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Abstract- In this paper we mention vertex-cut and 

edge-cut. We establish connectivity, edge-

connectivity and minimum degree. And then,   we 

discuss toughness t (G) and independence number 

( )  of a graph. Finally the result reveals that the 

cubic 
m 1G G  with 4

3

 toughness is obtained. 

 

Indexed Terms- connectivity, edge-connectivity, t-

tough, toughness, k-cube, cubic graph, coloring 

number, vertex-cut, independence number, 

minimum degree 

 

I. INTRODUCTION 

 

A graph with n vertices and m edges consists of a 

vertex set   and an edge set   where each edge consists 

of two vertices called its end-vertices. Two vertices u 

and v of G are said to be connected if there is a -path 

in G. A graph is said to be connected if every two of 

its vertices are connected; otherwise it is 

disconnected. A graph is simple if it has no loops and 

no parallel edges. The degree   of a vertex v in G is 

the number of edges of G incident with v, each loop 

counting as two edges. We denote by d (G) and D 

(G) the minimum and maximum degrees, 

respectively of vertices of G. 

 

Two simple graphs G and H are isomorphic (written 

if and only if there is a bijection   such that if and 

only if A complete graph G is a simple graph in 

which every pair of vertices is adjacent. If a complete 

graph G has n vertices, then it will be denoted by Kn 

.  

 

The vertex - connectivity or simply the connectivity  

k(G)  of  a graph  G  is the minimum cardinality of a 

vertex-cut of  G  if  G  is not complete , and   k(G) =  

n - 1  if  G  =  Kn  for some positive integer  n . 

Hence k (G) is the minimum number of vertices 

whose removal results in a disconnected or trivial 

graph. If G is either trivial or disconnected, k (G) = 0.  

G is said to be k - connected if k (G) ³ k. All non-

trivial connected graphs are 1 - connected.  

 The edge-connectivity  k¢(G)  of   a graph  G  is the 

minimum cardinality of  an edge-cut of G if  G  is 

non-trivial, and  k¢(K1) = 0. So k¢ (G) is the 

minimum number of edges whose removal from G 

results in a disconnected or trivial graph. Thus  k¢(G) 

= 0  if  and only if  G  is disconnected or trivial; while  

k¢(G) = 1  if  and only if  G  is connected .  A graph 

G is k - edge - connected,   k ³ 1, if   k¢ (G) ³ k.  

 

A bipartite graph is one whose vertex set can be 

partitioned into two subsets X and Y, so that each 

edge has one end in X and one end in Y; such a 

partition       (X, Y) is called a bipartition of the 

graph. A complete bipartite graph is a simple 

bipartite graph with bipartition (X, Y)  in which each 

vertex of  X  is joined to each vertex of  Y :  if  |X|  =  

m  and  |Y|  =  n, such a graph is denoted by  Km,n. 

 

II. CONNECTIVITY WITH TOUGHNESS 

 

A parameter that plays an important role in the study 

of toughness is the independence number. Two 

vertices that are not adjacent in a graph G are said to 

be independent. A set S of vertices is independent if 

every two vertices of S are independent. The vertex 

independence number or simply the independence 

number (G) of a graph G is the maximum 

cardinality among the independent sets of vertices of 

G. Let F be a graph. A graph G is F-free if G contains 

no induced subgraph isomorphic of F. A 
1,3K -free 

graph is also referred to as a claw-free graph. If G is a 

noncomplete graph and t is a nonnegative real 

number such that 
S

t
(G S)


 

  for every vertex-cut S 

of G, then G is defined to be t-tough. If G is a t-tough 

graph and s is a nonnegative real number such that  

s t,  then G is also s-tough. The maximum real 

number t for which a graph G is a t-tough is called 

the toughness of G and is denoted by t (G). Since 
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complete graphs do not contain vertex-cuts, this 

definition does not apply to such graphs. 

Consequently, we define 
nt(K )    for every 

positive integer n. certainly, the toughness of a 

noncomplete graph is a rational number. Also 

t(G) 0  if and only if G is a disconnected. It follows 

that if G is a noncomplete graph, then 

S
t(G) min ,

(G S)


 
 

Where the minimum is taken over all vertex-cuts S of 

G. 

Determining the toughness of a graph usually 

involves some experimentation. The goal is to find a 

vertex-cut S that minimizes S

(G S) 

. 

 

 

Figure 1 A graph G of toughness 6

5
. 

For the graph G of figure 1, 

 1S g,h,c,d, j,k,o,n ,  2S a,c,e,g,q,m ,

 3S a,d,f ,h, l,m,q,p .  

1

1

S 8
,

(G S ) 6


 

2

2

S 6
,

(G S ) 5


 

3

3

S 8
.

(G S ) 5


 
 

 

2.1Theorem  

Let G be a connected graph of order n 3  that is not 

complete. For each edge-cut X of G, there is a vertex-

cut U of G such that U X .  

Proof: 

Assume, without loss of generality, that X is a 

minimum edge-cut of G. Then G X  is a 

disconnected graph containing exactly two 

components 
1G  and

2G , where 
iG  has order in

(i 1, 2).  Thus 
1 2n n n.   We consider two cases. 

 

Case 1.  

Every vertex of
1G is adjacent to every vertex of

2G . 

Then 
1 2X n n .  Since 

1 2(n 1)(n 1) 0,    it 

follows that 
1 2 1 2n n n n 1 n 1      and so 

X n 1.  Since G   is not complete, G contains two 

nonadjacent vertices u and v. Then 

 U V(G) u, v  is a vertex-cut of cardinality n 2  

and U X .  

 

Case 2. 

There are vertices u in 
1G  and v in 

2G  that are not 

adjacent in G. For each edge e in X, we select a 

vertex for U in the following way. If u is incident 

with e, then choose the other vertex (in G2) incident 

with e for U; otherwise, select for U the vertex that is 

incident with e and belongs to
1G . Now U X .  

Furthermore, u, v V(G U),   but G U  contains 

(u, v) -path, so U is a vertex-cut.   

 

2.2 Theorem 

For every graph G, (G) (G) (G).      

Proof: 

If G is trivial or disconnected, then 

(G) (G) 0;    so we can assume that G is a 

nontrivial connected graph. Let v be a vertex of G 

such that deg v (G).  the removal of the (G)

edges of G incident with v results in a graph G  in 

which v is isolated, so G  is either disconnected or 

trivial. Therefore, (G) (G).  
 

 

We now verify the other inequality. If 
nG K  for 

some positive integer n, then 

n n(K ) (K ) n 1.     suppose next that G is not 

complete, and let X be an edge-cut such that 

X (G).=
  

By Theorem 2.1 there exists a vertex-cut U such that 

U X .  Thus (G) U X (G).   =  

 

2.3 Corollary 

Let G be a graph with vertices 

1 2 n 1 2 nx ,x ,..., x ,d(x ) d(x ) ... d(x ).   suppose 
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for some k, 0 k n,   that 
jd(x ) j k 1,    for 

n k 1j 1,2,...,n 1 d(x ),     then G is k-connected. 

 

Proof 

Suppose that G is not k-connected. Then there exist 

1 2V ,V V(G)  such that 
1 2V V ,

1 1 2 2 1 2V n , V n , n n n k 1       and 

id( x ) n k 2    for ix V.  Now, 

 jX x | j n k 1     is a set of k elements all with a 

degree larger than or equal to 
n k 1d(x ). 

 Hence, there 

is at least one 
1 2x X (V V ).    Without loss of 

generality, say in 
2X V . Thus

2 n k 1 n k 1n d(x ) 1 (k 1) d(x ) k 2           

and  

1 2n n k 1 n   
n k 1n 1 d(x ).     Take 

j 1x V  

such that j is maximal 
1( j n ),  then  

11 nn k 1 d(x )   j 1d(x ) n k 2   
.
  

Thus, if G is a graph with vertices 
1 2 nx ,x ,..., x ,  with 

1 2 nd(x ) d(x ) ... d(x )   (G)   and 
jd(x ) j  

for j 1, 2,..., n (G) 1,    then G is connected. The 

reverse is, obviously, not true. 

 

2.4 Corollary
 

Let 
nG K  be a graph of order n, then 

(G) 2 (G) 2 n.      

Proof: 

Let k 2 (G) 2 n.     It suffices to show 

jd(x ) j k 1,    for j 1,..., n 1 (G)    (because

n k 1d(x ) (G)    ). This is certainly true if 

jd(x ) n 1 (G) k 1      for all j 1,..., n 1 (G)    

and n 1 (G) k 1 (G).        

 

2.5 Theorem 

For every noncomplete graph G,  

  (G) (G)
t(G) .

(G) 2

 
 


 

Proof: 

The independence number is related to toughness in 

the sense that among all the vertex-cuts S of the 

noncomplete graph G, the maximum value of 

(G S)   is (G),  so for every vertex-cut S of G, we 

have that (G) S   and (G S) (G).     

By the definition of  t(G),  

S (G)
t(G) min .

(G S) (G)


 

  
 

Let S  be a vertex-cut with S (G).  
 

 Thus (G S ) 2,    so 

S S (G)
t(G) min .

(G S) (G S ) 2

 
  

     

  

 

2.6 Theorem [3]  

A graph G of order n 2  is k-connected  

(1 k n 1)    if and only if for each pair u, v of 

distinct vertices there are at least k internally-disjoint 

(u, v) – paths in G. 

 

2.7 Theorem 

If G is a noncomplete claw-free graph, then

1
t(G) (G)

2
  . 

Proof: 

If G is disconnected, then t(G) (G) 0    and the 

result follows. So we assume that (G) r 1.    Let S 

be a vertex-cut such that 
S

t(G) .
(G S)


 

suppose 

that (G S) k    and that 
1 2 kG ,G ,...,G  are the 

components of G S.  

Let 
i iu V(G ) and 

j ju V(G ),  where i j.  Since 

G is r-connected, it follows by Theorem 2.6 that G 

contains at least r internally disjoint 
i j(u ,u ) -paths. 

Each of these paths contains a vertex of S. 

Consequently, there are at least r edges joining the 

vertices of S and the vertices of 
iG  for each i

(1 i k)   such that no two of these edges are 

incident with the same vertex of S. 

 

Hence there is a set X containing at least kr edges 

between S and G S  such that any two edges 

incident with a vertex of S are incident with vertices 

in distinct components of G S . However, since G is 

claw-free, no vertex of S is joined to vertices in three 

components of G S .Therefore, 

 kr X 2 S 2k t(G)   . 
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So  kr 2k t(G).  

Thus r 1
t(G) (G).

2 2
    

By Theorem 2.5,    1
t(G) (G).

2
   

 

III. TOUGHNESS AND INDEPENDENCE 

NUMBER 

 

In this paper we derive upper bounds on the 

toughness of cubic graphs in terms of the 

independence number and coloring parameters. 

 

A coloring of a graph G we mean an assignment of 

colors to the vertices of G such that any two vertices 

joined by an edge receive different colors. A color 

class A is minimal if every vertex of A has a 

neighbor of every other color. 

 

We show an example of a graph coloring, thus need 

three colors to color. 

 

 
Figure 2. A graph coloring. 

 

A graph   is a k-colorable if there is a vertex coloring 

with k colors. Let   be a graph. The chromatic number 

of G, written   is the minimum integer k such that G 

is k-colorable. 

 

The k-cube is the graph whose vertices are the 

ordered k-tuples of o's and 1's, two vertices begin 

joined if and only if they differ in exactly one 

coordinate. 

 

 
Figure 3.  3-cube. 

 

3.1 Theorem  

The k-cube has 
k2  vertices, 

k 1k 2 
 edges and is 

bipartite. 

Proof: 

Each coordinate of a k-tuple can be chosen in two 

ways, 0 (or) 1.  

Therefore there are k-places which has 
k2 different 

ways. 

So k-cube has 
k2 vertices.  Let V be the vertex set of 

k-cube.Let v V . Since v is k-tuple, there are k- 

tuple which differ from v in exactly one coordinate. 

There are k-edges between v and these vertices. 

Let vE  be the set of edges incident with v.  

  
vE k . 

For all v V , we have the sum  

  k

v

v V

E k(2 )


  

But in this sum edge is counted twice. 

Therefore 2 (number of edges in k-cube) 
kk (2 ).  

We have seen thatthe number of edges in k-cube
k

k 1k2
k2

2

 
.

 

Let  X v V |the number of is in v is odd .   

Let  Y v V |thenumber of isin viseven .   

Take any edge uv in k-tuple. 

Assume that u X.  

X

Z

Y

(1,0,1)











(0,1,1)

(1,1,1)

(0,0,1)

(1,0,0)

(0,0,0) (0,1,0)

(1,1,0)
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Since u and v differ in exactly one coordinate, 

v Y.  Thus for every edge uv in the k-cube, one 

end in X and the other end in Y. 

Hence k-cube is bipartite. 

 

3.2 Lemma [5]  

Let G be a cubic graph with a 3-coloring (A, B,C)  

such that A is minimal. If

A a, B b, and C c    then 

3b a c
t(G)

2b

 
 . 

 

3.3 Theorem   

For a noncomplete cubic graph G on n vertices and 

independence number : 

2n 3 2
t(G) min , .

n 4 n

   
  

  

 

Proof: 

By the definition of a graph coloring, a graph of 

maximum degree r has an r-coloring where one of the 

color classes is a maximum independent set. Let 

(A, B,C)  be a 3-coloring of G where C is a 

maximum independent set, and subject to this, A is as 

small as possible. So C    and 
(n )

b .
2


  

Also 3b 3c a 3 (n b )       by inequality, 

whence n
b 2 .

2
   

So by the above Lemma 3.2, 

 

3b a c n 2 2n 3 2
t(G) 1 min , ,

2b 2b n 4 n

       
     

    
as required.   

  

This is best possible. For n

2
   the theorem gives an 

upper bound of 1, and any 3-connected cubic 

bipartite graph has toughness 1. At the other extreme 

the theorem shows that 3
t(G)

2
  in noncomplete cubic 

graphs requires that 
n

3
   and thus n a multiple of 3. 

 

Consider also the following cubic graph Gm for m a 

positive integer. Start with a set  1 6mU u ,...,u  of 

6m vertices which form a cycle. Then add a set 

 1 3mV v ,..., v  3m vertices, and connect 
iv  to 

2i 1u 
and

2iu . Finally add a set  1 mW w ,..., w  of m 

vertices, and join iw to
3i 2 3i 3i 2v , v and v 

. The 

graph is illustrated in Figure 1. The graph 
mG  has 

n 10m  vertices, toughness 4

3

 and independence 

number 2n
.

5
 

 

 

The graph is illustrate for the cubic graph m 1G G . 

 

 
Figure 4.  The cubic graph 

 

3.4 Proposition   [5]  

For a noncomplete graph G, (G) (G)
t(G) .

(G) 2

 
 


 

 

3.5 Lemma 

For 
mm 1, G  has toughness

4

3
. 

Proof: 

Let S be a vertex-cut and suppose 
mG S  has k 

components. Note that by Proposition 3.4, k S  

(since 
mG  is 3-connected). Thus as ( S 1) S

(k 1) k





 we 

may assume that 
mG S  has no vertex-cut. 

We show first that we may assume that S V .   

suppose for some iw  some of its neighbors are in S. 



















3u4u

5u

6u

2u

1u

2v

3v
1v

1w
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Then in 
mG S  reinsert the neighbors of iw  and 

remove iw  instead. This action cannot join two 

components (since jv 's  two neighbors in U are 

already adjacent). The only way this action can 

reduce the number of components is if iw a 

singleton component in was
mG S . But that means 

all of iw 's  neighbours are in S and since 

( S 2) S

(k 1) k





 we are better off, a contradiction. So 

this action does not decrease the number of 

components and does not increase the number of 

vertices removed. Hence we may assume that 

S V .   

 

Let w denote S W . Since 
mG S  has no cut-

vertex, for any iw  not in S the vertices 

6i 4 6i 3 6i 3u ,u ,..., u    must all lie in the component 

with iw . Denote the subpath 6i 4 6i 3 6i 3u ,u ,..., u    

by iP . Now it is not hard to see that the best strategy, 

once S W  is determined, is to remove every 

alternate vertex of U that lies outside the 
iP

corresponding to the 
iw S.  The number u of 

vertices of U removed is equal to the number of 

components that remain. Also u 3w . Hence

(w 3w) 4
t

(3w) 3


  . 

 

IV. CONCLUSION 

 

We conclude that connected graph have connectivity 

and edge- connectivity. The bounds of connectivity 

of a graph G are expressed as in terms of minimum 

degree of G and numbers of vertices in G. The 

toughness t (G) is discussed which is related to the 

connectivity and independence number in G. And 

then the result of the cubic graph G_m has 4/3 

toughness. 
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