No Separable Components, Chordality and 2-Factors in Tough Graphs

SAN SAN TINT¹, KHAING KHAING SOE WAI²

^{1, 2}Department of Engineering Mathematics, Technological University, Myitkyina, Myanmar.

Abstract- In this paper we mention non separable components of longest cycles. And then we establish chordality and 2-factor in tough graph. A graph G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k. Finally the result reveals that all 3/2-tough 5-chordal graph G with a 2-factor are obtained.

Indexed Terms- non separable components, 2-factor, induced subgraph, toughness, maximum degree, minimum degree, longest cycle, chordal graph, Tutte pair.

I. INTRODUCTION

A graph is finite if its vertex set and edge set are finite. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A complete graph G is a simple graph in which every pair of vertices is adjacent. A bipartite graph is one whose vertex set can be partitioned into two subsets X and Y, so that each edge has one end in X and one end in Y; such a partition (X, Y) is called a bipartition of the graph. A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y if |X| = m and |Y| = n, such a graph is denoted by $K_{m,n}$.

Suppose that V' is a nonempty subset of V. The subgraph of G whose vertex set is V' and whose edge set is the set of those edges of G that have both ends in V' is called the subgraph of G induced by V' and is denoted by G[V']; we say that G[V'] is an induced subgraph of G. Now suppose that E' is a nonempty subset of E. The subgraph of G whose vertex set is the set of ends of edges in E' and whose edge set is E', is called the subgraph of G induced by E' and is denoted by G[E']; G[E'] is an edge -

induced subgraph of G. A vertex-cut in a graph G is a set U of vertices of G such that G-U is disconnected. A complete graph has no vertex-cut.

The vertex-connectivity or simply the connectivity $\kappa(G)$ of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete , and $\kappa(G)=n-1$ if $G=K_n$ for some positive integer n . Hence $\kappa(G)$ is the minimum number of vertices whose removal results in a disconnected or trivial graph. If G is either trivial or disconnected, $\kappa(G)=0$. G is said to be k- connected if $\kappa(G) \geq k$. All non-trivial connected graphs are 1-connected. If G is non complete graph and t is a nonnegative real number such that $t \leq \frac{|S|}{\omega(G-S)}$ for every vertex - cut S of

G, then G is defined to be t-tough. If G is a t-tough graph and s is a nonnegative real number such that s < t, then G is also s-tough. The maximum real number t for which a graph G is a t-tough is called the toughness of G and is denoted by t(G). A connected graph with at least one cut vertex is called a separable graph, otherwise it is no separable.). The degree (or valence) of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges.

We denote by $\delta(G)$ and μ_G the minimum and maximum degrees, respectively of vertices of G. The set of neighbours of a subgraph H of G, denoted N(H), is the set of vertices in V(G)-V(H) adjacent to at least one vertex of H; d(H)=|N(H)| is the degree of a subgraph H of G.

II. NONSEPARABLE COMPONENTS

We still have to investigate non separable components of longest cycles. For an induced subgraph H of G, we set

Therefore, it suffices to show (1).

$$\begin{split} X(H) = & \left\{ x \in N_{_{G-H}}(H) : \left| N_{_{H}}(x,x') \right| \ge 2 \text{ for each } x' \in N_{_{G-H}}(H) - \{x\} \right\} \ \mu_H(D+2) \ge (t+1)D + t \ (\mu_H - 2) + 2 \ \mu_H \\ \text{And } Y(H) = & \left\{ y \in V(H) : N_{_{G-H-X(H)}}(y) \ne \varnothing \right\}. \end{aligned} \\ \ge (t+1) \ (D+\mu_H). \end{split}$$

Notice that, in fact, $\left|N_{G-H-X(H)}(y)\right| \geq 2$ for all $y \in Y$ (H).

$$\begin{split} &\mathrm{If}\quad V\quad (H)\quad =Y\quad (H),\quad \det\mu_H\,=\,max_{v\in V(H)}\,d(v)\,.\\ &\mathrm{Otherwise},\, l\mathrm{et}\,\mu_H\,=\,\left|X(H)\bigcup Y(H)\right|. \end{split}$$

If $N_{G-H}(H) \neq V(G-H)$ and $V(H) \neq Y(H)$, then $X(H) \bigcup Y(H)$ is a vertex-cut of G. Anyway,

 $\mu_H \geq \kappa_G \geq 2t$, where κ_G denotes the connectivity of G.

2.1 Lemma

Let C be a cycle in a graph G such that h = c(G) - |C|, and let H be a component of G - C. Further, let x_1, x_2 be distinct vertices on C and let $v_1 \in N_H(x_1)$, $v_2 \in N_H(x_2)$. Let P be a longest (v_1, v_2) -path in H, and let $Q = Q[z_1, z_2]$ be a C-arc from $C(x_1, x_2]$ to $C(x_2, x_1]$ such that $Q \cap P = \emptyset$. Then

(i)
$$|C(x_1, x_2)| \ge D_H(v_1, v_2) + 1 - h$$
 And (ii)

$$|C(x_1, z_1)| + |C(x_2, z_2)| \ge D_H(v_1, v_2) + 1 + (|Q| - 2) - h.$$

2.2 Lemma

Let C be a longest cycle in a 2-connected graph G, and let H be a 2-connected component of G – C such that $\left|C\right|<(t+1)\ (\mu_H+D(H))+t.\ \text{Then}\ D<2t\ \text{and}$ $\left|C\right|\geq\mu_H(D(H)+2)+min(D(H)+2,\ t+1)\,. \tag{1}$ Proof

We fix a cyclic orientation on C and abbreviate X = X (H), Y = Y (H), and D = D (H). Note that $D \ge 2$, since H is 2-connected.

If $D \ge 2t$ and (1), we obtain a contradiction to the hypothesis of Lemma 2.2, since

$$\mu_{\rm H}(D+2) = \frac{\mu_{\rm H} + 2}{2} D + D \frac{\mu_{\rm H} - 2}{2} + 2\mu_{\rm H}$$

For $x \in N_C(H)$, let x^* denote the first vertex on C(x, x] such that $x^* \in N_C(H)$. Let X denote the set of all $x \in N_C(H)$ such that $\left|N_H(x, x^*)\right| \ge 2$ and label

$$\begin{split} X = & \{x_1, \dots, x_m\}, \text{ according to the given orientation.} \end{split}$$
 Then $\left|C(x_i, x_i^*)\right| \geq D + 1$ Lemma 2.1 therefore
$$\left|C\right| = m \ (D+2) + R_1, \text{ where } R1 \geq 2 \left|N_{C, X}(H)\right|. \tag{2} \end{split}$$

If m > μ_H , then (2) immediately yields (1). For the rest of the proof, let m = μ_H . Then, for each $y \in Y$, there exists a unique vertex $\hat{y} \in N_{C-X}(y) \cap \hat{X}$ and, therefore, $\left|N_H(x_{_{_{\! 1}}},x_{_{_{\! k}}})\right| \geq 2$ for any distinct $x_{_{_{\! 1}}},x_{_{_{\! k}}} \in X$.

Consider a C-arc $Q=Q[z_j,z_k]$ between distinct segments $C(x_j,x_{j+1})$ and $C(x_k,x_{k+1})$ such that

$$Q \cap V(H) = \emptyset$$
.By Lemma 2.1, we have

$$\left| C(x_j, z_j) \right| + \left| C(x_k, z_k) \right| \ge D + 1. \tag{3}$$

Since $\left|N_{H}(x_{j+1}, x_{k+1})\right| \ge 2$, we are allowed to use the same argument with the orientation of C reversed. Therefore

$$\left| C(z_{i}, x_{i+1}) \right| + \left| C(z_{k}, x_{k+1}) \right| \ge D + 1 \text{ and, by (3)}$$

$$\left| C(x_i, x_{i+1}) \right| + \left| C(x_k, x_{k+1}) \right| \ge 2D + 4.$$
 (4)

If $R_1 \le 1$, then clearly $N_C(H) = X$ and, by (4), there is no C-arc Q between distinct segments of the for

$$C(\boldsymbol{x}_{_{i}},\boldsymbol{x}_{_{i+1}})$$
 . In this case, $t \leq \frac{m}{m+1}$ and (2) yields a

contradiction, since

$$m (D + 2) \ge 2m + 2D = \frac{2m + 1}{m + 1}(m + D) + \frac{1}{m + 1}(m + D)$$

$$\mathrm{D}) \! > \! (t+1) \, (\, \mu_{\mathrm{H}} + D \,) + 1.$$

For the rest of the proof, let us assume $2 \le R_1 < t + 1$.

For
$$h = 0$$
, 1, set $X_h = \{x_j \in X : |C(x_j, x_{j+1})| = D + 1 + h\}$, and let $X_2 = \hat{X} - (X_0 \bigcup X_1)$.

For
$$x_i \in X_0$$
, set $w_i = x_{i+1}$. If $x_{i} \neq \varnothing$ pick $x_s \in X_1$, set $\epsilon = 1$ and $w_S = x_{s+1}^-$.

$$\begin{split} &\text{If } X_{_1\,=\,\varnothing}, \quad \text{set} \quad \epsilon=0. \quad \text{Further,} \quad \text{let} \quad \ w_{_i}=X_{_i}^{^{++}} \quad \text{for} \\ &x_{_i}\in \hat{X}-(X_{_0}\bigcup\{x_{_s}\}) \ . \end{split}$$

It readily follows from (3) and (4) that there is no Carc Q between distinct segments of the form $C(x_i, w_i)$

. Therefore,
$$G - \left. V \! \left(\bigcup\limits_{i=1}^m C[w_i, x_{i+1}] \right) \right.$$
 has at least m +

1 components and, consequently,

$$t (m+1) \leq |C| - \left| V \left(\bigcup_{i=1}^{m} C(x_i, w_i) \right) \right|.$$

Hence
$$|C| \ge (t+1) m + t + (|X_0| + \epsilon) D.$$
 (5)

As
$$|X_1|+2|X_2| \le R_1 < t + 1 \le \frac{m+2}{2}$$
. We have

$$|X_1| + 2|X_2| \le \frac{m+1}{2}$$
, by (5) and the hypothesis of

Lemma 2.2 also $|\mathbf{X}_0| + \varepsilon < t + 1$, and, hence,

$$|X_0| + \varepsilon \le \frac{m+1}{2}$$
. Now

$$\left|X_{\scriptscriptstyle 0}\right| + \left|X_{\scriptscriptstyle 1}\right| + 2\left|X_{\scriptscriptstyle 2}\right| + \epsilon \, \leq m + 1 \, \, \text{and} \, \, \, \left|X_{\scriptscriptstyle 2}\right| + \epsilon \, \leq 1.$$

On the other hand, $|X_2|+\epsilon \ge 1$, since $R_1 > 0$.

Consequently, $|X_2| + \varepsilon = 1$ and

$$|X_0| + \varepsilon = |X_1| + 2|X_2| = \frac{m+1}{2}.$$
 (6)

If $X_2 = \emptyset$ then $Y = \emptyset$, and G - X = G - X has at least $|X_0| + 2$ components. In this event,

$$1 < t \le \frac{m}{|X_0| + 2} = \frac{2|X_0| + 1}{|X_0| + 2} < 2,$$

But $|X_0|+\epsilon = |X_0|+1 < t+1$ and, therefore, $|X_0| = 1$, A contradiction.

Hence, in fact,
$$\left|X_{2}\right|=1$$
 and $\epsilon=0$. Consequently, $X_{1}=\varnothing$ and, by (6), $m=3\geq2t$. Since $D\geq2$, We obtain from (2)

$$|C| = \frac{5}{2}(D+3) - \frac{5}{2} + \frac{1}{2}(D+2) + R_1 \ge (t+1)(m+1)$$

D) $+\frac{3}{2}$. This contradiction completes the proof of

Lemma 2.2.

III. CHORDALITY AND 2-FACTORS IN TOUGH GRAPH

G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k.

Let G be a graph. If A and B are subsets of V or subgraphs of G, and $v \in V$, we use e(v, B) to denote the number of edges joining v to a vertex of B, and e(A, B) to denote $\sum_{v \in A} e(v, B)$. For disjoint subsets A, B

of V (G) let odd (A, B) denote the number of components H of $G-(A\cup B)$ with e (H, B) odd, and let

$$\vartheta(A, B) = 2|A| + \sum_{y \in B} d_{G-A}(y) - 2|B| - odd(A, B)$$

A Tutte pair for a graph G is a pair (A, B) of disjoint subsets of V (G) with $\vartheta(A, B) \le -2$.

We define a Tutte pair (A, B) to be minimal if $\vartheta(A, B') \ge 0$ for any proper subset $B' \subseteq B$.

We also define a Tutte pair (A, B) to be a strong Tutte pair if B is an independent set.

3.1 Lemma

Let v be a simplicial vertex in a non-complete graph G. Then $t(G - v) \ge t(G)$.

Proof

First denote G - v by G_v . Note that if G_v is complete,

then
$$t(G_v) = \frac{|V(G_v)|-1}{2} = \frac{|V(G)|-2}{2} \ge t(G)$$
.

Suppose t $(G_v) < t$ (G). Then there exists $X \subseteq V$ (G_v)

However $\omega(G-X) \geq \omega(G_v-X) \geq 2$, since the neighbours of v in G induced a complete subgraph. But this gives $\frac{|X|}{\omega(G-X)} \leq \frac{|X|}{\omega(G_v-X)} < t$ (G), a

contradiction.

3.2 Theorem

Let G be any graph. Then

- (i) For any disjoint set A, B \subseteq V (G), ϑ (A, B) is even;
- (ii) The graph G does not contain a 2-factor if and only if ϑ (A, B) \leq 2 for some disjoint pair of sets A, B \subset V (G).

3.3 Lemma

Let G be a graph having no 2-factor. If (A, B) is a minimal Tutte pair for G, then B is an independent set.

3.4 Theorem

Let G be a $\frac{3}{2}$ -tough 5-chordal graph. Then G has a 2-

factor. Proof Let G be a $\frac{3}{2}$ -tough 5-chordal graph

having no 2-factor and (A, B) be a strong Tutte pair for G, existing by Lemma 3.3 Thus ϑ (A, B) \leq -2. Let $C = V(G) - (A \cup B)$. Since B is an independent set of vertices, $\sum_{y \in B} d_{G-A}(y) = e$ (B, C). Hence by Theorem

$$3.2, \, 2\big|A\big| \, + e(B,\,C) \leq 2\big|B\big| \, + odd(A,\,B) - 2. \tag{7}$$

Among all possible choices, we choose G and the strong Tutte pair (A, B) as follows:

- (i) |V(G)| is minimal;
- (ii) |E(G)| is maximal, subject to (i);
- (iii) |B| is minimal, subject to (i) and (ii);
- (iv) |A| is maximal, subject to (i), (ii) and (iii).

We now show that G has properties (a)-(g) below.

(a) For any $x \in B$ and any component H of [C], $e(x, H) \le 1$.

Proof of (a)

Let $x \in B$ with $d_{G-A}(x) = k$ and let $C_1, C_2, \ldots C_j$ denote the components of [C] to which x is adjacent. If $j \le k-1$, delete x from B and add x to C (thus redefining B and C). Since odd (A, B) has decreased by at most $j \le k-1$, it is easy to check that ϑ (A, B) has increased by at most 1. Thus we still have ϑ (A, B) ≤ -2 by Theorem 3.2 (i) and we contradict (iii).

(b) The vertices of A are complete. Proof of (b)

If not, form a new graph G' by adding the edges required to make the vertices of a complete. Clearly G' is still $\frac{3}{2}$ -tough and (A, B) is still a strong Tutte pair

for G'. Obviously, no chordless cycle of G' can contain a vertex of A. Since G is 5-chordal, it follows that G' is also 5-chordal. Thus we contradict (ii).

(c) For any $y \in C$, $e(y, B) \ge 1$. Proof of (c)

Suppose that $e(y, B) \ge 2$ for some $y \in C$. Delete y from C and add y to A (thus redefining A and C). It is easy to check that (A, B) remains a strong Tutte pair. Thus we contradict (iv).

(d) Each component of [C] is a complete graph. Proof of (d)

If not, form a new graph G' by adding the edges required to make each component C_1, C_2, \ldots, C_s of [C] a complete graph. Clearly, G' is still $\frac{3}{2}$ -tough and (A,

B) is still a strong Tutte pair for G'. Assuming G' is not 5-chordal, let C^* be a shortest chordless cycle in G' of length at least 6. Clearly C^* cannot contain a vertex of A, nor can it have more than two vertices from any component of [C]. Since B is independent, C^* is of the form C^* : $b_1 T_1' b_2 T_2' \dots b_k T_k' b_1$,

Where, $1 \le i \le k$, each T'_i represents an edge $t_i^1 t_i^2$ of a component C_i in G'.

Form the cycle C^{**} in G by taking C^{*} and substituting T_{i} for T'_{i} $(1 \le i \le k)$, where T_{i} is a shortest (t_{i}^{1}, t_{i}^{2}) -path in C_{i} in G. The graph G is 5-chordal so C^{**} has a chord. Since any chord of C^{**} must join a vertex of B

and a vertex of C and C^* is a chordless cycle in G', we may assume, without loss of generality, that there exists a chord b_1u of C^{**} such that

-u is an internal vertex of some $\boldsymbol{T}_{\!_{\boldsymbol{i}}}$, say of $\boldsymbol{T}_{\!_{\boldsymbol{m}}}$, and

-the cycle $b_1 T_1 b_2 T_2 \dots b_m U b_1$, where U is the (t_m^1, u) -subpath of T_m , is chordless.

By (a) we have 1 < m < k. But then $b_1 T_1' \ b_2 T_2' \dots b_m \ t_m^1 \ u \ b_1$ is a chordless cycle in G' of length at least 6 which is shorter than C^* , contradicting the choice of C^* . Thus G' is 5-chordal and we contradict

(ii).

(e) For any $y \in C$, e(y, B) = 1 (and thus e(B, C) = |C|).

Proof of (e)

Suppose now that C contains a vertex y with e(y, B) = 0. It follows from (b) and (d) that v is simplicial. Hence by Lemma 3.1, t $(G - y) \ge t$ (G). Furthermore, (A, B) is still a strong Tutte pair for the

5-chordal graph G - y. Hence, by (i), the graph G - y contradicts the choice of G.

(f)
$$|\mathbf{B}| \ge 2$$
.

Proof of (f)

= 1 and

We saw earlier that $|B| > |A| \ge 0$, and so $|B| \ge 1$.

Suppose $B = \{x\}$. Since (A, B) is a Tutte pair with |B|

|A| = 0, we have $e(B, C) \le odd(A, B)$ by (7).

If $e(B, C) \ge 2$,

Then $\omega(G-B) \ge \text{odd }(A,B) \ge \text{e }(B,C) \ge 2 > |B|$, and G is not 1-tough. If e (B,C) = 1, then G is not 1-tough either. Hence $|B| \ge 2$.

(g) Odd (A, B) = $\omega([C])$. Proof of (g)

Suppose there exists a component C_i in [C] with $e(C_i, B) = |C_i|$, an even integer. Let y be any vertex in C_i . Add y to A, thus redefining A and C, it is easy to see that (A, B) is still a strong Tutte pair for G. Thus we contradict (iv).

Hence G and its minimal Tutte pair (A, B) has properties (a)-(g). Set $s = \omega([C]) = \text{odd } (A, B)$.

Consider the components $C_1, C_2, \ldots C_s$ of [C] and let $y_j \in V(C_j)$. Define $X = A \cup C - \{y_1, \ldots, y_s\}$. Since B is independent and $e(y_i, B) = 1$ for $1 \le i \le s$, we have $\omega(G - X) = |B| \ge 2$. For convenience let a = |A|,

b = |B| and c = |C|. Using properties (e), (g) and inequality (7), we have

$$\frac{3}{2} \le \frac{|X|}{\omega(G-X)} = \frac{a+c-s}{b}$$

$$= \frac{a+e(B,C)-\text{odd}(A,B)}{b} \le \frac{2b-a-2}{b}.$$
Hence $b \ge 2a+4$.

Claim. $b \ge c - s + 1$.

Once the claim is established, it follows that

$$\frac{3}{2} \leq \frac{|X|}{\omega(G-X)} = \frac{a+c-s}{b} \leq \frac{a+b-1}{b} \,.$$

Thus $b \le 2a - 2$.

(9)

The fact that (8) and (9) are contradictory completes the argument.

Proof of Claim

Form a bipartite graph F from G by deleting A and contracting each component of [C] into a single vertex. By (a), F has no multiple edges. The key observation is that since G is 5-chordal, F is a forest. Otherwise, let C_F be a shortest cycle in F. Then C_F is of the form C_F : $b_1 T_1 b_2 T_2 \dots b_p T_p b_1$,

Where each T_i , $1 \leq i \leq p$, represents the contracted component C_i . By (d) and (e), it follows that the 2 edges incident with each T_i in C_F correspond to edges b_i t_i^1 , b_{i+1} t_i^2 , where t_i^1 t_i^2 in an edge in C_i . If follows that G has a chordless cycle of length at least 6, a contradiction. Hence

$$\sum_{v \in C} d_F(v) = c = \left| E(F) \right| \leq \left| V(F) \right| \, -1 = b+s-1.$$

Thus $b + s - 1 \ge c$ and the claim is established.

(8)

IV. CONCLUSION

We conclude that deal with toughness relate to cycles structure are expressed. It is shown that 3/2-tough 5-chordal graph G has a 2-factor.

REFERENCES

- [1] Bauer, D. and Schmeichel, E., "Toughness, Minimum Degree and the Existence of 2-Factors", J. Graph Theory, pp. 241-256, 1994.
- [2] Bondy, J. A. and Murty, U. S. R., "Graph Theory with Applications", the Macmillan Press Ltd, London, 1976.
- [3] Chartrand, G. and Lesniak. L., "Graphs and Digraphs", Chapman and Hall/CRC, New York, 2005.
- [4] Jung, H.A. and Wittmann, P., "Longest Cycle in Tough Graphs", J. Graph Theory 31: pp. 107-127, 1999.
- [5] Parthasarathy, K. R., "Basic Graph Theory", Tata McGraw - Hill, Publishing Company Limited, New Delhi, 1994.
- [6] Thulasiraman, K. and Swamy, M.N.S., "Graphs: Theory and Algorithms", John Wiley and Sons, Inc. New York, 1992.
- [7] Tutte, W.T., "The Factors of Graphs", Canad. J. Math, pp. 314-328, 1952.