Toughness in a Cubic Graph

SAN SAN TINT ${ }^{1}$, KHAING KHAING SOE WAI ${ }^{2}$
${ }^{1,2}$ Department of Engineering Mathematics, Technological University (Myitkyina), Myitkyina, Myanmar

Abstract

In this paper we mention vertex-cut and edge-cut. We establish connectivity, edgeconnectivity and minimum degree. And then, we discuss toughness $\boldsymbol{t}(\boldsymbol{G})$ and independence number (β) of a graph. Finally the result reveals that the cubic $\mathrm{G}_{\mathrm{m}}=\mathrm{G}_{1}$ with $\frac{4}{3}$ toughness is obtained.

Indexed Terms- connectivity, edge-connectivity, t tough, toughness, k-cube, cubic graph, coloring number, vertex-cut, independence number, minimum degree

I. INTRODUCTION

A graph with n vertices and m edges consists of a vertex set and an edge set where each edge consists of two vertices called its end-vertices. Two vertices u and v of G are said to be connected if there is a -path in G. A graph is said to be connected if every two of its vertices are connected; otherwise it is disconnected. A graph is simple if it has no loops and no parallel edges. The degree of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges. We denote by $d(G)$ and D (G) the minimum and maximum degrees, respectively of vertices of G.

Two simple graphs G and H are isomorphic (written if and only if there is a bijection such that if and only if A complete graph G is a simple graph in which every pair of vertices is adjacent. If a complete graph G has n vertices, then it will be denoted by Kn

The vertex - connectivity or simply the connectivity $\mathrm{k}(\mathrm{G})$ of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $k(G)=$ $\mathrm{n}-1$ if $\mathrm{G}=\mathrm{Kn}$ for some positive integer n . Hence $k(G)$ is the minimum number of vertices whose removal results in a disconnected or trivial graph. If G is either trivial or disconnected, $\mathrm{k}(\mathrm{G})=0$.

G is said to be k - connected if $\mathrm{k}(\mathrm{G})^{3} \mathrm{k}$. All nontrivial connected graphs are 1 - connected.
The edge-connectivity $k \not(G)$ of a graph G is the minimum cardinality of an edge-cut of G if G is non-trivial, and $\mathrm{k} \not \subset(\mathrm{K} 1)=0$. So $\mathrm{k} \notin(\mathrm{G})$ is the minimum number of edges whose removal from G results in a disconnected or trivial graph. Thus $\mathrm{k} \phi(\mathrm{G})$ $=0$ if and only if G is disconnected or trivial; while $\mathrm{k} \propto(\mathrm{G})=1$ if and only if G is connected. A graph G is k - edge - connected, $\mathrm{k}^{3} 1$, if $\mathrm{k} \not \subset(\mathrm{G})^{3} \mathrm{k}$.

A bipartite graph is one whose vertex set can be partitioned into two subsets X and Y , so that each edge has one end in X and one end in Y ; such a partition $\quad(\mathrm{X}, \mathrm{Y})$ is called a bipartition of the graph. A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y : if $|X|=$ m and $|\mathrm{Y}|=\mathrm{n}$, such a graph is denoted by Km, n.

II. CONNECTIVITY WITH TOUGHNESS

A parameter that plays an important role in the study of toughness is the independence number. Two vertices that are not adjacent in a graph G are said to be independent. A set S of vertices is independent if every two vertices of S are independent. The vertex independence number or simply the independence number $\beta(\mathrm{G})$ of a graph G is the maximum cardinality among the independent sets of vertices of G. Let F be a graph. A graph G is F -free if G contains no induced subgraph isomorphic of F . A $\mathrm{K}_{1,3}$-free graph is also referred to as a claw-free graph. If G is a noncomplete graph and t is a nonnegative real number such that $t \leq \frac{|S|}{\omega(G-S)}$ for every vertex-cut S of G, then G is defined to be t-tough. If G is a t-tough graph and s is a nonnegative real number such that $\mathrm{s}<\mathrm{t}$, then G is also s-tough. The maximum real number t for which a graph G is a t-tough is called the toughness of G and is denoted by $t(G)$. Since
complete graphs do not contain vertex-cuts, this definition does not apply to such graphs.
Consequently, we define $t\left(K_{n}\right)=+\infty$ for every positive integer n . certainly, the toughness of a noncomplete graph is a rational number. Also $\mathrm{t}(\mathrm{G})=0$ if and only if G is a disconnected. It follows that if G is a noncomplete graph, then
$\mathrm{t}(\mathrm{G})=\min \frac{|\mathrm{S}|}{\omega(\mathrm{G}-\mathrm{S})}$,
Where the minimum is taken over all vertex-cuts S of G.

Determining the toughness of a graph usually involves some experimentation. The goal is to find a vertex-cut S that minimizes \qquad

Figure 1 A graph G of toughness $\frac{6}{5}$.
For the graph G of figure 1, $S_{1}=\{g, h, c, d, j, k, o, n\}, S_{2}=\{a, c, e, g, q, m\}$,
$S_{3}=\{a, d, f, h, 1, m, q, p\}$.
$\frac{\left|\mathrm{S}_{1}\right|}{\omega\left(\mathrm{G}-\mathrm{S}_{1}\right)}=\frac{8}{6}, \frac{\left|\mathrm{~S}_{2}\right|}{\omega\left(\mathrm{G}-\mathrm{S}_{2}\right)}=\frac{6}{5}, \frac{\left|\mathrm{~S}_{3}\right|}{\omega\left(\mathrm{G}-\mathrm{S}_{3}\right)}=\frac{8}{5}$.

2.1Theorem

Let G be a connected graph of order $n \geq 3$ that is not complete. For each edge-cut X of G , there is a vertexcut U of G such that $|\mathrm{U}| \leq|X|$.
Proof:
Assume, without loss of generality, that X is a minimum edge-cut of G. Then $G-X$ is a disconnected graph containing exactly two components G_{1} and G_{2}, where G_{i} has order n_{i} $(\mathrm{i}=1,2)$. Thus $\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}$. We consider two cases.

Case 1.
Every vertex of G_{1} is adjacent to every vertex of G_{2}. Then $\quad|X|=n_{1} n_{2}$. Since $\quad\left(n_{1}-1\right)\left(n_{2}-1\right) \geq 0, \quad$ it follows that $\mathrm{n}_{1} \mathrm{n}_{2} \geq \mathrm{n}_{1}+\mathrm{n}_{2}-1=\mathrm{n}-1$ and so $|X| \geq n-1$. Since G is not complete, G contains two nonadjacent vertices u and v. Then $\mathrm{U}=\mathrm{V}(\mathrm{G})-\{\mathrm{u}, \mathrm{v}\}$ is a vertex-cut of cardinality $\mathrm{n}-2$ and $|\mathrm{U}|<|\mathrm{X}|$.

Case 2.
There are vertices u in G_{1} and v in G_{2} that are not adjacent in G. For each edge e in X , we select a vertex for U in the following way. If u is incident with e , then choose the other vertex (in G_{2}) incident with e for U; otherwise, select for U the vertex that is incident with e and belongs to G_{1}. Now $|\mathrm{U}| \leq|X|$. Furthermore, $u, v \in V(G-U)$, but $G-U$ contains (u, v)-path, so U is a vertex-cut.

2.2 Theorem

For every graph $\mathrm{G}, \kappa(\mathrm{G}) \leq \kappa^{\prime}(\mathrm{G}) \leq \delta(\mathrm{G})$.
Proof:
If G is trivial or disconnected, then $\kappa(\mathrm{G})=\kappa^{\prime}(\mathrm{G})=0$; so we can assume that G is a nontrivial connected graph. Let v be a vertex of G such that $\operatorname{deg} \mathrm{v}=\delta(\mathrm{G})$. the removal of the $\delta(\mathrm{G})$ edges of G incident with v results in a graph G^{\prime} in which v is isolated, so G^{\prime} is either disconnected or trivial. Therefore, $\kappa^{\prime}(\mathrm{G}) \leq \delta(\mathrm{G})$.

We now verify the other inequality. If $G=K_{n}$ for some positive integer n, then $\kappa\left(K_{n}\right)=\kappa^{\prime}\left(K_{n}\right)=n-1$. suppose next that G is not complete, and let X be an edge-cut such that $|\mathrm{X}|=\kappa^{\prime}(\mathrm{G})$.
By Theorem 2.1 there exists a vertex-cut U such that $|\mathrm{U}| \leq|\mathrm{X}|$. Thus $\kappa(\mathrm{G}) \leq|\mathrm{U}| \leq|X|=\kappa^{\prime}(\mathrm{G})$.

2.3 Corollary

Let G be a graph with vertices $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}, \mathrm{d}\left(\mathrm{X}_{1}\right) \leq \mathrm{d}\left(\mathrm{X}_{2}\right) \leq \ldots \leq \mathrm{d}\left(\mathrm{X}_{\mathrm{n}}\right)$. suppose
for some $\mathrm{k}, \quad 0 \leq \mathrm{k} \leq \mathrm{n}$, that $\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}\right) \geq \mathrm{j}+\mathrm{k}-1$, for $\mathrm{j}=1,2, \ldots, \mathrm{n}-1-\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-\mathrm{k}+1}\right)$, then G is k -connected.

Proof

Suppose that G is not k-connected. Then there exist $V_{1}, V_{2} \subset V(G)$ such that $V_{1} \cap V_{2}=\varnothing$, $\left|\mathrm{V}_{1}\right|=\mathrm{n}_{1},\left|\mathrm{~V}_{2}\right|=\mathrm{n}_{2}, \mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}-\mathrm{k}+1 \quad$ and $d(x) \leq n_{i}+k-2 \quad$ for $\quad x \in V_{i}$. Now, $X=\left\{x_{j} \mid j \geq n-k+1\right\}$ is a set of k elements all with a degree larger than or equal to $d\left(x_{n-k+1}\right)$. Hence, there is at least one $x \in X \cap\left(V_{1} \cup V_{2}\right)$. Without loss of generality, say in $x \cap v_{2}$. Thus $\mathrm{n}_{2} \geq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-\mathrm{k}+1}\right)+1-(\mathrm{k}-1)=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-\mathrm{k}+1}\right)-\mathrm{k}+2$ and
$\mathrm{n}_{1}=\mathrm{n}-\mathrm{k}+1-\mathrm{n}_{2} \leq \mathrm{n}-1-\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-\mathrm{k}+1}\right)$. Take $\quad \mathrm{x}_{\mathrm{j}} \in \mathrm{V}_{1}$ such that j is maximal $\left(\mathrm{j} \geq \mathrm{n}_{1}\right)$, then
$\mathrm{n}_{1}+\mathrm{k}-1 \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}_{1}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{j}}\right) \leq \mathrm{n}_{1}+\mathrm{k}-2$.
Thus, if G is a graph with vertices $x_{1}, x_{2}, \ldots, x_{n}$, with $\mathrm{d}\left(\mathrm{x}_{1}\right) \leq \mathrm{d}\left(\mathrm{x}_{2}\right) \leq \ldots \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}\right)=\Delta(\mathrm{G})$ and $\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}\right) \geq \mathrm{j}$ for $\mathrm{j}=1,2, \ldots, \mathrm{n}-\Delta(\mathrm{G})-1$, then G is connected. The reverse is, obviously, not true.
2.4 Corollary

Let $G \neq K_{n}$ be a graph of order n, then $\kappa(G) \geq 2 \delta(G)+2-n$.

Proof:
Let $\mathrm{k}=2 \delta(\mathrm{G})+2-\mathrm{n}$. It suffices to show $\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}\right) \geq \mathrm{j}+\mathrm{k}-1$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1-\delta(\mathrm{G})$ (because $\left.\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-\mathrm{k}+1}\right) \geq \delta(\mathrm{G})\right)$. This is certainly true if $\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}\right) \geq \mathrm{n}-1-\delta(\mathrm{G})+\mathrm{k}-1$ for all $\mathrm{j}=1, \ldots, \mathrm{n}-1-\delta(\mathrm{G})$ and $\mathrm{n}-1-\delta(\mathrm{G})+\mathrm{k}-1=\delta(\mathrm{G})$.

2.5 Theorem

For every noncomplete graph G,

$$
\frac{\kappa(\mathrm{G})}{\beta(\mathrm{G})} \leq \mathrm{t}(\mathrm{G}) \leq \frac{\kappa(\mathrm{G})}{2} .
$$

Proof:
The independence number is related to toughness in the sense that among all the vertex-cuts S of the noncomplete graph G, the maximum value of
$\omega(\mathrm{G}-\mathrm{S})$ is $\beta(\mathrm{G})$, so for every vertex-cut S of G , we have that $\kappa(\mathrm{G}) \leq|\mathrm{S}|$ and $\omega(\mathrm{G}-\mathrm{S}) \leq \beta(\mathrm{G})$.
By the definition of $t(G)$,
$\mathrm{t}(\mathrm{G})=\min \frac{|\mathrm{S}|}{\omega(\mathrm{G}-\mathrm{S})} \geq \frac{\kappa(\mathrm{G})}{\beta(\mathrm{G})}$.
Let S^{\prime} be a vertex-cut with $\left|S^{\prime}\right|=\kappa(G)$.

$$
\text { Thus } \quad \omega\left(\mathrm{G}-\mathrm{S}^{\prime}\right) \geq 2
$$

so
$\mathrm{t}(\mathrm{G})=\min \frac{|S|}{\omega(\mathrm{G}-\mathrm{S})} \leq \frac{\left|\mathrm{S}^{\prime}\right|}{\omega\left(\mathrm{G}-\mathrm{S}^{\prime}\right)} \leq \frac{\kappa(\mathrm{G})}{2}$.

2.6 Theorem [3]

A graph G of order $n \geq 2$ is k-connected $(1 \leq k \leq n-1)$ if and only if for each pair u, v of distinct vertices there are at least k internally-disjoint (u, v) - paths in G.
2.7 Theorem

If G is a noncomplete claw-free graph, then $\mathrm{t}(\mathrm{G})=\frac{1}{2} \kappa(\mathrm{G})$.
Proof:
If G is disconnected, then $t(G)=\kappa(G)=0$ and the result follows. So we assume that $\kappa(\mathrm{G})=r \geq 1$. Let S be a vertex-cut such that $t(G)=\frac{|S|}{\omega(G-S)}$. suppose that $\omega(G-S)=k$ and that $G_{1}, G_{2}, \ldots, G_{k}$ are the components of $\mathrm{G}-\mathrm{S}$.
Let $u_{i} \in V\left(G_{i}\right)$ and $u_{j} \in V\left(G_{j}\right)$, where $i \neq j$. Since G is r-connected, it follows by Theorem 2.6 that G contains at least r internally disjoint (u_{i}, u_{j}) -paths. Each of these paths contains a vertex of S. Consequently, there are at least r edges joining the vertices of S and the vertices of G_{i} for each i $(1 \leq i \leq k)$ such that no two of these edges are incident with the same vertex of S .

Hence there is a set X containing at least kr edges between S and $G-S$ such that any two edges incident with a vertex of S are incident with vertices in distinct components of $\mathrm{G}-\mathrm{S}$. However, since G is claw-free, no vertex of S is joined to vertices in three components of $\mathrm{G}-\mathrm{S}$.Therefore,

$$
\mathrm{kr}=|\mathrm{X}| \leq 2|\mathrm{~S}|=2 \mathrm{kt}(\mathrm{G})
$$

So

$$
\mathrm{kr} \leq 2 \mathrm{kt}(\mathrm{G})
$$

Thus

$$
\mathrm{t}(\mathrm{G}) \geq \frac{\mathrm{r}}{2}=\frac{1}{2} \kappa(\mathrm{G}) .
$$

By Theorem 2.5, $\quad \mathrm{t}(\mathrm{G})=\frac{1}{2} \kappa(\mathrm{G})$.

III. TOUGHNESS AND INDEPENDENCE NUMBER

In this paper we derive upper bounds on the toughness of cubic graphs in terms of the independence number and coloring parameters.

A coloring of a graph G we mean an assignment of colors to the vertices of G such that any two vertices joined by an edge receive different colors. A color class A is minimal if every vertex of A has a neighbor of every other color.

We show an example of a graph coloring, thus need three colors to color.

Figure 2. A graph coloring.

A graph is a k-colorable if there is a vertex coloring with k colors. Let be a graph. The chromatic number of G, written is the minimum integer k such that G is k -colorable.

The k-cube is the graph whose vertices are the ordered k-tuples of o's and 1's, two vertices begin joined if and only if they differ in exactly one coordinate.

Figure 3. 3-cube.

3.1 Theorem

The k-cube has 2^{k} vertices, $\mathrm{k} 2^{\mathrm{k}-1}$ edges and is bipartite.
Proof:
Each coordinate of a k-tuple can be chosen in two ways, 0 (or) 1 .
Therefore there are k-places which has 2^{k} different ways.
So k-cube has 2^{k} vertices. Let V be the vertex set of k-cube.Let $v \in V$. Since v is k-tuple, there are k tuple which differ from v in exactly one coordinate. There are k-edges between v and these vertices.
Let E_{v} be the set of edges incident with v.

$$
\left|\mathrm{E}_{\mathrm{v}}\right|=\mathrm{k}
$$

For all $\mathrm{V} \in \mathrm{V}$, we have the sum

$$
\sum_{v \in V}\left|E_{v}\right|=k\left(2^{k}\right)
$$

But in this sum edge is counted twice.
Therefore 2 (number of edges in k-cube) $=\mathrm{k}\left(2^{\mathrm{k}}\right)$.
We have seen thatthe number of edges in k -cube
$=\frac{\mathrm{k} 2^{\mathrm{k}}}{2}=\mathrm{k} 2^{\mathrm{k}-1}$.
Let $X=\{v \in V \mid$ the number of is in v is odd $\}$.
Let $Y=\{v \in V \mid$ the number of is in v is even $\}$.
Take any edge uv in k-tuple.
Assume that $\mathrm{u} \in \mathrm{X}$.

Since u and v differ in exactly one coordinate, $\mathrm{V} \in \mathrm{Y}$. Thus for every edge $u v$ in the k -cube, one end in X and the other end in Y .
Hence k-cube is bipartite.
3.2 Lemma [5]

Let G be a cubic graph with a 3-coloring (A, B, C) such that A is minimal. If $|\mathrm{A}|=\mathrm{a},|\mathrm{B}|=\mathrm{b}$, and $|\mathrm{C}|=\mathrm{c}$ then
$\mathrm{t}(\mathrm{G}) \leq \frac{3 \mathrm{~b}+\mathrm{a}-\mathrm{c}}{2 \mathrm{~b}}$.
3.3 Theorem

For a noncomplete cubic graph G on n vertices and independence number β :
$\mathrm{t}(\mathrm{G}) \leq \min \left(\frac{2 \mathrm{n}-3 \beta}{\mathrm{n}-\beta}, \frac{2 \beta}{4 \beta-\mathrm{n}}\right)$.
Proof:
By the definition of a graph coloring, a graph of maximum degree r has an r-coloring where one of the color classes is a maximum independent set. Let (A, B, C) be a 3-coloring of G where C is a maximum independent set, and subject to this, A is as small as possible. So $|C|=\beta$ and $\mathrm{b} \geq \frac{(\mathrm{n}-\beta)}{2}$.

Also $3 b \geq 3 c-a=3 \beta-(n-b-\beta)$ by inequality, whence $\mathrm{b} \geq 2 \beta-\frac{\mathrm{n}}{2}$.
So by the above Lemma 3.2,
$\mathrm{t}(\mathrm{G}) \leq \frac{3 \mathrm{~b}+\mathrm{a}-\mathrm{c}}{2 \mathrm{~b}}=1+\frac{\mathrm{n}-2 \beta}{2 \mathrm{~b}} \leq \min \left(\frac{2 \mathrm{n}-3 \beta}{\mathrm{n}-\beta}, \frac{2 \beta}{4 \beta-\mathrm{n}}\right)$, as required.

This is best possible. For $\beta=\frac{n}{2}$ the theorem gives an upper bound of 1 , and any 3-connected cubic bipartite graph has toughness 1 . At the other extreme the theorem shows that ${ }_{\mathrm{t}(\mathrm{G})=\frac{3}{2}}$ in noncomplete cubic graphs requires that $\beta=\frac{n}{3}$ and thus n a multiple of 3 .

Consider also the following cubic graph G_{m} for m a positive integer. Start with a set $U=\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{6 \mathrm{~m}}\right\}$ of 6 m vertices which form a cycle. Then add a set
$\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{3 \mathrm{~m}}\right\} \quad 3 \mathrm{~m}$ vertices, and connect v_{i} to $\mathrm{u}_{2 \mathrm{i}-1}$ and $\mathrm{u}_{2 \mathrm{i}}$. Finally add a set $\mathrm{W}=\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}\right\}$ of m vertices, and join w_{i} to $\mathrm{v}_{3 \mathrm{i}-2}, \mathrm{v}_{3 \mathrm{i}}$ and $\mathrm{v}_{3 \mathrm{i}+2}$. The graph is illustrated in Figure 1. The graph G_{m} has $\mathrm{n}=10 \mathrm{~m}$ vertices, toughness $\frac{4}{3}$ and independence number $\beta=\frac{2 \mathrm{n}}{5}$.
The graph is illustrate for the cubic graph $G_{m}=G_{1}$.

Figure 4. The cubic graph

3.4 Proposition [5]

For a noncomplete graph $\mathrm{G}, \frac{\kappa(\mathrm{G})}{\Delta(\mathrm{G})} \leq \mathrm{t}(\mathrm{G}) \leq \frac{\kappa(\mathrm{G})}{2}$.

3.5 Lemma

For $m \geq 1, G_{m}$ has toughness $\frac{4}{3}$.
Proof:
Let S be a vertex-cut and suppose $G_{m}-S$ has k components. Note that by Proposition 3.4, k $\leq|\mathrm{S}|$ (since G_{m} is 3-connected). Thus as $\frac{(|S|+1)}{(k+1)} \leq \frac{|S|}{k}$ we may assume that $G_{m}-S$ has no vertex-cut.
We show first that we may assume that $\mathrm{S} \cap \mathrm{V}=\varnothing$. suppose for some W_{i} some of its neighbors are in S .

Then in $G_{m}-S$ reinsert the neighbors of W_{i} and remove W_{i} instead. This action cannot join two components (since V_{j} ' s two neighbors in U are already adjacent). The only way this action can reduce the number of components is if W_{i} a singleton component in was $\mathrm{G}_{\mathrm{m}}-\mathrm{S}$. But that means all of W_{i} ' S neighbours are in S and since $\frac{(|S|-2)}{(k-1)}<\frac{|S|}{k}$ we are better off, a contradiction. So this action does not decrease the number of components and does not increase the number of vertices removed. Hence we may assume that $\mathrm{S} \cap \mathrm{V}=\varnothing$.

Let w denote $|S \cap W|$. Since $G_{m}-S$ has no cutvertex, for any W_{i} not in S the vertices $\mathrm{u}_{6 \mathrm{i}-4}, \mathrm{u}_{6 \mathrm{i}-3}, \ldots, \mathrm{u}_{6 \mathrm{i}+3}$ must all lie in the component with W_{i}. Denote the subpath $\mathrm{u}_{6 \mathrm{i}-4}, \mathrm{u}_{6 \mathrm{i}-3}, \ldots, \mathrm{u}_{6 \mathrm{i}+3}$
by P_{i}. Now it is not hard to see that the best strategy, once $\mathrm{S} \cap \mathrm{W}$ is determined, is to remove every alternate vertex of U that lies outside the P_{i} corresponding to the $\mathrm{w}_{\mathrm{i}} \notin \mathrm{S}$. The number u of vertices of U removed is equal to the number of components that remain. Also $u \leq 3 w$. Hence $\mathrm{t} \geq \frac{(\mathrm{w}+3 \mathrm{w})}{(3 \mathrm{w})}=\frac{4}{3}$.

IV. CONCLUSION

We conclude that connected graph have connectivity and edge- connectivity. The bounds of connectivity of a graph G are expressed as in terms of minimum degree of G and numbers of vertices in G. The toughness $t(G)$ is discussed which is related to the connectivity and independence number in G. And then the result of the cubic graph G_m has $4 / 3$ toughness.

REFERENCES

[1] Bollobas , B ., " Modern Graph Theory ", Springer - Verlag, New York, 1998
[2] Bondy, J. A. and Murty, U. S. R., "Graph Theory with Applications", the Macmillan Press Ltd, London, 1976.
[3] Chartrand, G. and Lesniak. L., "Graphs and Digraphs", Chapman and Hall/CRC, New York, 2005.
[4] Grossman, J. W., "Discrete Mathematics", Macmillan Publishing Company, New York, 1990.
[5] Goddard, W, "The Toughness of Cubic Graphs", paper presented in the Department of Mathematics, University of Pennsy Lvania, USA.
[6] Parthasarathy, K. R., "Basic Graph Theory", Tata McGraw - Hill, Publishing Company Limited, New Delhi, 1994

