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Abstract -- In this paper we mention vertex connectivity 

and independence number. We establish that every 

hamiltonian graph and any Gl graph are 1-tough. And 

then, we describe the bound of the toughness t(G) in terms 

of independence number 𝛃(G) and the number of vertices, 

n in G. Finally, a 1- tough graph Gl, it is shown that   and 

the result reveals that a triangle- free graph with are 

obtained. 
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minimum degree, layers of G, 1-tough, Hamiltonian 
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I. INTRODUCTION 

 

A graph G (V(G),E(G)) with n vertices and m 

edges consists of a vertex set  1 2 nV(G) v , v ,..., v  

and an edge set  1 2 mE(G) e ,e ,...,e  where each 

edge consists of two vertices called its end-vertices. 

If  uv E(G), then  u  and  v  are adjacent . The ends 

of an edge are said to be incident with the edge. The 

number of vertices of G is called the order of G, is 

denoted by (G).  Two vertices u and v of  G are said 

to be connected if there is a (u, v) -path in G. 

 A graph is said to be connected if every two of its 

vertices are connected; otherwise it is disconnected. 

A graph is simple if it has no loops and no parallel 

edges. The degree   of a vertex v  in  G  is the number 

of  edges of  G  incident with  v, each loop counting 

as two edges. We denote by (G) and (G) the 

minimum and maximum degrees, respectively of 

vertices of G.  A complete graph G is a simple graph 

in which every pair of vertices is adjacent. If a 

complete graph G has n  vertices, then it will be 

denoted by  Kn . A spanning subgraph of G  is a 

subgraph  H  with  V(H) = V(G).  

A walk in G is a finite sequence W = v0 e1 v1 e2 v2 … 

ekvk, whose terms are alternately vertices and edges, 

such that, for 1 i k,  the ends of ei are vi–1 and vi. 

We say that W is a walk from v0 to vk or a 0 k(v , v ) -

walk. The vertices v0 and vk are called the origin and 

terminus of W, respectively and v1, v2, …, vk–1 its 

internal vertices. The integer k is the length of W.  If 

all the edges of a walk are distinct, then it is called a 

trail. If, in addition, the vertices are distinct, W is 

called a path. Suppose that V  is a nonempty subset 

of V. A cycle is a closed trail in which all the vertices 

are distinct, except that the first vertex equals the last 

vertex. The component of a graph G is the maximal 

connected subgraph of G. We denote the number of 

components of G by (G). The ith neighborhood of v 

is  iN (v) u V | d(u, v) i .    We set 
0N (v) {v}  

and abbreviate 
1N (v)  to N(v)  and call it the 

neighbor of v.    

 The subgraph of  G  whose vertex set is  V  and 

whose edge set is the set of  those edges of  G  that 

have both ends in  V is called the subgraph of  G  

induced by  V  and is denoted by  G[V];  we say that  

G[V]  is an induced subgraph of  G. Now suppose 

that E  is a nonempty subset of E. The subgraph of  

G  whose vertex set is the set of  ends of  edges in  E  

and whose edge set is  E,  is called the subgraph of  

G  induced by  E  and is denoted by  G[E];  G[E]  is 

an edge - induced subgraph of  G. 

The vertex - connectivity or simply the connectivity  

(G)  of  a graph  G  is the minimum cardinality of a 

vertex-cut of  G  if  G  is not complete , and   (G) =  

n  1  if  G  =  Kn  for some positive integer  n . 

Hence (G) is the minimum number of vertices 

whose removal results in a disconnected or trivial 

graph. If G is either trivial or disconnected, (G) = 0.  

G is said to be k - connected if (G)  k. All non-

trivial connected graphs are 1 - connected.  
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 The edge-connectivity  (G)  of   a graph  G  is the 

minimum cardinality of  an edge-cut of G if  G  is 

non-trivial, and  (K1) = 0. So (G) is the minimum 

number of edges whose removal from G results in a 

disconnected or trivial graph. Thus  (G) = 0  if  and 

only if  G  is disconnected or trivial; while  (G) = 1  

if  and only if  G  is connected .  A graph G is k - 

edge - connected,   k  1, if   (G)  k.  

A bipartite graph is one whose vertex set can be 

partitioned into two subsets  X  and Y, so that each 

edge has one end in  X  and one end in  Y; such a 

partition       (X, Y) is called a bipartition of  the 

graph . A complete bipartite graph is a simple 

bipartite graph with bipartition (X, Y)  in which each 

vertex of  X  is joined to each vertex of  Y :  if  |X|  =  

m  and  |Y|  =  n, such a graph is denoted by  Km,n. 

 

 

 

 

Figure 1 . (a)  bipartite graph 

 

 

 

 

 

 

Figure 1 (b) complete bipartite graph K4,3 

A path that contains every vertex of G is called a 

Hamilton path of G; similarly, a Hamilton cycle of G 

is a cycle that contains every vertex of G. A graph is 

hamiltonian if it contains a Hamilton cycle. 

II. THE  t-TOUGH  AND TRIANGLE-FREE  

GRAPH 

 A parameter that plays an important role in the study 

of toughness is the independence number. Two 

vertices that are not adjacent in a graph G are said to 

be independent. A set S of vertices is independent if 

every two vertices of S are independent. The vertex 

independence number or simply the independence 

number (G) of a graph G is the maximum 

cardinality among the independent sets of vertices of 

G. Let F be a graph. A graph G is F-free if G contains 

no induced subgraph isomorphic of F. A 
1,3K -free 

graph is also referred to as a claw-free graph. If  G is 

a noncomplete graph and t is a nonnegative real 

number such that 
S

t
(G S)


 

  for every vertex-cut S 

of G, then G is defined to be t-tough. If G is a t-tough 

graph and s is a nonnegative real number such that  

s t,  then G is also s-tough. The maximum real 

number t for which a graph G is a t-tough is called 

the toughness of G and is denoted by t(G). Since 

complete graphs do not contain vertex-cuts, this 

definition does not apply to such graphs. 

Consequently, we define 
nt(K )    for every 

positive integer n. Certainly, the toughness of a 

noncomplete graph is a rational number. Also 

t(G) 0  if and only if G is a disconnected. It follows 

that if G is a noncomplete graph, then 

  
S

t(G) min ,
(G S)


 

 

where the minimum is taken over all vertex-cuts S of 

G. 

Let G be a graph with vertices 
1 2 nv ,v ,..., v ,  and let 

1  be an integer. We begin by defining the graph 

G
 which is constructed by layering G   times. For 

each k, 1 k ,    the kth layer of G
will induce a 

complete bipartite graph with bipartition sets 

 k,1 k,2 k,nu ,u ,...,u  and  k,1 k,2 k,nw , w ,..., w .  (See 

Figure 2, in which the layers of G
 are schematically 

illustrated.) We will denote the set of vertices 

 k, ju /1 k ,1 j n     as Top, and the remaining set 

of vertices as Bottom. For 1 j n  , the set of vertices 

 1, j 2, j , ju ,u ,...,u  (respectively,  1, j 2, j , jw ,w ,...,w
) will 

be called the jth top (respectively jth bottom). 
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Figure 2 The Layers of G
 

2. 1 Proposition 

If G is a hamiltonian graph, then for any subset S of 

V, (G S) S .    

Proof: 

For the spanning cycle C of G it is true that 

(C S) S .    But C being a spanning  subgraph of 

G (G S) (C S).      Hence the results.    

2.2 Corollary 

Every hamiltonian  graph is 1-tough. 

Proof: 

Let G be a hamiltonian graph. By proposition 2.1, for 

any subset S of V, (G S) S .    It is also true for 

any vertex-cut S. Thus, 

S
t(G) min 1.

(G S)
 

   

Hence G is 1-tough.   

2.3 Lemma 

 Let G be a 1-tough graph on n 2  vertices, and let 

A, B V(G)  with A B n 1.    Then some 

vertex in A is adjacent to a vertex in B. 

 

 

Proof 

We may assume A B  is an independent set in G, 

since otherwise we are done. Let 

s A B 1, a A B , b B A ,

and c V(G) (A B) .

     

 



  

By assumption, A B (a s) (b s) n 1,        

and so a b s n s 1.      But a b c s n,     

and thus c s 1. 
 

If a vertex in A B  has a neighbor in A B , we 

would be done, and thus we may assume 

N(A B) V(G) (A B)    and c 1.  Setting 

X V(G) (A B),    we have that 

(G X) A B s 2,       while X c s 1.    This 

contradicts the assumption that G is 1-tough.    

2.4 Lemma  

Let G be a connected graph on n 2  vertices. 

Suppose we obtain G
 by Layering G   times. Then 

G
 is 1-tough. 

Proof: 

Let X V(G ) 
 such that (G X) 1  

 and 

X
t(G ) .

(G X)

 





 Let 
iV  denote the vertices in the 

ith layer of 
i iG , X X V ,   and 

 i i iV X .    If 
iX   for some i, then 

immediately G X  is connected, contradicting 

(G X) 1.  
 Hence we may assume 

iX 1  for all 

i. Since 
i n,nV K  is 1-tough, we have 

i iX ,   for 

all i. But then 

i i

i 1 i 1

X X (G X),
 

      
 


 

and thus G
 is 1-tough.   
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2.5 Theorem 

Let G be a 1-tough graph on n 2  vertices. Form G
 

by layering G   times. Let n V(G )   and 

(G ).  
 Then 

n
t(G ) .

2









 

Proof: 

Set t t(G ) 
 and assume 

n
t

2








 .  

Let X V(G ) 
 such that (G X) 1  

 and 

X
t

(G X)

 

. By Lemma 2.4 we can assume t 1

. Let 
kV  denote the vertices in the k th layer of G

 

and let 
k kX X V  . We assume that 

1X  has the 

minimum number of vertices among the
kX . 

Since 
k

k 1

X X t. (G X),


   




 

 we have  1X t

(G X)


  
.                                     (1) (1) 

Claim 1. 
1X  satisfies 

1

n
1 X n

t
   . 

Proof of Claim 1.  If 
1X 0,  then obviously 

(G X) 1,    a contradiction. So we have 
1X 1.  

If 
1

n
X ,

t
  then by (1) we have  

1

n
Xt nt

(G X) (G ) t
  
     

. 

Thus 2 n n
t ,

2
 
 



 


 and hence 

n
t ,

2








 

contradicting the assumption. Since t 1,  we have 

n
n

t
 . 

This proves Claim 1. 

Since 
1X n  clearly 

1 1V X  contains vertices from 

both Top and Bottom, and the vertices in 
1 1V X  and 

belong to a single component of G X . Henceforth, 

we will denote this component as H. 

Let us now partition the layer numbers  1,2,...,  

into two sets Small and Big as follows: for 

1 j , j Small    (respectively, j Big ) if 

jX n 1   (respectively, 
jX n ). Note that 

1 Small  by Claim 1. 

 

Claim 2.  
j Small j j(V X )  ( i.e the vertices which 

remain in the small layers when X is removed) all 

belong to the component H.  

Proof of Claim 2. If  j Small 1 ,   then certainly all 

vertices in 
j jV X  will belong to the same 

component of G X,  since 

j j jV X 2n X n 1,      and so 
j jV X  contains 

vertices from both Top and Bottom. Thus it suffices 

to show there is an edge between 
1 1V X  and 

j jV X

.  

Since j jV X n 1    and 
1 1V X n 1    we have 

j j 1 1

j j 1 1

j j 1 1

(V X ) Top (V X ) Top

(V X ) Bottom (V X ) Bottom

V X V X 2n 2,

  

   

     

 

 
 

so either 
j j 1 1(V X ) Top (V X ) Top n 1        or    

j j 1 1(V X ) Bottom (V X ) Bottom n 1      . 
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 Let us assume the former and define  

j jA (V X ) Top    and 
1 1B (V X ) Top   . Thus we 

have A B n 1.    Since G is 1-tough, it follows 

by Lemma 2.3 (thinking of A,B as subsets of V(G)) 

that some vertex in A is adjacent to some vertex in B. 

This proves Claim 2. 

We now know that all vertices in 
j Small j j(V X )   

belong to the component H of G X.  

Let us now turn to a consideration of the layers 

whose indices are in Big, recalling that 

jj Big implies X n  . We know 

1 j Big j 1
X U XX X Big .n

t .
(G X) (G X) (G X)

 
  
       

 

 However, if k Big,  then by Lemma 2.4  

the maximum number of vertices (and hence 

components) in 
k kV X  that lie outside H is 

1X .  

Hence 
1(G X) 1 Big . X ,   

 which gives 

1

1

( X Big .n)
t

(1 Big . X )





. Since 

tn t X  by Claim 1, we 

conclude 

1

1

t X
Big .

n t X





                                                 (2) 

If  1X t,  then by (2) we have Big 0,  so we have 

only the component H in G X , contradicting 

(G X) 1.    So we can assume 
1X t . 

If 2n t  (equivalently 
1 1

n
X t X

t
   ), then by (2) 

we find  

1

1

t X1 1
Big . 1,

nt t
X

t


  



 

implying the contradiction Big 0.  But if 2n t ,  

then since (G)     and 
n

t ,
2








 we obtain 

2 n 2 n n
n t ,

2 2 (G) (G)
   

  








 a contradiction 

since (G) 1  .  

 This completes the proof of Theorem 2.5.    

 

2.6 Lemma [ 5 ] 

 Let G be a graph with n vertices and 

independence number  . Let G
 be constructed by 

layering G   times. Then (G ) 2n ( 2) .       

2.7 Corollary 

Let G be a 1-tough graph on n 2  vertices with 

independence number   . Form G by layering G 

n
2(( ) 1) 


  times. Then 1

t(G ) ( ) .
2

   

Proof: 

By Lemma 2.6  we have (G ) 2n ( 2)       . 

Since 
n

2(( ) 1), 


  this gives (G ) 4n. 
 Now 

use Theorem 2.5 and V(G ) n 2 n     to obtain 

1
t(G ) .

2
    

2.8 Lemma 

 Let G be a triangle-free graph. Then 

(G) (G) 2 (G).      

Proof: 

This is obvious if (G) (G)    since (G) (G).    

If (G) (G),    let X be a vertex - cut of cardinality 

(G)  and let 
1 2G ,G  be two of the components of 

G X.  Since every vertex outside X has a neighbor 

outside X, every component of G X  has an edge. 

Consider the endvertices of edge vw in 
iG .  Since 
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they have no common neighbor in X, one of them 

must have at most 1
( ) (G)
2
  neighbors in X. Hence

i

1
(G ) (G) ( ) (G),

2
      implying 

1 2(G) (G ) (G ) 2 (G) (G).       
   

 

 

III. CONCLUSION 

We conclude that a connected graph G have layering 

𝐺𝑙 ,must be 1-tough.And then a 1-tough graph 𝐺𝑙have 

the toughness  n
t(G ) .

2







 Finally we discusse a 

triangle- free ghaph G ,which has the bound of 

minimum degree δ(G) in terms of independence 

number β(G) and connectivity 𝛋(G).

 

REFERENCES 

 

[1] Bollobas , B ., “ Modern Graph Theory ”, 
Springer - Verlag, New York, 1998 

[2] Bondy, J .A . and Murty, U .S .R ., “Graph  
Theory  with  Applications”, The 
Macmillan  Press Ltd , London , 1976 . 

[3] hartrand, G. and Lesniak. L., “Graphs and 

Digraphs”, Chapman and Hall/CRC, New 
York, 2005 . 

[4] Grossman , J . W., “Discrete 
Mathematics”, Macmillan Publishing 

Company, New York, 1990 . 
[5] D.Bauer, J.Van Den Heuvel and 

E.Schemeichel,  “Toughess and Triangle-
Free  Graphs”, paper presented in the 
Department of Mathematics and Computer 

Science, San Jose State University, San 
Jose Califonia. April, 21, 1993. 


