, 1994.
[2] Bondy, J. A. and Murty, U. S. R., "Graph Theory with Applications", the Macmillan Press Ltd, London, 1976
[3] Chartrand, G. and Lesniak. L., "Graphs and Digraphs", Chapman and Hall/CRC, New York, 2005.
[4] Jung, H.A. and Wittmann, P., "Longest Cycle in Tough Graphs", J. Graph Theory 31: pp. 107-127, 1999.
[5] Parthasarathy, K. R., "Basic Graph Theory", Tata McGraw - Hill, Publishing Company Limited, New Delhi, 1994.
[6] Thulasiraman, K. and Swamy, M.N.S., "Graphs: Theory and Algorithms", John Wiley and Sons, Inc. New York, 1992.
[7] Tutte, W.T., "The Factors of Graphs", Canad. J. Math, pp. 314-328, 1952.

