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Abstract- In this paper we mention non separable 

components of longest cycles. And then we establish 

bounds for the length of a longest cycle C in a 2-

connected graph G in terms of the minimum degree 

 and the toughness t. It is shown that C is a 

Hamiltonian cycle or C (t 1) t.    

 

Indexed Terms- non separable components, 2-

connected graph, induced subgraph, toughness, 

maximum degree, minimum degree, longest cycle, 

and neighbourhood. 

 

I. INTRODUCTION 

 

A graph is finite if its vertex set and edge set are finite. 

A graph  H  is a subgraph of  G  if  V(H)  V(G) and 

E(H)  E(G).Suppose that V  is a nonempty subset of 

V. The subgraph of  G  whose vertex set is  V  and 

whose edge set is the set of  those edges of  G  that 

have both ends in  V is called the subgraph of  G 

induced by  V  and is denoted by  G[V];  we say that 

G[V]  is an induced subgraph of  G. Now suppose that 

E  is a nonempty subset of E. The subgraph of  G 

whose vertex set is the set of  ends of  edges in  E  and 

whose edge set is  E,  is called the subgraph of  G 

induced by  E  and is denoted by  G[E];  G[E]  is an 

edge - induced subgraph of  G.    A vertex-cut in a 

graph G is a set U of vertices of G such that G − U is 

disconnected. A complete graph has no vertex-cut. 

 

The vertex-connectivity or simply the connectivity 

(G)  of  a graph  G  is the minimum cardinality of a 

vertex-cut of  G  if  G  is not complete , and  (G) =  n 

1  if  G  =  Kn  for some positive integer  n . Hence 

(G) is the minimum number of vertices whose 

removal results in a disconnected or trivial graph. If G 

is either trivial or disconnected, (G) = 0.  G is said to 

be k- connected if (G)   k.   All   non-trivial 

connected   graphs    are 1 -connected.        If  G  is non 

complete graph and  t  is a nonnegative real number 

such that    t  
)SG(

|S|


  for every vertex - cut  S  of 

G , then  G  is defined  to  be t -tough. If G is a t - tough 

graph and s is a nonnegative real number such that s < 

t, then G is also s-tough. The maximum real number  t 

for which a graph  G  is a  t-tough  is called the 

toughness of  G  and is denoted by  t(G) . A connected 

graph with at least one cut vertex is called a separable 

graph, otherwise it is nonseparable. ). The degree (or 

valency) of a vertex v in G is the number of edges of 

G incident with v, each loop counting as two edges. 

 

We denote by (G) and G  
the minimum and 

maximum degrees, respectively of vertices of G. The 

set of neighbours of a subgraph H of G , denoted N(H), 

is the set of vertices in V(G)  V(H) adjacent to at least 

one vertex of H ; d(H)  |N(H)| is the degree of a 

subgraph H of G 

 

II. NONSEPARABLE COMPONENTS 

 

We still have to investigate non separable components 

of longest cycles. For an induced subgraph H of G, we 

set

 G H H G HX(H) x N (H) : N (x, x ) 2 for each x N (H) {x} 
     

and  G H X(H)Y(H) y V(H) : N (y)    . 

Notice that, in fact,
G H X(H)N (y) 

  2 for all y  Y 

(H). 

 

If V (H) =Y (H), set H v V(H)max d(v)  . 

Otherwise, let
H X(H) Y(H)  . 
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If
G HN (H) V(G H)    and V(H)   Y(H), then  

X(H)  Y(H) is a vertex-cut of G. Anyway,
H   

G   2t, where G  denotes the connectivity of G. 

 

2.1 Lemma 

Let C be a maximal cycle in a graph G, and let H be a 

non separable component of G  V(C). 

 

If Y (H) = V (H), then

HC (t 1) ( H 1) t      . 

Proof 

Let X = X (H) and Y = Y (H). By the definition of X 

and Y, we obtain for each v  V (H) that 

C C XN (H) X d (v) 2 Y 2 d(v) Y 1      

.Therefore, 
C HN (H) H 1     and the results 

follows , C is a maximal cycle in a graph G of 

toughness t and let H be a component of  G – C  since 

we have
CC (t 1) N (H) t.    

 

2.2 Lemma 

Let C be a longest cycle in a 2-connected graph G, and 

let H be a component of G  V(C) such that H   2. 

Then  C   (t + 1) + t. 

Proof 

If H  = 1, we obtain our result from C is a longest 

cycle. 

 

Now let V (H) = {v, w}. We fix a cyclic orientation on 

C and label  
CN (H)  = {x1.  . . xm} accordingly. 

Since we have C   (t + 1) m + t    and, thus, we are 

done, if
C Cd (v) m or d (w) m  . For the rest of 

this proof, let    
CN (v)  =

CN (w) . 

 

Then 
i i 1C(x , x )

  2 for 1  i  m.  

It suffices to show that C  (t + 1) (m + 1) + t.           

(1) 

We consider the vertex-cut S = V(C)   1 mx , , x  . 

Clearly, there is no C-arc Q = 
j kQ x , x   

 or 

j kQ Q x , x    
 for 1  j < k  m. 

If there is no C-arc Q = j kQ x , x    , then  

G    1 mS x , , x   has at least m+1components. 

In this event, t (m + 1)  C   2m.  

This yields (1), since     m = 
m

2
 + 

m

2
  1 + t. 

Now let us consider a C-arc Q =
j kQ x , x    . This Q 

gives rise to a cycle C with vertex set 

 V (Q)  {v, w}  V(C)   j kx , x  . 

Hence, Q  = 2 and C is a longest cycle. 

Let Hj denote the component of G  j jC x , x    that 

contains jx
. As Hj is a component of G  C, we are 

done by a longest cycle if 
jH  = 1. Hence, we may 

assume  
jH   2 and, therefore

G C jN (x )   . 

 

Abbreviate  j jw x  and let  
jH  denote the 

component of G  
j jC w , x    that contains Hj. Since 

C is a longest cycle, we derive that jx
 is a cut vertex 

of
jH . If jw  

CN (H)  or there exists a C-arc  

i jQ Q x , w       For some xi  CN (H) {xj}, then 

there exists a cycle C with vertex set  

V(C) {v,w} j jx , x ,   and 
jH  is a component of 

 G  C. Since C must be a longest cycle. 

In the remaining case, when j j 1C(x , x )   3 and 

there is no C-arc Q = i jQ x , w     with ix 

C jN (H) {x } , we consider the component jH  of      

G  
j jC(w ,x ] that contains jH . It follows that jx

 is 

a cut vertex also of jH .  For otherwise there exists a 

C-arc Q =
j jQ w , x   

. But Q and Q give rise to a 

cycle C with vertex set V (Q) {v, w} V(C)  

k{x } , which would be longer than C. Therefore, in 

fact, G  (S  j{x }   j j{x , w }
) has at least m + 
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2 components. Thus, t (m + 2)  ( S 2 ) + 1 = C   

m  1. Equivalently, (1).   

This completes the proof of Lemma 2.2. 

 

The next lemma indicates that a 2-connected graph H 

either has many vertices v such that  

Hd (v)   D (H) or contains some vertex v such that  

Hd (v)   D(H) 2

2

 . It is used to settle the cases 

addressed in Lemma 2.4. 

 

 2.3 Lemma 

Let H be a 2-connected graph and let  

Y = {v  V (H): D (H)  
Hd (v) }. If 

Hd (v)  2 Y  

 1 for each v  V (H), then Y   10. 

Proof 

Determine a, b  V (H) such that  

D = D (H) =
HD (a,b) , and let P be a longest (a, b)-path 

in H. Let r denote the number of components of H  P. 

Then r > 0, since otherwise 

Y H   = D + 1  Hd (v)  + 1  2 Y , which is 

absurd. 

Claim 1.  Y V(P)    2r. 

Proof of Claim 1 

Choose a component 0L  of H  P and label 

P[a,b) 0N (L )  = {x1, . . ., xm} in order from a to b. If ix
 

has a neighbor outside P, pick a component iL  of H 

 P such that ix
  P iN (L ) . Because P is longest, 

we have 
j kL L  for distinct ix

, kx
, we obtain  

Y   m +  0min L , 2   2. 

If V( 0L ) = 0{w } , then  0w   Y and 

Y   m + 1  H 0d (w )   2 Y   1, contrary to 

Y   2. Hence, in fact, each component of G  P has 

at least two vertices and it yields Claim 1. 

Claim 2.  Y V(P)   D r(r 1)

2

  . 

Proof of Claim 2 

Let 
1 rL , ,L  be the components of H  P. We 

“color” the edge vw of P by the pair (i, j),if v  
P iN (L )  

and w
P jN (L ) . Since P is a longest (a, b)-path, we 

have i  j, and each color occurs at most once on P. 

Therefore at least D r(r  1) edges are uncolored. 

Each of those edges has at least one end vertex in V 

(P)  
PN (H P)  and, consequently, in Y. Hence 

Claim 2. 

 

For v  Y, we have D  
Hd (v)   2 Y   1. We infer 

by the above claims that 2 Y   4r + D  r(r  1)  4r 

+ 2 Y   1  r(r  1).  

Hence, 4r  r(r  1) + 1 and, therefore, r  5. Claim 1 

yields Y   10. 

 

2.4 Lemma 

Let C be a maximal cycle in a 2-connected graph G  

Such that c (G)  C 2 , and let H be a nonseparable 

component  of  G  V(C). 

 Further, let    Y =
H{v V(H) : D(H) d (v)}  .  

If Y  Y (H) or C   (t + 1) ( H + D (H)) + t, then 

C   (t + 1) d (v) + t for some v  V (H). 

Proof 

We abbreviate Y = Y (H), X = X (H), and 

 D = D (H). In view of Lemma 3.1.1, we may assume 

that V (H)  Y, so that X Y is a vertex-cut. For v  

Y  Y, we have Hd (v)   D and Cd (v)   X .  

Consequently, 

C   (t + 1) ( H + D(H)) + t  (t + 1) d(v) + t. 

Therefore it remains to consider the case when Y  

Y. If 
Hd (v)   2 Y   2 for some   v  V(H), then 

 
CN (H)   Cd (v)  + 2 Y   2  

Cd (v)  + Hd (v)   

d(v), and the result follows from Lemma 2.2.3.  

Now assume that 
Hd (v)   2 Y   1 for all 

 v  V(H). then  H   3, since otherwise for any 

 v  V(H) we would have  

Y   Y  = H   Hd (v)  + 1  2 Y , which is 

absurd. Therefore, H is 2-connected, and we can apply 

Lemma 2.1 to obtain  Y   10. 
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     Fix a cyclic orientation on C. For each x  
CN (H)

, let 
*x  denote the first vertex on C(x, x] in 

CN (H) .  

For each y  Y(H), we determine a vertex ŷ

C XN (y)
 such that *

H
ˆ ˆN (y, y )   2. 

Let Y = ˆ{y : y Y} , and abbreviate X̂ =X Ŷ . By 

construction, we obtain that 
HN (x, x )   2 for any 

distinct x, x  X . 

Picking some  0y  Y, we label  

 0
ˆ ˆX Y {y } C X 0N (y )

= 
1 m{x , ,x }  

According to the fixed orientation.  

For 
ix  X Ŷ   0

ˆ{y } , let
iu , denote the vertex on 

C such that     
i i

D 2 h
C(x ,u )

2

  
  
 

, 

 Where h = c (G)  C . 

For the remaining
ix , set 

iu  = ix
. Since no C-arc 

joins distinct segments of the form
i iC(x ,u ) . 

Therefore, S = V 
m

i i 1
i 1

C[u , x ]


 
 
 

 is a vertex-cut of G, 

and G  S has at least 
C X 0X Y 1 N (y ) 1    

components. Hence 

 
D h

t(m 1) S C m X Y 1
2

 
       

 
 And, 

Equivalently, 

C   (t + 1) m + t +  
D h

X Y 1
2

 
   

.               

(2) 

If X Y   2t + 3, then (2) yields  

C   (t + 1) C 0d (y ) + t + (t + 1) (D  1  h + Y   1)  

        (t + 1) (
0d(y )  + 6) + t. 

In the remaining case, when X Y  < 2t + 3, let us 

first assume that D < 2 Hd (v)  2 for all v  V (H). 

Then the graph H has a vertex-cut T = {a, b}.  Let L 

be a component of H  T such that V(L) Y  is 

minimum. If   V (L)  Y, we pick v  V (L) and obtain  

2 Y   1  Hd (v) < Y   1 + T  = Y  + 1, contrary 

to   Y   Y   10. 

 If V(L)  Y  , then contrary to   Y   Y   10.  

2t  X T Y V(L)    Y
X 2

2
  < 2t + 5  Y

2

 2t,  

 

Which is absurd. Hence, in fact, D  2
Hd (v)   2 for 

some v  V (H). As v  Y, we can apply (2). 

From X Y < 2t + 3, we derive t >
7

2
 and, in 

particular,   X Y   1  2t  1 > t + 2. 

Thus we obtain C   (t + 1) Cd (v)  + t + (t + 1

H

h 3
Y 1 d (v)

2

 
   

 
 > (t + 1) (d (v) + 6) + t. 

 

III. CONCLUSION 

 

In this paper we have to investigate nonseparable 

components of longest cycles. The relation between 

toughness, minimum degree and the longest cycle is 

explored. It is shown that C is a Hamiltonian cycle or 

C (t 1) t.    
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