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Abstract- In this paper we mention non separable 

components of longest cycles. And then we establish 

chordality and 2-factor in tough graph. A graph G is 

chordal if it contains no chordless cycle of length at 

least four and is k-chordal if a longest chordless cycle 

in G has length at most k. Finally the result reveals 

that all 3/2-tough 5-chordal graph G with a 2-factor 

are obtained. 

 

Indexed Terms- non separable components, 2-factor, 

induced subgraph, toughness, maximum degree, 

minimum degree, longest cycle, chordal graph, Tutte 

pair. 
 

I. INTRODUCTION 

 

A graph is finite if its vertex set and edge set are finite. 

A graph  H  is a subgraph of  G  if  V(H)  V(G) and 

E(H)  E(G). A complete graph G is a simple graph in 

which every pair of vertices is adjacent.  A bipartite 

graph is one whose vertex set can be partitioned into 

two subsets X and Y, so that each edge has one end in 

X and one end in Y; such a partition       (X, Y) is called 

a bipartition of the graph. A complete bipartite graph 

is a simple bipartite graph with bipartition (X, Y)  in 

which each vertex of  X  is joined to each vertex of  Y 

:  if  |X|  =  m  and  |Y|  =  n, such a graph is denoted 

by  Km,n. 

 

Suppose that V  is a nonempty subset of V. The 

subgraph of  G  whose vertex set is  V  and whose 

edge set is the set of  those edges of  G  that have both 

ends in  V is called the subgraph of  G  induced by  V 

and is denoted by  G[V];  we say that  G[V]  is an 

induced subgraph of  G. Now suppose that E  is a 

nonempty subset of E. The subgraph of  G  whose 

vertex set is the set of  ends of  edges in  E  and whose 

edge set is  E,  is called the subgraph of  G  induced 

by  E  and is denoted by  G[E];  G[E]  is an edge - 

induced subgraph of  G.    A vertex-cut in a graph G is 

a set U of vertices of G such that G − U is 

disconnected. A complete graph has no vertex-cut. 

 

The vertex-connectivity or simply the connectivity 

(G)  of  a graph  G  is the minimum cardinality of a 

vertex-cut of  G  if  G  is not complete , and  (G) =  n 

1  if  G  =  Kn  for some positive integer  n . Hence 

(G) is the minimum number of vertices whose 

removal results in a disconnected or trivial graph. If G 

is either trivial or disconnected, (G) = 0.  G is said to 

be k- connected if (G)   k.   All   non-trivial 

connected   graphs    are 1 -connected.        If  G  is non 

complete graph and  t  is a nonnegative real number 

such that    t  
)SG(

|S|


  for every vertex - cut  S  of  

G , then  G  is defined  to  be t -tough. If G is a t - tough 

graph and s is a nonnegative real number such that s < 

t, then G is also s-tough. The maximum real number  t 

for which a graph  G  is a  t-tough  is called the 

toughness of  G  and is denoted by  t(G) . A connected 

graph with at least one cut vertex is called a separable 

graph, otherwise it is no separable. ). The degree (or 

valence) of a vertex v in G is the number of edges of 

G incident with v, each loop counting as two edges. 

 

We denote by (G) and G  
the minimum and 

maximum degrees, respectively of vertices of G. The 

set of neighbours of a subgraph H of G , denoted N(H), 

is the set of vertices in V(G)  V(H) adjacent to at least 

one vertex of H ; d(H)  |N(H)| is the degree of a 

subgraph H of G. 

 

II. NONSEPARABLE COMPONENTS 

 

We still have to investigate non separable components 

of longest cycles. For an induced subgraph H of G, we 

set  
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 G H H G HX(H) x N (H) : N (x, x ) 2 for each x N (H) {x} 
     

And  G H X(H)Y(H) y V(H) : N (y)    . 

 

Notice that, in fact,
G H X(H)N (y) 

  2 for all y  Y 

(H). 

 

If V (H) =Y (H), set
H v V(H)max d(v)  . 

Otherwise, let
H X(H) Y(H)  . 

 

If
G HN (H) V(G H)    and V(H)   Y(H), then  

X(H)  Y(H) is a vertex-cut of G. Anyway, 

 
H   G   2t, where G  denotes the connectivity 

of G. 

 

2.1 Lemma 

Let C be a cycle in a graph G such that h c(G) C ,   

and let H be a component of G – C. Further, let 
1 2x ,x  

be distinct vertices on C and let 
1 H 1v N (x ),  

2 H 2v N (x ).  Let P be a longest 
1 2(v ,v ) -path in H, 

and let  1 2Q Q z ,z  be a C-arc from  1 2C x , x  to 

 2 1C x , x  such that Q P .  Then  

(i)
1 2 H 1 2C(x , x ) D (v , v ) 1 h    And  

(ii) 

1 1 2 2 H 1 2C(x ,z ) C(x ,z ) D (v , v ) 1 ( Q 2) h.     

 

2.2 Lemma 

Let C be a longest cycle in a 2-connected graph G, and 

let H be a 2-connected component of G  C such that 

C  < (t + 1) 
H( D(H))   + t. Then D < 2t and  

C  
H(D(H) 2) min(D(H) 2, t 1)     .     (1) 

Proof 

 

We fix a cyclic orientation on C and abbreviate X = X 

(H), Y = Y (H), and D = D (H). Note that D  2, since 

H is 2-connected. 

 

If D  2t and (1), we obtain a contradiction to the 

hypothesis of Lemma 2.2, since 

H(D 2)  = H H
H

2 2
D D 2

2 2

   
    

H(D 2)   (t + 1)D + t (
H  2) + 2

H  

       (t + 1) (D +
H ). 

Therefore, it suffices to show (1). 

 

For x
CN (H) , let 

*x denote the first vertex on C (x, 

x] such that
*x 

CN (H) . Let X  denote the set of all x 

 
CN (H)  such that *

HN (x, x )   2 and label 

 X  =
1 m{x , ,x }, according to the given orientation. 

Then *

i iC(x , x )   D + 1 Lemma 2.1 therefore  

C  = m (D + 2) + R1, where R1  2
C X

N (H)


.      (2) 

 

If m >
H , then (2) immediately yields (1). For the rest 

of the proof, let m = H . Then, for each y  Y, there 

exists a unique vertex 
C X

ˆŷ N (y) X  and, therefore, 

H j kN (x , x )   2 for any distinct
j kx , x X . 

 

Consider a C-arc Q=
j kQ[z ,z ]  between distinct 

segments 
j j 1C(x ,x )

 and 
k k 1C(x ,x )

 such that 

 Q V (H) = .By Lemma 2.1, we have  

j j k kC(x ,z ) C(x , z )   D + 1.     (3) 

Since 
H j 1 k 1N (x , x ) 

  2, we are allowed to use the 

same argument with the orientation of C reversed. 

Therefore 

j j 1 k k 1C(z , x ) C(z , x )    D + 1 and, by (3) 

j j 1 k k 1C(x , x ) C(x , x )    2D + 4. (4) 

If R1  1, then clearly 
CN (H)  = X  and, by (4), there 

is no C-arc Q between distinct segments of the for 

i i 1C(x ,x )
. In this case, t  

m

m 1
 and (2) yields a 

contradiction, since 

m (D + 2)  2m + 2D = 2m 1

m 1




(m + D) + 1

m 1
(m + 

D) > (t + 1) ( H D  ) + 1. 

For the rest of the proof, let us assume 2  R1 < t + 1. 
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 For h = 0, 1, set                

 h j j j 1X x X : C(x ,x ) D 1 h     , and let

2 0 1
ˆX X (X X )  . 

 

For
i 0x X , set

i i 1w x  . If 
1X   pick

s 1x X , 

set  = 1 and
S s 1w x

 . 

 

If
1X  , set =0. Further, let i iw x  for

i 0 s
ˆx X (X {x })  . 

 

It readily follows from (3) and (4) that there is no C-

arc Q between distinct segments of the form
i iC(x ,w )

. Therefore, G  
m

i i 1
i 1

V C[w , x ]


 
 
 

 has at least m + 

1 components and, consequently, 

t (m + 1)  
m

i i
i 1

C V C(x , w )


 
  

 
. 

Hence C   (t + 1) m + t +  0X   D.           (5) 

 

As 
1 2X 2 X   R1 < t + 1  m 2

2

 . We have 

1 2X 2 X   
m 1

2


, by (5) and the hypothesis of 

Lemma 2.2 also 0X    < t + 1, and, hence,  

0X     m 1

2

 . Now  

0 1 2X X 2 X      m + 1 and  
2X     1. 

On the other hand, 
2X     1, since R1 > 0. 

Consequently,  
2X    = 1 and 

0X    = 
1 2X 2 X  = 

m 1

2


. (6) 

 

If 
2X  =   then Y =, and G  X  = G  X has at least 

0X 2  components. In this event, 

1 < t  

0

m

X 2
 = 0

0

2 X 1

X 2





 < 2, 

But 
0X    = 

0X 1  < t + 1 and, therefore, 
0X  = 1,  

A contradiction. 

 

Hence, in fact, 2X  = 1 and  = 0. Consequently, 

1X  =  and, by (6),    m = 3  2t. Since D  2, 

 We obtain from (2) 

C = 5

2
(D + 3)  5

2
 + 

1

2
(D + 2) + R1 (t + 1) (m + 

D) + 3

2
. This contradiction completes the proof of 

Lemma 2.2. 

 

III. CHORDALITY AND 2-FACTORS IN 

TOUGH GRAPH 

 

G is chordal if it contains no chordless cycle of length 

at least four and is k-chordal if a longest chordless 

cycle in G has length at most k. 

 

Let G be a graph. If A and B are subsets of V or 

subgraphs of G, and v  V, we use e (v, B) to denote 

the number of edges joining v to a vertex of B, and e 

(A, B) to denote

v A

e(v, B)


 . For disjoint subsets A, B 

of V (G) let odd (A, B) denote the number of 

components H of G  (A B) with e (H, B) odd, and 

let  

ϑ (A, B) = 
G A

y B

2 A d (y) 2 B odd(A,B)



   . 

 

A Tutte pair for a graph G is a pair (A, B) of disjoint 

subsets of V (G) with ϑ (A, B)   2. 

 

We define a Tutte pair (A, B) to be minimal if  

ϑ (A, B)  0 for any proper subset B  B.  

 

We also define a Tutte pair (A, B) to be a strong Tutte 

pair if B is an independent set. 

 

3.1 Lemma 

Let v be a simplicial vertex in a non-complete graph 

G. Then t (G  v)  t (G). 

Proof 

 

First denote G  v by
vG . Note that if 

vG  is complete, 

then t (
vG ) = vV(G ) 1

2


 = 

V(G) 2

2


  t (G). 
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Suppose t (
vG ) < t (G). Then there exists X  V (

vG

) such that (
vG   X)  2 and 

v

X

(G X) 
 < t (G).  

However (G  X)  (
vG   X)  2, since the 

neighbours of v in G induced a complete subgraph. But 

this gives  X

(G X) 
  

v

X

(G X) 

 < t (G), a 

contradiction. 

 

3.2 Theorem 

Let G be any graph. Then 

(i) For any disjoint set A, B  V (G), ϑ (A, B) is 

even;  

(ii) The graph G does not contain a 2-factor if and 

only if ϑ  (A, B)   2 for some disjoint pair of sets A, 

B  V (G). 

   

3.3 Lemma 

Let G be a graph having no 2-factor. If (A, B) is a 

minimal Tutte pair for G, then B is an independent set. 

 

3.4 Theorem 

Let G be a 3

2
-tough 5-chordal graph. Then G has a 2-

factor. Proof   Let G be a 3

2
-tough 5-chordal graph 

having no 2-factor and (A, B) be a strong Tutte pair 

for G, existing by Lemma 3.3 Thus ϑ (A, B) 2. Let

C V(G) (A B).   Since B is an independent set of 

vertices,
G A

y B

d (y)



  = e (B, C). Hence by Theorem 

3.2, 2 A  + e(B, C)  2 B  + odd(A, B)  2. (7) 

 

Among all possible choices, we choose G and the 

strong Tutte pair (A, B) as follows: 

(i) V(G)  is minimal; 

(ii) E(G)  is maximal, subject to (i); 

(iii) B  is minimal, subject to (i) and (ii); 

(iv) A  is maximal, subject to (i), (ii) and (iii). 

We now show that G has properties (a)-(g) below. 

(a)  For any x  B and any component H of [C],  

      e(x, H)  1. 

Proof of (a) 

Let x  B with G Ad (x)  = k and let C1, C2. . . Cj 

denote the components of [C] to which x is adjacent. 

If j  k  1, delete x from B and add x to C (thus 

redefining B and C). Since odd (A, B) has decreased 

by at most j  k  1, it is easy to check    that ϑ (A, B) 

has increased by at most 1. Thus we still have ϑ (A, B) 

  2 by Theorem 3.2 (i) and we contradict (iii).  

 

(b) The vertices of A are complete. 

Proof of (b) 

 

If not, form a new graph G by adding the edges 

required to make the vertices of a complete. Clearly G 

is still 3

2
-tough and (A, B) is still a strong Tutte pair 

for G. Obviously, no chordless cycle of G can contain 

a vertex of A. Since G is 5-chordal, it follows that G 

is also 5-chordal. Thus we contradict (ii). 

 

(c) For any y  C, e(y, B)  1. 

Proof of (c) 

 

Suppose that e(y, B)  2 for some y  C. Delete y from 

C and add y to A   (thus redefining A and C). It is easy 

to check that (A, B) remains a strong Tutte pair. Thus 

we contradict (iv).  

 

(d) Each component of [C] is a complete graph.  

Proof of (d) 

If not, form a new graph G by adding the edges 

required to make each component C1, C2, . . ., Cs of [C] 

a complete graph. Clearly, G is still 3

2
-tough and (A, 

B) is still a strong Tutte pair for G. Assuming G is not 

5-chordal, let C* be a shortest chordless cycle in G of 

length at least 6. Clearly C* cannot contain a vertex of 

A, nor can it have more than two vertices from any 

component of [C]. Since B is independent, C* is of the 

form C*:
1 1 2 2 k k 1b T b T b T b   , 

Where, 1  i  k, each 
iT  represents an edge 

1 2

i it t  of 

a component Ci in G. 

 

Form the cycle C** in G by taking C* and substituting

iT  for iT  (1  i  k), where iT  is a shortest 
1 2

i i(t , t )

-path in Ci in G. The graph G is 5-chordal so C** has a 

chord. Since any chord of C** must join a vertex of B 
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and a vertex of C and C* is a chordless cycle in G, we 

may assume, without loss of generality, that there 

exists a chord b1u  of C** such that 

-u is an internal vertex of some
iT , say of

mT , and 

-the cycle
1 1 2 2 m 1b T b T b Ub , where U is the

1

m(t , u) -subpath of
mT , is chordless. 

By (a) we have 1<m< k. But then 
1

1 1 2 2 m m 1b T b T b t u b   is a chordless cycle in G 

of length at least 6 which is shorter than C*, 

contradicting the choice of C*. Thus G is 5-chordal 

and we contradict  

(ii). 

(e) For any y  C, e(y, B) = 1 (and thus e (B, C) =

C ). 

Proof of (e) 

Suppose now that C contains a vertex y with e(y, B) = 

0. It follows from (b) and (d) that v is simplicial. Hence 

by Lemma 3.1, t (G  y)  t (G). Furthermore,    (A, 

B) is still a strong Tutte pair for the  

5-chordal graph G  y. Hence, by (i), the graph   G  

y contradicts the choice of G. 

(f) B   2. 

Proof of (f) 

We saw earlier that B  > A   0, and so B   1. 

Suppose B = {x}. Since (A, B) is a Tutte pair with B

= 1 and  

A  = 0, we have e (B, C)  odd (A, B) by (7). 

 If e (B, C)  2, 

 Then (G  B)  odd (A, B)  e (B, C)  2 > B , and 

G is not 1-tough. If e (B, C) = 1, then G is not 1-tough 

either. Hence B   2. 

(g) Odd (A, B) = ([C]). 

Proof of (g) 

 

Suppose there exists a component Ci in [C] with e (Ci, 

B) = iC , an even integer. Let y be any vertex in Ci. 

Add y to A, thus redefining A and C, it is easy to see 

that (A, B) is still a strong Tutte pair for G. Thus we 

contradict (iv). 

 

Hence G and its minimal Tutte pair (A, B) has 

properties (a)-(g). Set   s = ([C]) = odd (A, B). 

Consider the components C1, C2. . . Cs of [C] and let yj 

 V (Cj). Define   X = A  C  {y1. . . ys}. Since B is 

independent and e (yi, B) = 1 for 1  i  s, we have 

(G  X) = B   2. For convenience let a = A , 

 b = B  and c = C . Using properties (e), (g) and 

inequality (7), we have 

       3

2
 X

(G X) 
=

a c s

b

 
  

          = a e(B,C) odd(A,B)

b

    2b a 2

b

  . 

Hence b  2a + 4.         (8) 

 

Claim.  b  c  s + 1. 

Once the claim is established, it follows that 

3

2
  X

(G X) 

 = 
a c s

b

 
  

a b 1

b

 
. 

Thus   b  2a  2.                                        

(9) 

The fact that (8) and (9) are contradictory completes 

the argument. 

Proof of Claim 

 

Form a bipartite graph F from G by deleting A and 

contracting each component of [C] into a single vertex. 

By (a), F has no multiple edges. The key observation 

is that since G is 5-chordal, F is a forest. Otherwise, let 

FC  be a shortest cycle in F. Then FC  is of the form 

FC : 
1 1 2 2 p p 1b T b T b T b , 

Where each iT , 1  i  p, represents the contracted 

component iC . By (d) and (e), it follows that the 2 

edges incident with each iT  in FC  correspond to 

edges
1 2

i i i 1 ib t , b t , where 
1 2

i it t  in an edge in iC . If 

follows that G has a chordless cycle of length at least 

6, a contradiction. Hence 

 

F

v C

d (v)


  = c = E(F)   V(F)   1 = b + s  1. 

Thus b + s  1  c and the claim is established. 
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IV. CONCLUSION 

 

We conclude that deal with toughness relate to cycles 

structure are expressed. It is shown that 3/2-tough 5-

chordal graph G has a 2-factor. 
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