Non Separable Components and 2-Connected Graphs in Tough Graphs

SAN SAN TINT ${ }^{1}$, KHAING KHAING SOE WAI ${ }^{2}$
${ }^{1,2}$ Department of Engineering Mathematics, Technological University, Myitkyina, Myanmar.

Abstract

In this paper we mention non separable components of longest cycles. And then we establish bounds for the length of a longest cycle C in a 2connected graph G in terms of the minimum degree δ and the toughness \boldsymbol{t}. It is shown that C is a Hamiltonian cycle or $|\mathrm{C}| \geq(\mathrm{t}+1) \delta+\mathrm{t}$.

Indexed Terms- non separable components, 2connected graph, induced subgraph, toughness, maximum degree, minimum degree, longest cycle, and neighbourhood.

I. INTRODUCTION

A graph is finite if its vertex set and edge set are finite. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $\mathrm{E}(\mathrm{H}) \subseteq \mathrm{E}(\mathrm{G})$.Suppose that V^{\prime} is a nonempty subset of V. The subgraph of G whose vertex set is V^{\prime} and whose edge set is the set of those edges of G that have both ends in V^{\prime} is called the subgraph of G induced by V^{\prime} and is denoted by $\mathrm{G}\left[\mathrm{V}^{\prime}\right]$; we say that $G\left[V^{\prime}\right]$ is an induced subgraph of G. Now suppose that E^{\prime} is a nonempty subset of E . The subgraph of G whose vertex set is the set of ends of edges in E^{\prime} and whose edge set is E^{\prime}, is called the subgraph of G induced by E^{\prime} and is denoted by $\mathrm{G}\left[\mathrm{E}^{\prime}\right] ; \mathrm{G}\left[\mathrm{E}^{\prime}\right]$ is an edge - induced subgraph of G. A vertex-cut in a graph G is a set U of vertices of G such that $G-U$ is disconnected. A complete graph has no vertex-cut.

The vertex-connectivity or simply the connectivity $\kappa(\mathrm{G})$ of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $\kappa(G)=n$ -1 if $G=K_{n}$ for some positive integer n. Hence $\kappa(\mathrm{G})$ is the minimum number of vertices whose removal results in a disconnected or trivial graph. If G is either trivial or disconnected, $\kappa(\mathrm{G})=0 . \mathrm{G}$ is said to be k - connected if $\kappa(\mathrm{G}) \geq \mathrm{k}$. All non-trivial
connected graphs are 1 -connected. If G is non complete graph and t is a nonnegative real number such that $t \leq \frac{|S|}{\omega(G-S)}$ for every vertex - cut S of G, then G is defined to be t-tough. If G is at - tough graph and s is a nonnegative real number such that $\mathrm{s}<$ t, then G is also s-tough. The maximum real number t for which a graph G is a t-tough is called the toughness of G and is denoted by $t(G)$. A connected graph with at least one cut vertex is called a separable graph, otherwise it is nonseparable.). The degree (or valency) of a vertex v in G is the number of edges of G incident with v , each loop counting as two edges.

We denote by $\delta(\mathrm{G})$ and μ_{G} the minimum and maximum degrees, respectively of vertices of G. The set of neighbours of a subgraph H of G , denoted $\mathrm{N}(\mathrm{H})$, is the set of vertices in $\mathrm{V}(\mathrm{G})-\mathrm{V}(\mathrm{H})$ adjacent to at least one vertex of $H ; d(H)=|N(H)|$ is the degree of a subgraph H of G

II. NONSEPARABLE COMPONENTS

We still have to investigate non separable components of longest cycles. For an induced subgraph H of G , we set
$X(H)=\left\{x \in N_{G-H}(H):\left|N_{H}\left(x, x^{\prime}\right)\right| \geq 2\right.$ for each $\left.\mathrm{x}^{\prime} \in \mathrm{N}_{\mathrm{G}-\mathrm{H}}(\mathrm{H})-\{\mathrm{x}\}\right\}$ and $Y(H)=\left\{y \in V(H): N_{G-H-X(H)}(y) \neq \varnothing\right\}$.
Notice that, in fact, $\left|\mathrm{N}_{\mathrm{G}-\mathrm{H}-\mathrm{X}(\mathrm{H})}(\mathrm{y})\right| \geq 2$ for all $\mathrm{y} \in \mathrm{Y}$ (H).

If $V(H)=Y(H)$, set $\mu_{H}=\max _{v \in V(H)} d(v)$.
Otherwise, let $\mu_{H}=|X(H) \bigcup Y(H)|$.

If $\mathrm{N}_{\mathrm{G}-\mathrm{H}}(\mathrm{H}) \neq \mathrm{V}(\mathrm{G}-\mathrm{H})$ and $\mathrm{V}(\mathrm{H}) \neq \mathrm{Y}(\mathrm{H})$, then $X(H) \bigcup Y(H)$ is a vertex-cut of G. Anyway, $\mu_{H} \geq$ $\kappa_{\mathrm{G}} \geq 2 \mathrm{t}$, where κ_{G} denotes the connectivity of G .

2.1 Lemma

Let C be a maximal cycle in a graph G , and let H be a non separable component of $G-V(C)$.
$\begin{array}{ll}\text { If } \quad \mathrm{Y} \quad(\mathrm{H}) \quad=\quad \mathrm{V} \quad(\mathrm{H}), \quad \text { then } \\ |\mathrm{C}| \geq(\mathrm{t}+1) & \left(\mu_{\mathrm{H}}+|\mathrm{H}|-1\right)+\mathrm{t} .\end{array}$
Proof
Let $X=X(H)$ and $Y=Y(H)$. By the definition of X and Y , we obtain for each $\mathrm{v} \in \mathrm{V}(\mathrm{H})$ that $\left|\mathrm{N}_{\mathrm{C}}(\mathrm{H})\right| \geq|\mathrm{X}|+\mathrm{d}_{\mathrm{C}-\mathrm{X}}(\mathrm{v})+2|\mathrm{Y}|-2 \geq \mathrm{d}(\mathrm{v})+|\mathrm{Y}|-1$
.Therefore, $\left|\mathrm{N}_{\mathrm{C}}(\mathrm{H})\right| \geq \mu_{\mathrm{H}}+|\mathrm{H}|-1$ and the results follows , C is a maximal cycle in a graph G of toughness t and let H be a component of $\mathrm{G}-\mathrm{C}$ since we have $|\mathrm{C}| \geq(\mathrm{t}+1)\left|\mathrm{N}_{\mathrm{C}}(\mathrm{H})\right|+\mathrm{t}$.

2.2 Lemma

Let C be a longest cycle in a 2-connected graph G , and let H be a component of $\mathrm{G}-\mathrm{V}(\mathrm{C})$ such that $|\mathrm{H}| \leq 2$.

Then $|C| \geq(t+1) \delta+t$.
Proof
If $|\mathrm{H}|=1$, we obtain our result from C is a longest cycle.

Now let $\mathrm{V}(\mathrm{H})=\{\mathrm{v}, \mathrm{w}\}$. We fix a cyclic orientation on C and label $\mathrm{N}_{\mathrm{C}}(\mathrm{H})=\left\{\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{m}}\right\}$ accordingly.

Since we have $|C| \geq(t+1) m+t \quad$ and, thus, we are done, if $\mathrm{d}_{\mathrm{C}}(\mathrm{v})<\mathrm{m}$ or $\mathrm{d}_{\mathrm{C}}(\mathrm{w})<\mathrm{m}$. For the rest of this proof, let $\quad N_{C}(v)=N_{C}(w)$.

Then $\left|\mathrm{C}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)\right| \geq 2$ for $1 \leq \mathrm{i} \leq \mathrm{m}$.
It suffices to show that $|C| \geq(t+1)(m+1)+t$.

We consider the vertex-cut $S=V(C)-\left\{x_{1}^{+}, \ldots, x_{m}^{+}\right\}$. Clearly, there is no $\mathrm{C}-\operatorname{arc} \mathrm{Q}=\mathrm{Q}\left[\mathrm{x}_{\mathrm{j}}^{+}, \mathrm{x}_{\mathrm{k}}^{+}\right]$or $\mathrm{Q}=\mathrm{Q}\left[\mathrm{x}_{\mathrm{j}}^{++}, \mathrm{x}_{\mathrm{k}}^{+}\right]$for $1 \leq \mathrm{j}<\mathrm{k} \leq \mathrm{m}$.

If there is no $C-\operatorname{arc} \mathrm{Q}=\mathrm{Q}\left[\mathrm{X}_{\mathrm{j}}^{++}, \mathrm{X}_{\mathrm{k}}^{++}\right]$, then
$\mathrm{G}-\left(\mathrm{S}-\left\{\mathrm{x}_{1}^{++}, \ldots, \mathrm{x}_{\mathrm{m}}^{++}\right\}\right)$has at least $\mathrm{m}+1$ components.
In this event, $\mathrm{t}(\mathrm{m}+1) \leq|\mathrm{C}|-2 \mathrm{~m}$.
This yields (1), since $m=\frac{m}{2}+\frac{m}{2} \geq 1+t$.
Now let us consider a $\mathrm{C}-\operatorname{arc} \mathrm{Q}=\mathrm{Q}\left[\mathrm{x}_{\mathrm{j}}^{++}, \mathrm{x}_{\mathrm{k}}^{++}\right]$. This Q gives rise to a cycle C^{\prime} with vertex set $\mathrm{V}(\mathrm{Q}) \bigcup\{\mathrm{v}, \mathrm{w}\} \bigcup \mathrm{V}(\mathrm{C})-\left\{\mathrm{x}_{\mathrm{j}}^{+}, \mathrm{x}_{\mathrm{k}}^{+}\right\}$.

Hence, $|\mathrm{Q}|=2$ and C^{\prime} is a longest cycle.
Let H_{j} denote the component of $G-C\left[X_{j}^{++}, x_{j}\right]$ that contains $\mathrm{X}_{\mathrm{j}}^{+}$. As H_{j} is a component of $\mathrm{G}-\mathrm{C}^{\prime}$, we are done by a longest cycle if $\left|H_{j}\right|=1$. Hence, we may assume $\left|\mathrm{H}_{\mathrm{j}}\right| \geq 2$ and, therefore $\mathrm{N}_{\mathrm{G}-\mathrm{C}}\left(\mathrm{x}_{\mathrm{j}}^{+}\right) \neq \varnothing$.

Abbreviate $\mathrm{W}_{\mathrm{j}}=\mathrm{X}_{\mathrm{j}}^{+++}$and let $\mathrm{H}_{\mathrm{j}}^{\prime}$ denote the component of $G-C\left[w_{j}, x_{j}\right]$ that contains H_{j}. Since C is a longest cycle, we derive that $\mathrm{X}_{\mathrm{j}}^{+}$is a cut vertex of $\mathrm{H}_{\mathrm{j}}^{\prime}$. If $\mathrm{w}_{\mathrm{j}} \in \mathrm{N}_{\mathrm{C}}(\mathrm{H})$ or there exists a C-arc $Q^{\prime}=Q^{\prime}\left[x_{i}^{+}, w_{j}\right]$ For some $x i \in N_{C}(H)-\left\{x_{j}\right\}$, then there exists a cycle $\mathrm{C}^{\prime \prime}$ with vertex set $\mathrm{V}(\mathrm{C}) \bigcup\{\mathrm{v}, \mathrm{w}\}-\left\{\mathrm{x}_{\mathrm{j}}^{+}, \mathrm{x}_{\mathrm{j}}^{++}\right\}$, and $\mathrm{H}_{\mathrm{j}}^{\prime}$ is a component of $G-C^{\prime \prime}$. Since $C^{\prime \prime}$ must be a longest cycle.
In the remaining case, when $\left|C\left(x_{j}, x_{j+1}\right)\right| \geq 3$ and there is no C-arc $Q^{\prime}=Q^{\prime}\left[x_{i}^{+}, W_{j}\right]$ with $X_{i} \in$ $\mathrm{N}_{\mathrm{C}}(\mathrm{H})-\left\{\mathrm{x}_{\mathrm{j}}\right\}$, we consider the component $\mathrm{H}_{\mathrm{j}}^{\prime \prime}$ of $\mathrm{G}-\mathrm{C}\left(\mathrm{w}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}}\right]$ that contains $\mathrm{H}_{\mathrm{j}}^{\prime}$. It follows that $\mathrm{X}_{\mathrm{j}}^{+}$is a cut vertex also of $\mathrm{H}_{\mathrm{j}}^{\prime \prime}$. For otherwise there exists a C-arc $\mathrm{Q}^{\prime}=\mathrm{Q}^{\prime}\left[\mathrm{w}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}}^{+}\right]$. But Q^{\prime} and Q give rise to a cycle $C^{\prime \prime}$ with vertex set $V\left(Q^{\prime}\right) \bigcup\{v, w\} \bigcup V(C)-$ $\left\{\mathrm{X}_{\mathrm{k}}^{+}\right\}$, which would be longer than C. Therefore, in fact, $G-\left(S \bigcup\left\{\mathrm{x}_{\mathrm{j}}^{+}\right\}-\left\{\mathrm{x}_{\mathrm{j}}^{++}, \mathrm{w}_{\mathrm{j}}\right\}\right)$ has at least $\mathrm{m}+$

2 components. Thus, $\mathrm{t}(\mathrm{m}+2) \leq(|\mathrm{S}|-2)+1=|\mathrm{C}|-$ m-1. Equivalently, (1).
This completes the proof of Lemma 2.2.

The next lemma indicates that a 2-connected graph H either has many vertices v such that $d_{H}(v) \leq D(H)$ or contains some vertex v such that $d_{H}(v) \leq \frac{D(H)+2}{2}$. It is used to settle the cases addressed in Lemma 2.4.

2.3 Lemma

Let H be a 2-connected graph and let
$\mathrm{Y}^{\prime}=\left\{\mathrm{v} \in \mathrm{V}(\mathrm{H}): \mathrm{D}(\mathrm{H}) \geq \mathrm{d}_{\mathrm{H}}(\mathrm{v})\right\}$. If $\mathrm{d}_{\mathrm{H}}(\mathrm{v}) \geq 2\left|\mathrm{Y}^{\prime}\right|$
-1 for each $v \in V(H)$, then $\left|\mathrm{Y}^{\prime}\right| \geq 10$.
Proof
Determine $a, b \in V(H)$ such that
$\mathrm{D}=\mathrm{D}(\mathrm{H})=\mathrm{D}_{\mathrm{H}}(\mathrm{a}, \mathrm{b})$, and let P be a longest (a, b)-path
in H . Let r denote the number of components of $\mathrm{H}-\mathrm{P}$. Then $r>0$, since otherwise
$\left|\mathrm{Y}^{\prime}\right|=|\mathrm{H}|=\mathrm{D}+1 \geq \mathrm{d}_{\mathrm{H}}(\mathrm{v})+1 \geq 2\left|\mathrm{Y}^{\prime}\right|$, which is absurd.
Claim 1. $\left|\mathrm{Y}^{\prime}-\mathrm{V}(\mathrm{P})\right| \geq 2 \mathrm{r}$.
Proof of Claim 1
Choose a component L_{0} of $\mathrm{H}-\mathrm{P}$ and label $\mathrm{N}_{\mathrm{P}[\mathrm{a}, \mathrm{b})}\left(\mathrm{L}_{0}\right)=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ in order from a to b. If $\mathrm{x}_{\mathrm{i}}^{+}$ has a neighbor outside P, pick a component L_{i} of H - P such that $X_{i}^{+} \in N_{P}\left(L_{i}\right)$. Because P is longest, we have $L_{j} \neq L_{k}$ for distinct X_{i}^{+}, X_{k}^{+}, we obtain
$\left|\mathrm{Y}^{\prime}\right| \geq \mathrm{m}+\min \left(\left|\mathrm{L}_{0}\right|, 2\right) \geq 2$.
If $\mathrm{V}\left(\mathrm{L}_{0}\right)=\left\{\mathrm{w}_{0}\right\}$, then $\mathrm{w}_{0} \in \mathrm{Y}^{\prime}$ and
$\left|\mathrm{Y}^{\prime}\right| \geq \mathrm{m}+1 \geq \mathrm{d}_{\mathrm{H}}\left(\mathrm{w}_{0}\right) \geq 2\left|\mathrm{Y}^{\prime}\right|-1$, contrary to
$\left|Y^{\prime}\right| \geq 2$. Hence, in fact, each component of $G-P$ has at least two vertices and it yields Claim 1.
Claim 2. $\left|\mathrm{Y}^{\prime} \cap \mathrm{V}(\mathrm{P})\right| \geq \frac{\mathrm{D}-\mathrm{r}(\mathrm{r}-1)}{2}$.
Proof of Claim 2
Let L_{1}, \ldots, L_{r} be the components of $H-P$. We "color" the edge vw of P by the pair (i, j), if $\mathrm{v} \in \mathrm{N}_{\mathrm{P}}\left(\mathrm{L}_{\mathrm{i}}\right)$
and $w \in N_{P}\left(L_{j}\right)$. Since P is a longest (a, b)-path, we have $\mathrm{i} \neq \mathrm{j}$, and each color occurs at most once on P . Therefore at least $\mathrm{D}-\mathrm{r}(\mathrm{r}-1)$ edges are uncolored. Each of those edges has at least one end vertex in V $(P)-N_{P}(H-P)$ and, consequently, in Y^{\prime}. Hence Claim 2.

For $\mathrm{v} \in \mathrm{Y}^{\prime}$, we have $\mathrm{D} \geq \mathrm{d}_{\mathrm{H}}(\mathrm{v}) \geq 2\left|\mathrm{Y}^{\prime}\right|-1$. We infer by the above claims that $2\left|\mathrm{Y}^{\prime}\right| \geq 4 \mathrm{r}+\mathrm{D}-\mathrm{r}(\mathrm{r}-1) \geq 4 \mathrm{r}$ $+2\left|\mathrm{Y}^{\prime}\right|-1-\mathrm{r}(\mathrm{r}-1)$.

Hence, $4 \mathrm{r} \leq \mathrm{r}(\mathrm{r}-1)+1$ and, therefore, $\mathrm{r} \geq 5$. Claim 1 yields $\left|Y^{\prime}\right| \geq 10$.

2.4 Lemma

Let C be a maximal cycle in a 2 -connected graph G
Such that c $(\mathrm{G})-|\mathrm{C}| \leq 2$, and let H be a nonseparable component of $G-V(C)$.
Further, let $\quad \mathrm{Y}^{\prime}=\left\{\mathrm{v} \in \mathrm{V}(\mathrm{H}): \mathrm{D}(\mathrm{H}) \geq \mathrm{d}_{\mathrm{H}}(\mathrm{v})\right\}$.
If $\mathrm{Y}^{\prime} \subseteq \mathrm{Y}(\mathrm{H})$ or $|\mathrm{C}| \geq(\mathrm{t}+1)\left(\mu_{\mathrm{H}}+\mathrm{D}(\mathrm{H})\right)+\mathrm{t}$, then $|C| \geq(t+1) d(v)+t$ for some $v \in V(H)$.
Proof
We abbreviate $\mathrm{Y}=\mathrm{Y}(\mathrm{H}), \mathrm{X}=\mathrm{X}(\mathrm{H})$, and $\mathrm{D}=\mathrm{D}(\mathrm{H})$. In view of Lemma 3.1.1, we may assume that $V(H) \neq Y$, so that $X \bigcup Y$ is a vertex-cut. For $v \in$ $Y^{\prime}-Y$, we have $d_{H}(v) \leq D$ and $d_{C}(v) \leq|X|$.
Consequently,

$$
|\mathrm{C}| \geq(\mathrm{t}+1)\left(\mu_{\mathrm{H}}+\mathrm{D}(\mathrm{H})\right)+\mathrm{t} \geq(\mathrm{t}+1) \mathrm{d}(\mathrm{v})+\mathrm{t} .
$$

Therefore it remains to consider the case when $\mathrm{Y}^{\prime} \subseteq$ Y. If $d_{H}(v) \leq 2|Y|-2$ for some $v \in V(H)$, then $\left|\mathrm{N}_{\mathrm{C}}(\mathrm{H})\right| \geq \mathrm{d}_{\mathrm{C}}(\mathrm{v})+2|\mathrm{Y}|-2 \geq \mathrm{d}_{\mathrm{C}}(\mathrm{v})+\mathrm{d}_{\mathrm{H}}(\mathrm{v}) \geq$ $\mathrm{d}(\mathrm{v})$, and the result follows from Lemma 2.2.3.
Now assume that $\mathrm{d}_{\mathrm{H}}(\mathrm{v}) \geq 2|\mathrm{Y}|-1$ for all
$\mathrm{v} \in \mathrm{V}(\mathrm{H})$. then $|\mathrm{H}| \geq 3$, since otherwise for any $v \in \mathrm{~V}(\mathrm{H})$ we would have
$|\mathrm{Y}| \geq\left|\mathrm{Y}^{\prime}\right|=|\mathrm{H}| \geq \mathrm{d}_{\mathrm{H}}(\mathrm{V})+1 \geq 2|\mathrm{Y}|$, which is absurd. Therefore, H is 2-connected, and we can apply Lemma 2.1 to obtain $\left|\mathrm{Y}^{\prime}\right| \geq 10$.

Fix a cyclic orientation on C. For each $x \in N_{C}(H)$, let x^{*} denote the first vertex on $\mathrm{C}(\mathrm{x}, \mathrm{x}]$ in $\mathrm{N}_{\mathrm{C}}(\mathrm{H})$. For each $y \in Y(H)$, we determine a vertex $\hat{y} \in$ $\mathrm{N}_{\mathrm{C}-\mathrm{X}}(\mathrm{y})$ such that $\left|\mathrm{N}_{\mathrm{H}}\left(\hat{\mathrm{y}}, \hat{\mathrm{y}}^{*}\right)\right| \geq 2$.

Let $\mathrm{Y}=\{\hat{\mathrm{y}}: \mathrm{y} \in \mathrm{Y}\}$, and abbreviate $\hat{\mathrm{X}}=\mathrm{X} \bigcup \hat{\mathrm{Y}}$. By construction, we obtain that $\left|\mathrm{N}_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right| \geq 2$ for any distinct $\mathrm{x}, \mathrm{x}^{\prime} \in \mathrm{X}$.
Picking some $\mathrm{y}_{0} \in \mathrm{Y}^{\prime}$, we label
$\mathrm{X} \cup\left(\hat{\mathrm{Y}}-\left\{\hat{\mathrm{y}}_{0}\right\}\right) \cup \mathrm{N}_{\mathrm{C}-\mathrm{X}}\left(\mathrm{y}_{0}\right)=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right\}$
According to the fixed orientation.
For $\mathrm{X}_{\mathrm{i}} \in \mathrm{X} \bigcup \hat{\mathrm{Y}}-\left\{\hat{\mathrm{y}}_{0}\right\}$, let u_{i}, denote the vertex on C such that $\left|\mathrm{C}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}\right)\right|=\left\lfloor\frac{\mathrm{D}+2-\mathrm{h}}{2}\right\rfloor$,
Where $\mathrm{h}=\mathrm{c}(\mathrm{G})-|\mathrm{C}|$.
For the remaining X_{i}, set $u_{i}=X_{i}^{++}$. Since no C-arc joins distinct segments of the form $C\left(x_{i}, u_{i}\right)$. Therefore, $S=V\left(\bigcup_{i=1}^{m} C\left[u_{i}, x_{i+1}\right]\right)$ is a vertex-cut of G, and $\mathrm{G}-\mathrm{S}$ has at least $|\mathrm{X} \cup \mathrm{Y}|-1+\left|\mathrm{N}_{\mathrm{C}-\mathrm{X}}\left(\mathrm{y}_{0}\right)\right|+1$ components. Hence
$\mathrm{t}(\mathrm{m}=1) \leq|\mathrm{S}|=|\mathrm{C}|-\mathrm{m}-(|\mathrm{X} \cup \mathrm{Y}|-1)\left\lfloor\frac{\mathrm{D}-\mathrm{h}}{2}\right\rfloor$ And,
Equivalently,
$|C| \geq(t+1) m+t+(|X \cup Y|-1)\left\lfloor\frac{D-h}{2}\right\rfloor$.
(2)

If $|X \cup Y| \geq 2 t+3$, then (2) yields

$$
\begin{aligned}
|\mathrm{C}| & \geq(\mathrm{t}+1) \mathrm{d}_{\mathrm{C}}\left(\mathrm{y}_{0}\right)+\mathrm{t}+(\mathrm{t}+1)(\mathrm{D}-1-\mathrm{h}+|\mathrm{Y}|-1) \\
& \geq(\mathrm{t}+1)\left(\mathrm{d}\left(\mathrm{y}_{0}\right)+6\right)+\mathrm{t} .
\end{aligned}
$$

In the remaining case, when $|\mathrm{X} \cup \mathrm{Y}|<2 \mathrm{t}+3$, let us
first assume that $\mathrm{D}<2 \mathrm{~d}_{\mathrm{H}}(\mathrm{v})-2$ for all $\mathrm{v} \in \mathrm{V}(\mathrm{H})$. Then the graph H has a vertex-cut $\mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$. Let L be a component of $\mathrm{H}-\mathrm{T}$ such that $|\mathrm{V}(\mathrm{L}) \cap \mathrm{Y}|$ is minimum. If $\mathrm{V}(\mathrm{L}) \subseteq \mathrm{Y}$, we pick $\mathrm{v} \in \mathrm{V}(\mathrm{L})$ and obtain $2|\mathrm{Y}|-1 \leq \mathrm{d}_{\mathrm{H}}(\mathrm{V})<|\mathrm{Y}|-1+|\mathrm{T}|=|\mathrm{Y}|+1$, contrary to $|Y| \geq\left|Y^{\prime}\right| \geq 10$.

If $\mathrm{V}(\mathrm{L})-\mathrm{Y} \neq \varnothing$, then contrary to $|\mathrm{Y}| \geq\left|\mathrm{Y}^{\prime}\right| \geq 10$.
$2 \mathrm{t} \leq|\mathrm{X}|+|\mathrm{T}|+|\mathrm{Y} \cap \mathrm{V}(\mathrm{L})| \leq|\mathrm{X}|+2+\frac{|\mathrm{Y}|}{2}<2 \mathrm{t}+5-\frac{|\mathrm{Y}|}{2}$ $\leq 2 \mathrm{t}$,

Which is absurd. Hence, in fact, $\mathrm{D} \geq 2 \mathrm{~d}_{\mathrm{H}}(\mathrm{v})-2$ for some $v \in V(H)$. As $v \in Y^{\prime}$, we can apply (2).
From $|X \cup Y|<2 t+3$, we derive $t>\frac{7}{2}$ and, in particular, $|\mathrm{X} \cup \mathrm{Y}|-1 \geq 2 \mathrm{t}-1>\mathrm{t}+2$.

Thus we obtain $|\mathrm{C}| \geq(\mathrm{t}+1) \mathrm{d}_{\mathrm{C}}(\mathrm{v})+\mathrm{t}+(\mathrm{t}+1$ $\left(|\mathrm{Y}|-1+\mathrm{d}_{\mathrm{H}}(\mathrm{v})-\frac{\mathrm{h}+3}{2}\right)>(\mathrm{t}+1)(\mathrm{d}(\mathrm{v})+6)+\mathrm{t}$.

III. CONCLUSION

In this paper we have to investigate nonseparable components of longest cycles. The relation between toughness, minimum degree and the longest cycle is explored. It is shown that C is a Hamiltonian cycle or $|C| \geq(t+1) \delta+t$.

REFERENCES

[1] Bollobas , B ., " Modern Graph Theory", Springer - Verlag, New York, 1998
[2] Bondy, J. A. and Murty, U. S. R., "Graph Theory with Applications", the Macmillan Press Ltd, London, 1976.
[3] Chartrand, G. and Lesniak . L., "Graphs and Digraphs", Chapman and Hall/CRC, New York, 2005.
[4] Grossman, J. W., "Discrete Mathematics", Macmillan Publishing Company, New York, 1990.
[5] Parthasarathy, K. R., "Basic Graph Theory", Tata McGraw - Hill, Publishing Company Limited, New Delhi, 1994.

