The Existence of Arbitrarily Tough and Triangle-Free Graphs

SAN SAN TINT ${ }^{1}$, KHAING KHAING SOE WAI ${ }^{2}$
${ }^{1,2}$ Department of Engineering Mathematics,Technological University,Myitkyina, Myanmar

Abstract

In this paper we mention vertex connectivity and independence number. We establish that every hamiltonian graph and any Gl graph are 1-tough. And then, we describe the bound of the toughness $t(G)$ in terms of independence number $\beta(G)$ and the number of vertices, n in G. Finally, a 1-tough graph Gl, it is shown that and the result reveals that a triangle- free graph with are obtained.

Indexed Terms - connectivity, independence number, minimum degree, layers of G, 1-tough, Hamiltonian graph, complete bipartite,triangle-free graph.

I. INTRODUCTION

A graph $G=(V(G), E(G))$ with n vertices and m edges consists of a vertex set $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and an edge set $\mathrm{E}(\mathrm{G})=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{m}}\right\}$ where each edge consists of two vertices called its end-vertices. If $u v \in E(G)$, then u and v are adjacent. The ends of an edge are said to be incident with the edge. The number of vertices of G is called the order of G, is denoted by $v(G)$. Two vertices u and v of G are said to be connected if there is a (u, v)-path in G.

A graph is said to be connected if every two of its vertices are connected; otherwise it is disconnected. A graph is simple if it has no loops and no parallel edges. The degree of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges. We denote by $\delta(\mathrm{G})$ and $\Delta(\mathrm{G})$ the minimum and maximum degrees, respectively of vertices of G. A complete graph G is a simple graph in which every pair of vertices is adjacent. If a complete graph G has n vertices, then it will be denoted by K_{n}. A spanning subgraph of G is a subgraph H with $V(H)=V(G)$.

A walk in G is a finite sequence $W=v_{0} e_{1} v_{1} e_{2} v_{2} \ldots$ $\mathrm{e}_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}$, whose terms are alternately vertices and edges,
such that, for $1 \leq i \leq k$, the ends of e_{i} are v_{i-1} and v_{i}. We say that W is a walk from v_{0} to v_{k} or a $\left(\mathrm{V}_{0}, \mathrm{~V}_{\mathrm{k}}\right)$ walk. The vertices v_{0} and v_{k} are called the origin and terminus of W , respectively and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-1}$ its internal vertices. The integer k is the length of W. If all the edges of a walk are distinct, then it is called a trail. If, in addition, the vertices are distinct, W is called a path. Suppose that V^{\prime} is a nonempty subset of V. A cycle is a closed trail in which all the vertices are distinct, except that the first vertex equals the last vertex. The component of a graph G is the maximal connected subgraph of G. We denote the number of components of G by $\omega(\mathrm{G})$. The ith neighborhood of v is $N_{i}(v)=\{u \in V \mid d(u, v)=i\}$. We set $N_{0}(v)=\{v\}$ and abbreviate $N_{1}(v)$ to $N(v)$ and call it the neighbor of v.

The subgraph of G whose vertex set is V^{\prime} and whose edge set is the set of those edges of G that have both ends in V^{\prime} is called the subgraph of G induced by V^{\prime} and is denoted by $\mathrm{G}\left[\mathrm{V}^{\prime}\right]$; we say that $G\left[V^{\prime}\right]$ is an induced subgraph of G. Now suppose that E^{\prime} is a nonempty subset of E. The subgraph of G whose vertex set is the set of ends of edges in E^{\prime} and whose edge set is E^{\prime}, is called the subgraph of G induced by E^{\prime} and is denoted by $G\left[E^{\prime}\right] ; G\left[E^{\prime}\right]$ is an edge - induced subgraph of G.

The vertex - connectivity or simply the connectivity $\kappa(\mathrm{G})$ of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $\kappa(G)=$ $\mathrm{n}-1$ if $\mathrm{G}=\mathrm{K}_{\mathrm{n}}$ for some positive integer n . Hence $\kappa(\mathrm{G})$ is the minimum number of vertices whose removal results in a disconnected or trivial graph. If G is either trivial or disconnected, $\kappa(\mathrm{G})=0$. G is said to be $\mathrm{k}-$ connected if $\kappa(\mathrm{G}) \geq \mathrm{k}$. All nontrivial connected graphs are 1-connected.

The edge-connectivity $\kappa^{\prime}(G)$ of a graph G is the minimum cardinality of an edge-cut of G if G is non-trivial, and $\kappa^{\prime}\left(\mathrm{K}_{1}\right)=0$. So $\kappa^{\prime}(\mathrm{G})$ is the minimum number of edges whose removal from G results in a disconnected or trivial graph. Thus $\kappa^{\prime}(\mathrm{G})=0$ if and only if G is disconnected or trivial; while $\kappa^{\prime}(\mathrm{G})=1$ if and only if G is connected . A graph G is k edge - connected, $k \geq 1$, if $\kappa^{\prime}(G) \geq k$.

A bipartite graph is one whose vertex set can be partitioned into two subsets X and Y , so that each edge has one end in X and one end in Y ; such a partition (X,Y) is called a bipartition of the graph . A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y : if $|X|=$ m and $|Y|=n$, such a graph is denoted by $K_{m, n}$.

Figure 1. (a) bipartite graph

Figure 1 (b) complete bipartite graph $\mathrm{K}_{4,3}$
A path that contains every vertex of G is called a Hamilton path of G; similarly, a Hamilton cycle of G is a cycle that contains every vertex of G. A graph is hamiltonian if it contains a Hamilton cycle.

II. THE t-TOUGH AND TRIANGLE-FREE GRAPH

A parameter that plays an important role in the study of toughness is the independence number. Two
vertices that are not adjacent in a graph G are said to be independent. A set S of vertices is independent if every two vertices of S are independent. The vertex independence number or simply the independence number $\beta(\mathrm{G})$ of a graph G is the maximum cardinality among the independent sets of vertices of G. Let F be a graph. A graph G is F-free if G contains no induced subgraph isomorphic of F . A $\mathrm{K}_{1,3}$-free graph is also referred to as a claw-free graph. If G is a noncomplete graph and t is a nonnegative real number such that $t \leq \frac{|S|}{\omega(G-S)}$ for every vertex-cut S of G, then G is defined to be t-tough. If G is a t-tough graph and s is a nonnegative real number such that $\mathrm{s}<\mathrm{t}$, then G is also s-tough. The maximum real number t for which a graph G is a t-tough is called the toughness of G and is denoted by $t(G)$. Since complete graphs do not contain vertex-cuts, this definition does not apply to such graphs.

Consequently, we define $t\left(\mathrm{~K}_{\mathrm{n}}\right)=+\infty$ for every positive integer n . Certainly, the toughness of a noncomplete graph is a rational number. Also $\mathrm{t}(\mathrm{G})=0$ if and only if G is a disconnected. It follows that if G is a noncomplete graph, then

$$
\mathrm{t}(\mathrm{G})=\min \frac{|\mathrm{S}|}{\omega(\mathrm{G}-\mathrm{S})},
$$

where the minimum is taken over all vertex-cuts S of G.

Let G be a graph with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$, and let $\ell \geq 1$ be an integer. We begin by defining the graph G_{ℓ} which is constructed by layering $\mathrm{G} \ell$ times. For each $\mathrm{k}, 1 \leq \mathrm{k} \leq \ell$, the kth layer of G_{ℓ} will induce a complete bipartite graph with bipartition sets $\left\{\mathrm{u}_{\mathrm{k}, 1}, \mathrm{u}_{\mathrm{k}, 2}, \ldots, \mathrm{u}_{\mathrm{k}, \mathrm{n}}\right\}$ and $\left\{\mathrm{w}_{\mathrm{k}, 1}, \mathrm{w}_{\mathrm{k}, 2}, \ldots, \mathrm{w}_{\mathrm{k}, \mathrm{n}}\right\}$. (See Figure 2, in which the layers of G_{ℓ} are schematically illustrated.) We will denote the set of vertices $\left\{\mathrm{u}_{\mathrm{k}, \mathrm{j}} / 1 \leq \mathrm{k} \leq \ell, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ as Top, and the remaining set of vertices as Bottom. For $1 \leq j \leq n$, the set of vertices $\left\{\mathrm{u}_{1, \mathrm{j}}, \mathrm{u}_{2, \mathrm{j}}, \ldots, \mathrm{u}_{\ell, \mathrm{j}}\right\}$ (respectively, $\left\{\mathrm{w}_{1 \mathrm{j},}, \mathrm{w}_{2, \mathrm{j}}, \ldots, \mathrm{w}_{\ell, \mathrm{j}}\right\}$) will be called the jth top (respectively jth bottom).

Figure 2 The Layers of G_{ℓ}

2. 1 Proposition

If G is a hamiltonian graph, then for any subset S of $\mathrm{V}, \omega(\mathrm{G}-\mathrm{S}) \leq|\mathrm{S}|$.

Proof:

For the spanning cycle C of G it is true that $\omega(\mathrm{C}-\mathrm{S}) \leq|\mathrm{S}|$. But C being a spanning subgraph of $\mathrm{G} \omega(\mathrm{G}-\mathrm{S}) \leq \omega(\mathrm{C}-\mathrm{S})$. Hence the results.

2.2 Corollary

Every hamiltonian graph is 1-tough.
Proof:

Let G be a hamiltonian graph. By proposition 2.1, for any subset S of $V, \omega(\mathrm{G}-\mathrm{S}) \leq|\mathrm{S}|$. It is also true for any vertex-cut S. Thus,
$\mathrm{t}(\mathrm{G})=\min \frac{|S|}{\omega(\mathrm{G}-\mathrm{S})} \geq 1$.

Hence G is 1-tough.

2.3 Lemma

Let G be a 1-tough graph on $n \geq 2$ vertices, and let $\mathrm{A}, \mathrm{B} \subseteq \mathrm{V}(\mathrm{G})$ with $|\mathrm{A}|+|\mathrm{B}| \geq \mathrm{n}+1$. Then some vertex in A is adjacent to a vertex in B.

Proof

We may assume $A \cap B$ is an independent set in G, since otherwise we are done. Let $\mathrm{s}=|\mathrm{A} \cap \mathrm{B}| \geq 1, \mathrm{a}=|\mathrm{A}-\mathrm{B}|, \mathrm{b}=|\mathrm{B}-\mathrm{A}|$, and $c=|V(G)-(A \cup B)|$.

By assumption, $\quad|\mathrm{A}|+|\mathrm{B}|=(\mathrm{a}+\mathrm{s})+(\mathrm{b}+\mathrm{s}) \geq \mathrm{n}+1$, and so $\mathrm{a}+\mathrm{b}+\mathrm{s} \geq \mathrm{n}-\mathrm{s}+1$. But $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{s}=\mathrm{n}$, and thus $\mathrm{c} \leq \mathrm{s}-1$.

If a vertex in $A \cap B$ has a neighbor in $A \cup B$, we would be done, and thus we may assume $N(A \cap B) \subseteq V(G)-(A \cup B) \quad$ and $\quad c \geq 1$. Setting $X=V(G)-(A \cup B)$, we have that $\omega(\mathrm{G}-\mathrm{X}) \geq|\mathrm{A}-\mathrm{B}|=\mathrm{s} \geq 2$, while $|\mathrm{X}|=\mathrm{c} \leq \mathrm{s}-1$. This contradicts the assumption that G is 1 -tough.

2.4 Lemma

Let G be a connected graph on $n \geq 2$ vertices. Suppose we obtain G_{ℓ} by Layering $\mathrm{G} \ell$ times. Then G_{ℓ} is 1-tough.

Proof:
Let $\mathrm{X} \subseteq \mathrm{V}\left(\mathrm{G}_{\ell}\right)$ such that $\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)>1$ and $\mathrm{t}\left(\mathrm{G}_{\ell}\right)=\frac{|\mathrm{X}|}{\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)}$. Let V_{i} denote the vertices in the ith layer of $\mathrm{G}_{\ell}, \mathrm{X}_{\mathrm{i}}=\mathrm{X} \cap \mathrm{V}_{\mathrm{i}}$, and $\omega_{i}=\omega\left(\left\langle V_{i}-X_{i}\right\rangle\right)$. If $X_{i}=\varnothing$ for some i, then immediately $\mathrm{G}_{\ell}-\mathrm{X}$ is connected, contradicting $\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)>1$. Hence we may assume $\left|\mathrm{X}_{\mathrm{i}}\right| \geq 1$ for all i. Since $\left\langle V_{i}\right\rangle=K_{n, n}$ is 1-tough, we have $\omega_{i} \leq\left|X_{i}\right|$, for all i. But then
$|X|=\sum_{\mathrm{i}=1}^{\ell}\left|\mathrm{X}_{\mathrm{i}}\right| \geq \sum_{\mathrm{i}=1}^{\ell}\left|\omega_{\mathrm{i}}\right| \geq \omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)$,
and thus G_{ℓ} is 1-tough.

2.5 Theorem

Let G be a 1-tough graph on $n \geq 2$ vertices. Form G_{ℓ} by layering $\mathrm{G} \ell$ times. Let $\mathrm{n}_{\ell}=\left|\mathrm{V}\left(\mathrm{G}_{\ell}\right)\right|$ and $\beta_{\ell}=\beta\left(\mathrm{G}_{\ell}\right)$. Then $\mathrm{t}\left(\mathrm{G}_{\ell}\right) \geq \sqrt{\frac{\mathrm{n}_{\ell}}{2 \beta_{\ell}}}$.

Proof:

Set $\mathrm{t}=\mathrm{t}\left(\mathrm{G}_{\ell}\right)$ and assume $\mathrm{t}<\sqrt{\frac{\mathrm{n}_{\ell}}{2 \beta_{\ell}}}$.

Let $\mathrm{X} \subseteq \mathrm{V}\left(\mathrm{G}_{\ell}\right)$ such that $\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)>1$ and $\mathrm{t}=\frac{|\mathrm{X}|}{\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)}$. By Lemma 2.4 we can assume $\mathrm{t} \geq 1$. Let V_{k} denote the vertices in the k th layer of G_{ℓ} and let $X_{k}=X \cap V_{k}$. We assume that X_{1} has the minimum number of vertices among the X_{k}.

Since $\sum_{\mathrm{k}=1}^{\ell}\left|X_{\mathrm{k}}\right|=|X|=\mathrm{t} . \omega\left(\mathrm{G}_{\ell}-X\right)$,
we have $\frac{\left|\mathrm{X}_{1}\right|}{\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)} \leq \frac{\mathrm{t}}{\ell}$.

Claim 1. $\left|\mathrm{X}_{1}\right|$ satisfies $1 \leq\left|\mathrm{X}_{1}\right|<\frac{\mathrm{n}}{\mathrm{t}} \leq \mathrm{n}$.

Proof of Claim 1. If $\left|X_{1}\right|=0$, then obviously $\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)=1$, a contradiction. So we have $\left|\mathrm{X}_{1}\right| \geq 1$.

If $\left|X_{1}\right| \geq \frac{n}{t}$, then by (1) we have
$\frac{\mathrm{t}}{\ell} \geq \frac{\left|\mathrm{X}_{1}\right|}{\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)} \geq \frac{\frac{\mathrm{n}}{\mathrm{t}}}{\beta\left(\mathrm{G}_{\ell}\right)}=\frac{\mathrm{n}}{\mathrm{t} \beta_{\ell}}$.

Thus $\quad \mathrm{t}^{2} \geq \frac{\ell \mathrm{n}}{\beta_{\ell}}=\frac{\mathrm{n}_{\ell}}{2 \beta_{\ell}}, \quad$ and \quad hence $\quad \mathrm{t} \geq \sqrt{\frac{\mathrm{n}_{\ell}}{2 \beta_{\ell}}}$, contradicting the assumption. Since $\mathrm{t} \geq 1$, we have $\frac{\mathrm{n}}{\mathrm{t}} \leq \mathrm{n}$.

This proves Claim 1.
Since $\left|\mathrm{X}_{1}\right|<\mathrm{n}$ clearly $\mathrm{V}_{1}-\mathrm{X}_{1}$ contains vertices from both Top and Bottom, and the vertices in $\mathrm{V}_{1}-\mathrm{X}_{1}$ and belong to a single component of $\mathrm{G}_{\ell}-\mathrm{X}$. Henceforth, we will denote this component as H .

Let us now partition the layer numbers $\{1,2, \ldots, \ell\}$ into two sets Small and Big as follows: for $1 \leq \mathrm{j} \leq \ell, \mathrm{j} \in$ Small \quad (respectively, $\mathrm{j} \in \operatorname{Big}$) if $\left|X_{j}\right| \leq n-1 \quad$ (respectively, $\left.\quad\left|X_{j}\right| \geq n\right)$. Note that $1 \in$ Small by Claim 1 .

Claim 2. $\bigcup_{j \in S \text { mall }}\left(\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right)$ (i.e the vertices which remain in the small layers when X is removed) all belong to the component H .

Proof of Claim 2. If $\mathrm{j} \in$ Small $-\{1\}$, then certainly all $\begin{array}{lccccc}\text { vertices in } & \mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}} & \text { will } & \text { belong to the } & \text { same } \\ \text { component } & \text { of } & \mathrm{G}_{1}-\mathrm{X} & & \text { since }\end{array}$ $\left|V_{j}-X_{j}\right|=2 n-\left|X_{j}\right| \geq n+1$, and so $V_{j}-X_{j}$ contains vertices from both Top and Bottom. Thus it suffices to show there is an edge between $V_{1}-X_{1}$ and $V_{j}-X_{j}$

Since $\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}} \geq \mathrm{n}+1$ and $\mathrm{V}_{1}-\mathrm{X}_{1} \geq \mathrm{n}+1$ we have
$\left|\left(\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right) \cap \mathrm{Top}\right|+\mid\left(\mathrm{V}_{1}-\mathrm{X}_{1}\right) \cap$ Top \mid
$+\mid\left(\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right) \cap$ Bottom $|+|\left(\mathrm{V}_{1}-\mathrm{X}_{1}\right) \cap$ Bottom \mid
$=\left|\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right|+\left|\mathrm{V}_{1}-\mathrm{X}_{\mathrm{l}}\right| \geq 2 \mathrm{n}+2$,
so either $\mid\left(\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right) \cap$ Top $|+|\left(\mathrm{V}_{1}-\mathrm{X}_{\mathrm{l}}\right) \cap$ Top $\mid \geq \mathrm{n}+1$ or
$\mid\left(\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right) \cap$ Bottom $|+|\left(\mathrm{V}_{1}-\mathrm{X}_{1}\right) \cap$ Bottom $\mid \geq \mathrm{n}+1$.

Let us assume the former and define
$\mathrm{A}=\left(\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right) \cap$ Top and $\mathrm{B}=\left(\mathrm{V}_{1}-\mathrm{X}_{1}\right) \cap$ Top. Thus we have $|A|+|B| \geq n+1$. Since G is 1 -tough, it follows by Lemma 2.3 (thinking of A, B as subsets of $V(G)$) that some vertex in A is adjacent to some vertex in B.

This proves Claim 2.
We now know that all vertices in $\bigcup_{j \in S \text { mall }}\left(\mathrm{V}_{\mathrm{j}}-\mathrm{X}_{\mathrm{j}}\right)$ belong to the component H of $\mathrm{G}_{\ell}-\mathrm{X}$.

Let us now turn to a consideration of the layers whose indices are in Big, recalling that $\mathrm{j} \in$ Big implies $\left|\mathrm{X}_{\mathrm{j}}\right| \geq \mathrm{n}$. We know
$\mathrm{t}=\frac{|\mathrm{X}|}{\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)} \geq \frac{\left|\mathrm{X}_{1}\right|+\left|\mathrm{U}_{\mathrm{j} \in \mathrm{Big}} \mathrm{X}_{\mathrm{j}}\right|}{\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)} \geq \frac{\left|\mathrm{X}_{1}\right|+|\mathrm{Big}| \cdot \mathrm{n}}{\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)}$.

However, if $\mathrm{k} \in \mathrm{Big}$, then by Lemma 2.4 the maximum number of vertices (and hence components) in $\mathrm{V}_{\mathrm{k}}-\mathrm{X}_{\mathrm{k}}$ that lie outside H is $\left|\mathrm{X}_{1}\right|$.

Hence $\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right) \leq 1+|\operatorname{Big}| \cdot\left|\mathrm{X}_{1}\right|$, which gives $\mathrm{t} \geq \frac{\left(\left|\mathrm{X}_{1}\right|+|\operatorname{Big}| \cdot n\right)}{\left(1+|\operatorname{Big}| \cdot\left|\mathrm{X}_{1}\right|\right)}$. Since $\mathrm{n}>\mathrm{t}\left|\mathrm{X}_{\mathrm{t}}\right|$ by Claim 1, we conclude

$$
\begin{equation*}
|\operatorname{Big}| \leq \frac{\mathrm{t}-\left|\mathrm{X}_{1}\right|}{\mathrm{n}-\mathrm{t}\left|\mathrm{X}_{1}\right|} \tag{2}
\end{equation*}
$$

If $\left\{\mathrm{X}_{1}\right\} \geq \mathrm{t}$, then by (2) we have $|\operatorname{Big}| \leq 0$, so we have only the component H in $\mathrm{G}_{\ell}-\mathrm{X}$, contradicting $\omega\left(\mathrm{G}_{\ell}-\mathrm{X}\right)>1$. So we can assume $\left|\mathrm{X}_{1}\right|<\mathrm{t}$.

If $\mathrm{n}>\mathrm{t}^{2}$ (equivalently $\frac{\mathrm{n}}{\mathrm{t}}-\left|\mathrm{X}_{1}\right|>\mathrm{t}-\left|\mathrm{X}_{1}\right|$), then by (2) we find
$|\operatorname{Big}| \leq \frac{1}{\mathrm{t}} \cdot \frac{\mathrm{t}-\left|\mathrm{X}_{1}\right|}{\frac{\mathrm{n}}{\mathrm{t}}-\left|\mathrm{X}_{1}\right|}<\frac{1}{\mathrm{t}} \leq 1$,
implying the contradiction $|\mathrm{Big}|=0$. But if $\mathrm{n} \leq \mathrm{t}^{2}$, then since $\beta_{\ell} \leq \ell \beta(\mathrm{G})$ and $\mathrm{t}<\sqrt{\frac{\mathrm{n}_{\ell}}{2 \beta_{\ell}}}$, we obtain $\mathrm{n} \leq \mathrm{t}^{2}<\frac{\mathrm{n}_{\ell}}{2 \beta_{\ell}} \leq \frac{2 \ell \mathrm{n}}{2 \ell \beta(\mathrm{G})}=\frac{\mathrm{n}}{\beta(\mathrm{G})}, \quad$ a \quad contradiction since $\beta(G) \geq 1$.

This completes the proof of Theorem 2.5.

2.6 Lemma [5]

Let G be a graph with n vertices and independence number β. Let G_{ℓ} be constructed by layering $\mathrm{G} \ell$ times. Then $\beta\left(\mathrm{G}_{\ell}\right) \leq 2 \mathrm{n}+(\ell-2) \beta$.

2.7 Corollary

Let G be a 1-tough graph on $n \geq 2$ vertices with independence number β. Form G_{ℓ} by layering G $\ell \leq 2\left(\left(\frac{\mathrm{n}}{\beta}\right)+1\right)$ times. Then $\mathrm{t}\left(\mathrm{G}_{\ell}\right) \geq\left(\frac{1}{2}\right) \sqrt{\ell}$.

Proof:

By Lemma 2.6 we have $\beta\left(\mathrm{G}_{\ell}\right) \leq 2 \mathrm{n}+(\ell-2) \beta$. Since $\ell \leq 2\left(\left(\frac{n}{\beta}\right)+1\right)$, this gives $\beta\left(G_{\ell}\right) \leq 4 n$. Now use Theorem 2.5 and $\left|\mathrm{V}\left(\mathrm{G}_{\ell}\right)\right|=\mathrm{n}_{\ell}=2 \ell \mathrm{n}$ to obtain $\mathrm{t}\left(\mathrm{G}_{\ell}\right) \geq \frac{1}{2} \sqrt{\ell}$.

2.8 Lemma

Let G be a triangle-free graph. Then $\beta(\mathrm{G})+\kappa(\mathrm{G}) \geq 2 \delta(\mathrm{G})$.

Proof:
This is obvious if $\kappa(\mathrm{G})=\delta(\mathrm{G})$ since $\beta(\mathrm{G}) \geq \delta(\mathrm{G})$. If $\kappa(\mathrm{G})<\delta(\mathrm{G})$, let X be a vertex - cut of cardinality $\kappa(\mathrm{G})$ and let $\mathrm{G}_{1}, \mathrm{G}_{2}$ be two of the components of $G-X$. Since every vertex outside X has a neighbor outside X , every component of $\mathrm{G}-\mathrm{X}$ has an edge. Consider the endvertices of edge $v w$ in G_{i}. Since
they have no common neighbor in X , one of them must have at most $\left(\frac{1}{2}\right) \kappa(G)$ neighbors in X. Hence
$\beta\left(\mathrm{G}_{\mathrm{i}}\right) \geq \delta(\mathrm{G})-\left(\frac{1}{2}\right) \kappa(\mathrm{G}), \quad \quad$ implying
$\beta(\mathrm{G}) \geq \beta\left(\mathrm{G}_{1}\right)+\beta\left(\mathrm{G}_{2}\right) \geq 2 \delta(\mathrm{G})-\kappa(\mathrm{G})$.

III. CONCLUSION

We conclude that a connected graph G have layering G_{l}, must be 1-tough. And then a 1-tough graph G_{l} have the toughness $\mathrm{t}\left(\mathrm{G}_{\ell}\right) \geq \sqrt{\frac{\mathrm{n}_{\ell}}{2 \beta_{\ell}}}$. Finally we discusse a triangle- free ghaph G, which has the bound of minimum degree $\delta(\mathrm{G})$ in terms of independence number $\beta(\mathrm{G})$ and connectivity $\boldsymbol{\kappa}(\mathrm{G})$.

REFERENCES

[1] Bollobas , B ., " Modern Graph Theory ", Springer - Verlag, New York, 1998
[2] Bondy, J .A . and Murty, U .S .R ., "Graph Theory with Applications", The Macmillan Press Ltd, London, 1976.
[3] hartrand, G. and Lesniak. L., "Graphs and Digraphs", Chapman and Hall/CRC, New York, 2005 .
[4] Grossman , J . W., "Discrete Mathematics", Macmillan Publishing Company, New York, 1990 .
[5] D.Bauer, J.Van Den Heuvel and E.Schemeichel, "Toughess and TriangleFree Graphs", paper presented in the Department of Mathematics and Computer Science, San Jose State University, San Jose Califonia. April, 21, 1993.

