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Abstract- In this paper we mention non separable
components of longest cycles. And then we establish
bounds for the length of a longest cycle C in a 2-
connected graph G in terms of the minimum degree
d and the toughness t. It is shown that C is a
Hamiltonian cycle or |c| > (t+1)8+t.

Indexed Terms- non separable components, 2-
connected graph, induced subgraph, toughness,
maximum degree, minimum degree, longest cycle,
and neighbourhood.

. INTRODUCTION

A graph is finite if its vertex set and edge set are finite.
A graph H is a subgraph of G if V(H) < V(G) and
E(H) < E(G).Suppose that V' is a nonempty subset of
V. The subgraph of G whose vertex set is V' and
whose edge set is the set of those edges of G that
have both ends in V' is called the subgraph of G
induced by V'’ and is denoted by G[V']; we say that
G[V'] isaninduced subgraph of G. Now suppose that
E’ is a nonempty subset of E. The subgraph of G
whose vertex set is the set of ends of edgesin E’ and
whose edge set is E’, is called the subgraph of G
induced by E’ and is denoted by G[E']; GIE'] isan
edge - induced subgraph of G. A vertex-cut in a
graph G is a set U of vertices of G such that G — U is
disconnected. A complete graph has no vertex-cut.

The vertex-connectivity or simply the connectivity
k(G) of agraph G isthe minimum cardinality of a
vertex-cut of G if G isnotcomplete, and x(G) = n
-1 if G = K, for some positive integer n . Hence
k(G) is the minimum number of vertices whose
removal results in a disconnected or trivial graph. If G
is either trivial or disconnected, k(G) =0. G issaid to
be k- connected if «(G) > k. All  non-trivial
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connected graphs are 1 -connected. If G isnon
complete graph and t is a nonnegative real number

such that t< i

o(G-9)
G, then G isdefined to bet-tough. IfGisat - tough
graph and s is a nonnegative real number such that s <
t, then G is also s-tough. The maximum real number t
for which a graph G is a t-tough is called the
toughness of G and is denoted by t(G) . A connected
graph with at least one cut vertex is called a separable
graph, otherwise it is nonseparable. ). The degree (or
valency) of a vertex v in G is the number of edges of
G incident with v, each loop counting as two edges.

for every vertex - cut S of

We denote by 8(G) and g the minimum and

maximum degrees, respectively of vertices of G. The
set of neighbours of a subgraph H of G, denoted N(H),
is the set of vertices in V(G) — V(H) adjacent to at least
one vertex of H ; d(H) = |[N(H)| is the degree of a
subgraph H of G

1. NONSEPARABLE COMPONENTS

We still have to investigate non separable components
of longest cycles. For an induced subgraph H of G, we
set

X(H) ={x & Ng_y(H): [N, (x,x)
and Y (H) ={y € V(H) : Ng_y_xq) (Y) =D} .

Notice that, in fact,|NGfH7X(H) (y)| >2forally e Y
(H)-

IfV (H) =Y (H), setp,, = max, .y, d(V).
Otherwise, letp,, = [X(H)UY(H)|.
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IFN, ,(H) = V(G—H) and V(H) # Y(H), then
X(H) U Y(H) is a vertex-cut of G. Anyway, L, >

Kg = 2t, where K denotes the connectivity of G.

2.1 Lemma
Let C be a maximal cycle in a graph G, and let H be a
non separable component of G — V(C).

f Y (H = V (H, then
C| = (t+1) (w, +|H|-1) +t.
Proof

Let X = X (H) and Y = Y (H). By the definition of X
and Y, we obtain for each v € V (H) that

INc(H)| = |X] + de_y (V) + 2|Y|-2 = d(v) +]Y|-1

Therefore, |N.(H)|> p,, +|H|-1 and the results

follows , C is a maximal cycle in a graph G of
toughness t and let H be a component of G — C since
we have|C| > (t+1)|N¢ (H)|+t.

2.2 Lemma
Let C be a longest cycle in a 2-connected graph G, and
let H be a component of G — V(C) such that H| < 2.

Then Ic| = (t+ 1)+t

Proof
If H =1, we obtain our result from C is a longest

cycle.

Now let V (H) = {v, w}. We fix a cyclic orientation on
Cand label N.(H) = {x. ..xm} accordingly.

Since we have c| = (t+1) m+t and, thus, we are
done, ifd.(v) <m or d.(w)<m. For the rest of
this proof, let  N.(v) =Nc(w).

Then |C(x;,X;,,)| 22 for 1<i<m.

It suffices to show that |C| >(t+1)(Mm+1)+t.

(1)

We consider the vertex-cut S = V(C) — {Xl*, X;} .

Clearly, there is no C-arc Q = Q[xj*,x;] or

Q:Q[Xjﬁ,xz] for1<j<k<m.
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If thereisno C-arc Q = Q [Xj++ , Xf] , then
G- (S—{x;*, x;f}) has at least m+1components.

In this event, t (m + 1) < |C| - 2m.
m m
This yields (1), since m= E + — 21+t

Now let us consider a C-arc Q=Q [xj** , x;*} . ThisQ
gives rise to a cycle C’ with vertex set

V@ U vw U v©e)- {x.x}-

Hence, |Q| =2 and C’ is a longest cycle.

Let H; denote the component of G — C[X}*,XJ that

contains X}' . As H; is a component of G — C', we are
done by a longest cycle if |Hj| = 1. Hence, we may

assume |Hj| > 2 and, therefore Ne o (X)) =D -

+++

Abbreviate W; = Xj and let H} denote the

component of G — C[Wj, xj] that contains H;. Since

C isa longest cycle, we derive that Xj+ is a cut vertex
of H. If W;e Nc(H) or there exists a C-arc
Q= Q’[xf,wj} For some xi € N (H) —{x}, then

there exists a cycle C” with vertex set
V(©U {v.w}-{x;,x;*}, and H; is a component of

G — C". Since C"” must be a longest cycle.

In the remaining case, when ‘C(Xj,xjﬂ) > 3 and

there is no C-arc Q' = Q'[Xf,wj] with X; e
N (H)—{x;}, we consider the component H{ of
G — C(wj, x;]that contains H’ . It follows that Xj+ is
a cut vertex also of H}' . For otherwise there exists a
C-arc Q' =Q’[Wj,xj*]. But Q" and Q give rise to a
cycle C” with vertex set V (Q)U {v, w}U V(C) -
{X, }, which would be longer than C. Therefore, in
fact, G- (S U {X{} - {X{",W,}) has at least m +
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2 components. Thus, t (m +2) < (|5|-2) + 1=|C| -

m — 1. Equivalently, (1).
This completes the proof of Lemma 2.2.

The next lemma indicates that a 2-connected graph H
either has many vertices v such that
d, (v) <D (H) or contains some vertex v such that

d,(v) < D)+2 1t is used to settle the cases
2

addressed in Lemma 2.4.

2.3 Lemma
Let H be a 2-connected graph and let

Y ={veV(H):DH)>d,(Vv)} If dy(v)=>2]y
— 1 for each v € V (H), then |Y’| > 10.

Proof

Determine a, b € V (H) such that
D=D(H)=D,(a,b), and let P be a longest (a, b)-path
in H. Let r denote the number of components of H — P.
Thenr > 0, since otherwise

[Y'|=H| =D+ 1> d,(Vv) + 12|y, which is
absurd.
Claim1. |Y'=V(P)| > 2r.

Proof of Claim 1
Choose a component L, of H — P and label

Neas (Lo) = X1, -, Xm} in order fromato b. If X
has a neighbor outside P, pick a component Li of H
— P such that X;” € N,(L,;). Because P is longest,
we have L; # L, for distinctX; , X, , we obtain
Y| 2m+ min(|L,|,2) >2

IfV(L,)={w,}, then W, € Y’and

Y| zm+1>d,(W,) >2|Y’| -1, contrary to
Y= 2. Hence, in fact, each component of G — P has

at least two vertices and it yields Claim 1.

Claim 2. [Y'NV(P)| w_

Proof of Claim 2
Let L,,...,L, be the components of H — P. We
“color” the edge vw of P by the pair (i, j),if v e N, (L)
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and we NP(Lj)' Since P is a longest (a, b)-path, we

have i = j, and each color occurs at most once on P.
Therefore at least D— r(r — 1) edges are uncolored.
Each of those edges has at least one end vertex in V
(P) = Ny(H-P) and, consequently, in Y’. Hence
Claim 2.

Forv e Y’ wehave D> d, (V) >2|y/| - 1. We infer
by the above claims that 2|y’| > 4r + D —r(r — 1) > 4r
+ 2|Y’| -1-r(r-1).

Hence, 4r <r(r — 1) + 1 and, therefore, r > 5. Claim 1
yields |Y'| > 10.

2.4 Lemma
Let C be a maximal cycle in a 2-connected graph G
Such that ¢ (G) — c|<2. and let H be a nonseparable

component of G —V(C).

Further, let Y’ ={veV(H): D(H)>d,(V)}.
IfY' <Y (H)or [C| > (t+1) (p, + D (H)) +1, then
|C| >(t+1)d(v) +tforsomev eV (H).

Proof

We abbreviate Y = Y (H), X = X (H), and

D =D (H). In view of Lemma 3.1.1, we may assume
that V (H) = Y, so that X U Y is a vertex-cut. For v e

Y’ - Y, we have d,;(V) <Dand d.(V) <|x.
Consequently,

IC| = (t+1) (L + D(H)) +t=(t+1)d(v)+t.
Therefore it remains to consider the case when Y’
Y. If d,; (V) <2|Y| -2 for some v e V(H), then
INe(H)| = de(V) +2¥] 22 dg(v) * dy(V) 2
d(v), and the result follows from Lemma 2.2.3.

Now assume that d,, (v) =2|y| -1 forall

v € V(H). then |H| > 3, since otherwise for any

v € V(H) we would have

Y] > || = H| = dy(v) +1>2[Y], which is
absurd. Therefore, H is 2-connected, and we can apply
Lemma 2.1 to obtain |Y’| > 10.
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Fix a cyclic orientation on C. For each x € N (H)
, let X" denote the first vertex on C(x,x]in N.(H).
For each y e Y(H), we determine a vertex Y e
N x (y) such that |N,,(9,§°)| 2 2

Let Y ={¥: y € Y}, and abbreviate X =XUY . By
construction, we obtain that |N,, (x,x")| = 2 for any

distinct x, X' € X.

Picking some Y, e Y’, we label

XU(V—{%}) UNc x(Yo) = {X11 ce Xm}
According to the fixed orientation.

For X, e X UY - {¥,}, letu,, denote the vertex on

D+2—hJ

Csuchthat |C(x;,u;)| = [ >

Where h =¢ (G) - |C| .

For the remainingX;, set U. =X; . Since no C-arc

joins distinct segments of the formC(X;,u,).
Therefore, S=V (U Clu;, Xi+1]) is a vertex-cut of G,
i=1

and G — S has at least |XUY|-1+|Ng x(Yo)|+1

components. Hence

t(m=1)<[s|=|c| -m—(XUY|-1) LDT_hJ And,
Equivalently,

Cl>@+1m+t _ D_—hJ_

| |>(+ ym+t+(IXUY] 1){ 5

)

If XUyl = 2t + 3, then (2) yields

Ic| > (t+1)dc(Yo) +t+(E+1) (D-1-h+|v| -1)
2 (t+1) (d(y,) +6)+t.

In the remaining case, when |X{JY| <2t + 3, let us

first assume that D < 2d,, (V) — 2 for all v e V (H).

Then the graph H has a vertex-cut T = {a, b}. Let L
be a component of H — T such that |V(L)NY| is

minimum. If V(L)< Y, we pick v e V (L) and obtain
2ly] 1< dy(V)<|y| =1+ 1| = Y| +1, contrary

to |Y| |y =10
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If V(L) - Y = @, then contrary to Y| > |Y'| > 10.

20<|X|+([T|+[Y NV(L)| < |X|+2+¥<2t+5— @

<2t

Which is absurd. Hence, in fact, D > 2d, (V) - 2 for
somev e V (H). Asv € Y’', we can apply (2).

: 7 _
Fromxyy|< 2t + 3, we derive t >E and, in
particular, ‘xuy‘ —1>22t-1>t+2.

Thus we obtain|C| > (t + 1) do(V) +t+ (t+ 1

(|v|_1+dH(v)_$J >+ @) +6)+t

Ill.  CONCLUSION

In this paper we have to investigate nonseparable
components of longest cycles. The relation between
toughness, minimum degree and the longest cycle is
explored. It is shown that C is a Hamiltonian cycle or
IC|> (t+1)5+t.
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