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Abstract -- In this paper we mention vertex connectivity
and independence number. We establish that every
hamiltonian graph and any GI graph are 1-tough. And
then, we describe the bound of the toughness t(G) in terms
of independence number B(G) and the number of vertices,
nin G. Finally, a 1- tough graph Gl, it is shown that and
the result reveals that a triangle- free graph with are
obtained.

Indexed Terms - connectivity, independence number,
minimum degree, layers of G, 1-tough, Hamiltonian
graph, complete bipartite,triangle-free graph.

l. INTRODUCTION

A graph G=(V(G),E(G))with n vertices and m
edges consists of a vertex set V(G) ={V,, V..,V }
and an edge set E(G)={e,,€,,...e,} where each

edge consists of two vertices called its end-vertices.
If uve E(G), then u and v are adjacent . The ends
of an edge are said to be incident with the edge. The
number of vertices of G is called the order of G, is
denoted by v(G). Two vertices u and v of G are said
to be connected if there isa (u, v) -path in G.

A graph is said to be connected if every two of its
vertices are connected; otherwise it is disconnected.
A graph is simple if it has no loops and no parallel
edges. The degree of a vertex v in G is the number
of edges of G incident with v, each loop counting
as two edges. We denote by 8(G) and A(G) the
minimum and maximum degrees, respectively of
vertices of G. A complete graph G is a simple graph
in which every pair of vertices is adjacent. If a
complete graph G has n vertices, then it will be
denoted by K, . A spanning subgraph of G is a
subgraph H with V(H) = V(G).

A walk in G is a finite sequence W =vye; vy e, Vs ...
exVk, Whose terms are alternately vertices and edges,
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such that, for 1 <i <k, the ends of ¢; are v;_; and vi;.

We say that W is a walk from vo to vi or a (VgV} )-

walk. The vertices vq and vy are called the origin and
terminus of W, respectively and vy, vy, ..., vy its
internal vertices. The integer k is the length of W. If
all the edges of a walk are distinct, then it is called a
trail. If, in addition, the vertices are distinct, W is
called a path. Suppose that V' is a nonempty subset
of V. A cycle is a closed trail in which all the vertices
are distinct, except that the first vertex equals the last
vertex. The component of a graph G is the maximal
connected subgraph of G. We denote the number of
components of G by ®(G). The ith neighborhood of v

is Ni(V):{u eV|d(u,V):i}. We set N, (v) ={v}
and abbreviate N,(v) to N(v) and call it the
neighbor of v.

The subgraph of G whose vertex set is V' and
whose edge set is the set of those edges of G that
have both ends in V' is called the subgraph of G
induced by V' and is denoted by G[V’]; we say that
G[V'] is an induced subgraph of G. Now suppose
that E' is a nonempty subset of E. The subgraph of
G whose vertex set is the set of ends of edges in E’
and whose edge set is E’, is called the subgraph of
G induced by E’ and is denoted by G[E']; G[E'] is
an edge - induced subgraph of G.

The vertex - connectivity or simply the connectivity
k(G) of agraph G isthe minimum cardinality of a
vertex-cut of G if G is not complete , and «(G) =
n-1if G = K, for some positive integer n .
Hence «(G) is the minimum number of vertices
whose removal results in a disconnected or trivial
graph. If G is either trivial or disconnected, «(G) = 0.
G is said to be k - connected if k(G) > k. All non-
trivial connected graphs are 1 - connected.
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The edge-connectivity «'(G) of agraph G is the
minimum cardinality of an edge-cut of G if G s
non-trivial, and «'(K;) = 0. So «'(G) is the minimum
number of edges whose removal from G results in a
disconnected or trivial graph. Thus «’(G) =0 if and
only if G is disconnected or trivial; while «'(G) =1
if and only if G is connected . A graph G is k -
edge - connected, k>1,if «'(G)=k.

A bipartite graph is one whose vertex set can be
partitioned into two subsets X and Y, so that each
edge has one end in X and one end in Y; such a
partition (X, Y) is called a bipartition of the
graph . A complete bipartite graph is a simple
bipartite graph with bipartition (X, Y) in which each
vertex of X is joined to each vertex of Y : if |X| =
m and |Y| = n, such a graph is denoted by K.

4 X1

X4 Y1

VE) X2

X3 Y2
Figure 1. (a) bipartite graph

Figure 1 (b) complete bipartite graph K, 3

A path that contains every vertex of G is called a
Hamilton path of G; similarly, a Hamilton cycle of G
is a cycle that contains every vertex of G. A graph is
hamiltonian if it contains a Hamilton cycle.

1. THE t-TOUGH AND TRIANGLE-FREE
GRAPH

A parameter that plays an important role in the study
of toughness is the independence number. Two

IRE 1701503

vertices that are not adjacent in a graph G are said to
be independent. A set S of vertices is independent if
every two vertices of S are independent. The vertex
independence number or simply the independence
number B(G) of a graph G is the maximum
cardinality among the independent sets of vertices of
G. Let F be a graph. A graph G is F-free if G contains
no induced subgraph isomorphic of F. A Km—free

graph is also referred to as a claw-free graph. If G is
a noncomplete graph and t is a nonnegative real
S
®(G-S)
of G, then G is defined to be t-tough. If G is a t-tough
graph and s is a nonnegative real number such that
s<t, then G is also s-tough. The maximum real

number such that { < for every vertex-cut S

number t for which a graph G is a t-tough is called
the toughness of G and is denoted by t(G). Since
complete graphs do not contain vertex-cuts, this
definition does not apply to such graphs.

Consequently, we define t(K )=+ for every

positive integer n. Certainly, the toughness of a
noncomplete graph is a rational number. Also
t(G) =0 if and only if G is a disconnected. It follows

that if G is a noncomplete graph, then

_min__ 8
t(G) = min oG_9)’

where the minimum is taken over all vertex-cuts S of
G.

Let G be a graph with vertices v,,v,,...,v,, and let
{21 be an integer. We begin by defining the graph
G, Wwhich is constructed by layering G/ times. For
each k, 1<k</, the kth layer of G, will induce a
complete bipartite graph with bipartition sets
{uk,l’uk,Z""’uk,n} and {Wk,liwk,Z’""Wk,n}' (See
Figure 2, in which the layers of G, are schematically
illustrated.) We will denote the set of vertices
{ukyjllé k</1<j< n} as Top, and the remaining set

of vertices as Bottom. For 1< j<n, the set of vertices

{ulvj,uzvj,...,ufvj} (respectively, - Wu}) will
be called the jth top (respectively jth bottom).
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Figure 2 The Layers of G,

2. 1 Proposition

If G is a hamiltonian graph, then for any subset S of
v, o(G-9)<[3].

Proof:

For the spanning cycle C of G it is true that
o(C-5) < |S| But C being a spanning subgraph of
G ®(G -S) < w(C—S). Hence the results.

2.2 Corollary

Every hamiltonian graph is 1-tough.

Proof:

Let G be a hamiltonian graph. By proposition 2.1, for
any subset S of V, ®(G-S) < |S| It is also true for

any vertex-cut S. Thus,

t(G) = mini >1.
o(G-9)

Hence G is 1-tough.

2.3 Lemma

Let G be a 1-tough graph on N2>2 vertices, and let
A,Bc V(G) with |A|+|B|=n+1. Then some

vertex in A is adjacent to a vertex in B.
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Proof

We may assume A[]B is an independent set in G,
since otherwise we are done. Let
s:|Aﬂ B|21, a :|A—B|, b :|B—A|,

and ¢=|V(G)-(AUB)|.

By assumption, |A|+|B|=(a+s)+(b+s)=n+1,
and so a+b+s>n-s+1. But a+b+c+s=n,
and thus c<s-1.

If a vertex in A()B has a neighbor in AUB, we
would be done, and thus we may assume
N(ANB)c V(G)-(AUB) and C2>1. Setting
X=V(G)-(AUB), we have that
(G —X) >|A-B|=s>2, While |x|=c<s—1. This
contradicts the assumption that G is 1-tough.

2.4 Lemma

Let G be a connected graph on N Z?u vertices.
Suppose we obtain G, by Layering G/ times. Then
G, is 1-tough.

Proof:

Let XcV(G,) such that o(G,-X)>1 and

t(G‘):L_ Let \, denote the vertices in the
(G, -X)

ith layer of G,, X, =XNV, and
o, =03(<Vi—Xi>). If X, =@ for some i, then
immediately G,-X is connected, contradicting
o(G, -X)>1. Hénce we may assume |x |>1 for all
i. Since (V))=K,, is 1-tough, we have o <[, for
all i. But then

3 ‘
|X| = Z|Xi| 2 Z|0‘)i| 2 (”(Gﬁ =X,
i=1 i=1

and thus G, is 1-tough.
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2.5 Theorem

Let G be a 1-tough graph on N >2 vertices. Form G,
by layering G/ times. Let N, =|V(G€)| and

B, =B(G,). Then t(G,)> ‘/2%

Proof:

Set t =t(G,) and assume t < e
\ 28,

Let X< V(G,) such that o(G,-X)>1 and

t:i . By Lemma 2.4 we can assume t>1
o(G, —X)

. Let v, denote the vertices in the k th layer of G,

and let X, =XV,. We assume that x, has the

minimum number of vertices among the x, .

,
Since Z|xk| =[X|=ta(G, - X),
k=1

we have Lgi 1)
o(G,-X) /¢

Claim 1. |x,| satisfies 1g|x1|<ﬂg n.
t

Proof of Claim 1. If |X =0, then obviously
(G, —X) =1, a contradiction. So we have |X|>1.

If |x1| Zﬂ, then by (1) we have
t

n
ty Xy t _n
oG, -X) B(G,) tB,
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Thus tzzf_n:i, and hence t> i,
B, 2B, \ 28,

contradicting the assumption. Since t>1, we have

n
—<n-

This proves Claim 1.

Since |x1|< n clearly V, - X, contains vertices from
both Top and Bottom, and the vertices in V, — X, and

belong to a single component of G, — X . Henceforth,
we will denote this component as H.

Let us now partition the layer numbers {1,2,...,5}

into two sets Small and Big as follows: for
1<j</,jeSmall  (respectively, jeBig) if

‘xj‘gn_]_ (respectively, |Xj|2n)- Note that
1eSmall by Claim 1.

Claim 2. (VJ._XJ.)( i.e the vertices which

UjeSmaII
remain in the small layers when X is removed) all
belong to the component H.

Proof of Claim 2. If jeSmall—{1}, then certainly all
vertices in V,-X; will belong to (1t;1e same
component of G,-X, since
|V,-—Xj|=2n—|xj|2n+1, and so V,-X; contains

vertices from both Top and Bottom. Thus it suffices
to show there is an edge between \, — X, and V- X;

Since V,—X;>=n+1and V, -X; >n+1 we have

|(V; = X;)NTop|+[(V, - X,) N Top|
+|(V; = X;) N Bottom|+(V, - X,) N Bottom|
=V, = X[ +[V,=X,[=2n + 2,

so either |(V; - X ;)N Top|+|(V, - X,)NTop|=n+1 or

|(V; = X;) N Bottom| +|(V, — X,) N Bottom| > n +1.
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Let us assume the former and define

A=(V,—X;)NTop and B=(V,—X,)NTop. Thus we
have |A|+|B|2n+1. Since G is 1-tough, it follows
by Lemma 2.3 (thinking of A,B as subsets of V(G))
that some vertex in A is adjacent to some vertex in B.

This proves Claim 2.

We now know that all vertices in J . (v,~X;)

belong to the component H of G, —X.

Let us now turn to a consideration of the layers
whose indices are in Big, recalling that

j € Big implies |Xj| >n. We know

‘X‘ > ‘Xl‘+‘UjEBing‘ > ‘Xl‘+‘Blg‘n
oG, -X)  oG,-X)  oG,-X)

However, if k e Big, then by Lemma 2.4

the maximum number of vertices (and hence
components) in v, —X, that lie outside H is |x1|.

Hence  o(G,—X)<1+|Big|.|X,|, which gives

ZM Since n>t|X,| by Claim 1, we
(1+|Big].|X,))

conclude
1Big <=2 2)
n—t[X,]

If (X)>t, then by (2) we have ‘Big‘go, so we have
only the component H in G,—X, contradicting

o(G, —X) >1. So we can assume IX,|<t-

If n>t? (equivalently E—|X1| >t-[X,|). then by (2)
t
we find

t—|X,| !

<1,
t

Big|<
X
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implying the contradiction |Big|=0. But if n < t?,

then since B, </B(G) and t< N, , we obtain
2B,

n<p g 2N _ 0
2B, 2(B(G) B(G)
since B(G) >1.

a contradiction

This completes the proof of Theorem 2.5.

26Lemma[5]

Let G be a graph with n vertices and
independence number 3. Let G, be constructed by

layering G / times. Then B(G,) <2n+ (¢ —2).
2.7 Corollary

Let G be a 1-tough graph on N> 2 vertices with
independence number B . Form G, by layering G

/< 2((%)4-1) times. Then ¢(G,) > (%)\/Z.

Proof:

By Lemma 2.6 we have B(G,)<2n+(/-2)B .
Since ggz((%)+1), this gives B(G,) <4n. Now
use Theorem 2.5 and |V(G,)|=n, =2¢n to obtain

t(G/)zéx/Z.

2.8 Lemma

Let G be a triangle-free graph. Then
B(G) +«k(G) = 25(G).

Proof:

This is obvious if k(G)=05(G) since B(G)>5(G).
If «(G)<58(G), let X be a vertex - cut of cardinality
k(G) and let G,,G, be two of the components of

G —X. Since every vertex outside X has a neighbor
outside X, every component of G-X has an edge.
Consider the endvertices of edge vw in G, Since
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they have no common neighbor in X, one of them

must have at most (E)K(G) neighbors in X. Hence
2

B(G,) 26(G>—(%)K(G), implying

B(G) 2 B(G,) +B(G,) = 25(G) ~(G). 0

Ill.  CONCLUSION

We conclude that a connected graph G have layering
G;,must be 1-tough.And then a 1-tough graph G;have

the toughness (G,)> fi
2B, Finally we discusse a

triangle- free ghaph G ,which has the bound of
minimum degree 6(G) in terms of independence

number B(G) and connectivity k(G).
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