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Abstract- In this paper we mention vertex-cut and
edge-cut. We establish  connectivity, edge-
connectivity and minimum degree. And then, we
discuss toughness t (G) and independence number
(B) of a graph. Finally the result reveals that the

cubic G, =G, with 4 toughness is obtained.
3
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I INTRODUCTION

A graph with n vertices and m edges consists of a
vertex set and an edge set where each edge consists
of two vertices called its end-vertices. Two vertices u
and v of G are said to be connected if there is a -path
in G. A graph is said to be connected if every two of
its vertices are connected; otherwise it is
disconnected. A graph is simple if it has no loops and
no parallel edges. The degree of a vertex v in G is
the number of edges of G incident with v, each loop
counting as two edges. We denote by d (G) and D
(G) the minimum and maximum degrees,
respectively of vertices of G.

Two simple graphs G and H are isomorphic (written
if and only if there is a bijection such that if and
only if A complete graph G is a simple graph in
which every pair of vertices is adjacent. If a complete
graph G has n vertices, then it will be denoted by Kn

The vertex - connectivity or simply the connectivity
k(G) of agraph G isthe minimum cardinality of a
vertex-cut of G if G is not complete , and k(G) =
n-1 if G = Kn for some positive integer n .
Hence k (G) is the minimum number of vertices
whose removal results in a disconnected or trivial
graph. If G is either trivial or disconnected, k (G) = 0.

IRE 1701490

G is said to be k - connected if k (G) 3 k. All non-
trivial connected graphs are 1 - connected.

The edge-connectivity k¢(G) of agraph G is the
minimum cardinality of an edge-cut of G if G s
non-trivial, and k¢(K1) = 0. So k¢ (G) is the
minimum number of edges whose removal from G
results in a disconnected or trivial graph. Thus k¢(G)
=0 if andonly if G is disconnected or trivial; while
k¢(G) =1 if and only if G is connected . A graph
G isk - edge - connected, k31,if k¢ (G)3k.

A bipartite graph is one whose vertex set can be
partitioned into two subsets X and Y, so that each
edge has one end in X and one end in Y; such a
partition (X, Y) is called a bipartition of the
graph. A complete bipartite graph is a simple
bipartite graph with bipartition (X, Y) in which each
vertex of X is joined to each vertex of Y : if |X| =
m and |Y| = n, such a graph is denoted by Km,n.

Il. CONNECTIVITY WITH TOUGHNESS

A parameter that plays an important role in the study
of toughness is the independence number. Two
vertices that are not adjacent in a graph G are said to
be independent. A set S of vertices is independent if
every two vertices of S are independent. The vertex
independence number or simply the independence
number B(G) of a graph G is the maximum
cardinality among the independent sets of vertices of
G. Let F be a graph. A graph G is F-free if G contains
no induced subgraph isomorphic of F. A Km—free
graph is also referred to as a claw-free graph. If G isa
noncomplete graph and t is a nonnegative real
S
o(G-S)
of G, then G is defined to be t-tough. If G is a t-tough
graph and s is a nonnegative real number such that
Ss<t, then G is also s-tough. The maximum real

number such that ¢ < for every vertex-cut S

number t for which a graph G is a t-tough is called
the toughness of G and is denoted by t (G). Since
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complete graphs do not contain vertex-cuts, this
definition does not apply to such graphs.
Consequently, we define t(K )=+ for every
positive integer n. certainly, the toughness of a
noncomplete graph is a rational number. Also
t(G) =0 ifand only if G is a disconnected. It follows
that if G is a noncomplete graph, then

S
o(G-S)’
Where the minimum is taken over all vertex-cuts S of
G.
Determining the toughness of a graph usually
involves some experimentation. The goal is to find a

t(G) =min

vertex-cut S that minimizes S| .
o(G-9)

Figure 1 A graph G of toughnessﬁ.
5

For the graph G of figure 1,
Sl ={g,h,C,d,j,k,0,n}, SZ :{aycierquym}a
S,={a,d,f,h,I,m,q,p}.

|Sl| _8 S,| 6 |Ss|

o(G-S) 6 oG-S,) 5 oG-S, 5

2.1Theorem

Let G be a connected graph of order n >3 that is not
complete. For each edge-cut X of G, there is a vertex-
cut U of G such that U] <|X].

Proof:

Assume, without loss of generality, that X is a
minimum edge-cut of G. Then G-X is a
disconnected graph containing exactly two

components G, andg,, where G, has order N,

(i=1,2). Thus n, +n, =n. We consider two cases.
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Case 1.

Every vertex of G, is adjacent to every vertex of G, .
Then |X|=np,. Since (n,-1)(n,-1)>0, it
follows that n,n,>n,+n,-1=n-1 and so
|x| >n-1.Since G is not complete, G contains two

nonadjacent  vertices u and . Then
U =V(G)—{u,v}is a vertex-cut of cardinality n-2

and |U|<|X].

Case 2.

There are vertices u in G, and v in G, that are not
adjacent in G. For each edge e in X, we select a
vertex for U in the following way. If u is incident
with e, then choose the other vertex (in G,) incident
with e for U; otherwise, select for U the vertex that is
incident with e and belongs toG,. Now |U|g|x|,

Furthermore, u,veV(G-U), but G-U contains
(u, V) -path, so U is a vertex-cut.

2.2 Theorem

For every graph G, k(G) <«k'(G) <5(G).

Proof:

If G is trivial or disconnected, then
k(G)=«'(G)=0;s0 we can assume that G is a

nontrivial connected graph. Let v be a vertex of G
such that deg v=35(G).the removal of the §(G)
edges of G incident with v results in a graph G’ in
which v is isolated, so G’ is either disconnected or
trivial. Therefore, «'(G) < §(G).

We now verify the other inequality. If G=K, for
some positive integer n, then
k(K,)=«'(K,)=n-1.suppose next that G is not
complete, and let X be an edge-cut such that
‘X‘:K,(G).

By Theorem 2.1 there exists a vertex-cut U such that
U] <|X|. Thus k(G) <|U|<|X|=«/(G).

2.3 Corollary
Let G be a graph with vertices

X1, X500 X, (X)) £d(X,) <...<d(X,,). suppose
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for some k, 0<k<n, that d(x,)>j+k-1 for
i=12,..,n-1-d(x,_,.,), then G is k-connected.

Proof
Suppose that G is not k-connected. Then there exist

V,,V, = V(G) such that V,NV, =@,
|V1|:n1’|V2|:n21n1+n2:n_k+1 and
d(x)<n, +k-2 for XeV,. Now,
x:{xj |j=> n—k+1} is a set of k elements all with a

degree larger than or equal to d(x,_,,,). Hence, there
is at least one xexn(v,UvV,). Without loss of
generality, i
n, > d(X, ) +1-(k-1)=d(X,,,) —k+2
and

n=n-k+1-n,<n-1-d(x,,). Take X;eV,

say in XNv,. Thus

such that j is maximal (j>n,), then
n+k-1<d(x,) <d(x;)<n, +k-2

Thus, if G is a graph with vertices X;,X,,...,X,, With

D o
d(x,) <d(x,) <...<d(x,) =A(G) and d(x;)>]
for j=1,2,...,n—A(G) -1, then G is connected. The
reverse is, obviously, not true.

2.4 Corollary

Let GzK,Z be a graph of order n, then
k(G) > 28(G)+2—-n.

Proof:

Let k=25(G)+2-n. It suffices to show
d(x;)>j+k-1 for j=1..n-1-3(G) (because
d(X, ;) =8(G)). This is certainly true if
d(x;)=n-1-8(G)+k-1 for all j=1..,n-1-3(G)
and n-1-3(G) +k-1=3(G).

2.5 Theorem
For every noncomplete graph G,
KO (g < KO,
B(G) 2
Proof:
The independence number is related to toughness in
the sense that among all the vertex-cuts S of the

noncomplete graph G, the maximum value of
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o(G -S) is (G), so for every vertex-cut S of G, we
have that k(G) <|5| and ®(G -S) <B(G).
By the definition of {(G),

t(G) = min$>@

o(G-S) BG)
Let S’ be a vertex-cut with |S| = k(G).
Thus o(G-5) 22, S0

S __ Sl _x(©)
o(G-9) oG-S) 2

t(G) =min

2.6 Theorem [3]
A graph G of order N>2 is k-connected
(A<k<n-1) if and only if for each pair u, v of

distinct vertices there are at least k internally-disjoint
(u, v) —paths in G.

2.7 Theorem
If G is a noncomplete claw-free graph, then

t(G) = %K(G) .
Proof:

If G is disconnected, then t(G)=1x(G)=0 and the
result follows. So we assume that «(G) =r>1. LetS

be a vertex-cut such that t(G):i_suppose
o(G-9)

that o(G-S)=k and that G,,G,,..,G, are the
components of G-S,

Let u, eV(G;)and u; e V(G,), where i= j Since
G is r-connected, it follows by Theorem 2.6 that G
contains at least r internally disjoint (ui,uj)-paths.

Each of these paths contains a vertex of S.
Consequently, there are at least r edges joining the
vertices of S and the vertices of G, for each i

(I<i<k) such that no two of these edges are
incident with the same vertex of S.

Hence there is a set X containing at least kr edges
between S and G-S such that any two edges
incident with a vertex of S are incident with vertices
in distinct components of G—S. However, since G is
claw-free, no vertex of S is joined to vertices in three
components of G —S.Therefore,

kr =|X| < 2|5 = 2k t(G) -
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So kr<2Kt(G).
Thus r.1
()25 =5 (G).

By Theorem 2.5, ¢G)= %K(G).

1. TOUGHNESS AND INDEPENDENCE
NUMBER

In this paper we derive upper bounds on the
toughness of cubic graphs in terms of the
independence number and coloring parameters.

A coloring of a graph G we mean an assignment of
colors to the vertices of G such that any two vertices
joined by an edge receive different colors. A color
class A is minimal if every vertex of A has a
neighbor of every other color.

We show an example of a graph coloring, thus need
three colors to color.

Figure 2. A graph coloring.

A graph is a k-colorable if there is a vertex coloring
with k colors. Let be a graph. The chromatic number
of G, written is the minimum integer k such that G
is k-colorable.

The k-cube is the graph whose vertices are the
ordered k-tuples of o's and 1's, two vertices begin
joined if and only if they differ in exactly one
coordinate.
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Z
(0,0,1) 0,1,1)
1,11
2,0,1)
0.0,0) oLoy "
(1,0,0) 1,1,0)
X
Figure 3. 3-cube.
3.1 Theorem
The k-cube has 2% vertices, K2 edges and is
bipartite.
Proof:

Each coordinate of a k-tuple can be chosen in two
ways, 0 (or) 1.

Therefore there are k-places which has 2" gifferent
ways.

So k-cube has 2% vertices. Let V be the vertex set of

k-cube.Let veV. Since v is k-tuple, there are k-
tuple which differ from v in exactly one coordinate.
There are k-edges between v and these vertices.

Let E, be the set of edges incident with v.
Bk
ForallvV eV, we have the sum

2 [E|=k(@")

veV
But in this sum edge is counted twice.
Therefore 2 (number of edges in k-cube) =k (2).
We have seen thatthe number of edges in k-cube
k2

== —k2**!
2

Let X ={v eV the number of is in v is odd}.
Let Y ={v eV |thenumberof isinviseven}.

Take any edge uv in k-tuple.
Assume that ue X.
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Since u and v differ in exactly one coordinate,

Vv eY. Thus for every edge uv in the k-cube, one
end in X and the otherend in .
Hence k-cube is bipartite.

3.2 Lemma [5]
Let G be a cubic graph with a 3-coloring (A,B,C)

such that A is minimal. If
|A|=a, |B|=b, and |C|=c then
1(G) < 3b+a-c _
2b
3.3 Theorem

For a noncomplete cubic graph G on n vertices and
independence numberp :

t(G)Smin(zn_BB, 28 J
n-pg 4B-n

Proof:

By the definition of a graph coloring, a graph of
maximum degree r has an r-coloring where one of the
color classes is a maximum independent set. Let
(A,B,C) be a 3-coloring of G where C is a

maximum independent set, and subject to this, A is as

small as possible. So|C|=p and b > @

Also 3b>3c-a=33-(n—b-p) by inequality,

whence > ZB—E.
2

So by the above Lemma 3.2,

t(G)s3b+a_C=1+n_2BSmin 2n—3[3, 2B 7
2b 2b n—-p 4B—n

as required.
This is best possible. For g = N the theorem gives an
2

upper bound of 1, and any 3-connected cubic

bipartite graph has toughness 1. At the other extreme

the theorem shows that {(G) _3 in noncomplete cubic
2

graphs requires that p = N andthusna multiple of 3.
3

Consider also the following cubic graph G, for m a
positive integer. Start with a set U ={U1,---1Usm} of

6m vertices which form a cycle. Then add a set
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V={v,,...,Vs,} 3m vertices, and connect v, to
U, ,andu,, . Finally add a set W= {w,,..,w, } of m
vertices, and join W;tov, ,, Vv, and v,,,. The
graph is illustrated in Figure 1. The graph G, has

n=10m vertices, toughness 4 and independence
3

The graph is illustrate for the cubic graph G, =G,

W,

Figure 4. The cubic graph

3.4 Proposition [5]
For a noncomplete graph G, K(G) _ t(G) < x(©)
A(G)

2

3.5 Lemma

For m>1, G, has toughnessi.
3

Proof:

Let S be a vertex-cut and suppose G _-s has k
components. Note that by Proposition 3.4, k<[s|

S+ _ 18 we
(k+D) Kk

may assume that G —S has no vertex-cut.

(since G, is 3-connected). Thus as

We show first that we may assume that SNV =&.

suppose for some W,; some of its neighbors are in S.
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Then in G, —S reinsert the neighbors of W, and
remove W, instead. This action cannot join two
components (since VJ-'S two neighbors in U are

already adjacent). The only way this action can
reduce the number of components is if W;a

singleton component in was G, —S. But that means

all of W,;'sS neighbours are in S and since

(|S'|__2)<E we are better off, a contradiction. So
(k-1 k

this action does not decrease the number of
components and does not increase the number of

vertices removed. Hence we may assume that
SNV =9g.

Let w denote|SOW]|. Since G, —S has no cut-

vertex, for any W; not in S the vertices

Ugi 41 Ugi_gs.--1 Ugi,3 must all lie in the component
with W, . Denote the subpath Ug;_,,Ugi_g,--., Ugig

by Pi . Now it is not hard to see that the best strategy,
once SOW is determined, is to remove every
alternate vertex of U that lies outside the P,

corresponding to the W, ¢S. The number u of

vertices of U removed is equal to the number of

components that remain. Alsou <3w. Hence
> W+3w) 4
(3w) 3

IV.  CONCLUSION

We conclude that connected graph have connectivity
and edge- connectivity. The bounds of connectivity
of a graph G are expressed as in terms of minimum
degree of G and numbers of vertices in G. The
toughness t (G) is discussed which is related to the
connectivity and independence number in G. And
then the result of the cubic graph G_m has 4/3
toughness.
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