Connected Graph with Trees

SAN SAN TINT ${ }^{1}$, KHAING KHAING SOE WAI ${ }^{2}$
${ }^{1,2}$ Department of Engineering Mathematics, Technological University (Myitkyina)

Abstract

In this paper we mention cut vertex and cut edge in a connected graph. We establish a minimally connected graph with no cycles. And then, a graph G with n vertices, n-1 edges and no cycles, it is connected. Finally, G contains trees, whose minimum degree, $\delta(G) \geq$ k and it is shown that the order of sub graph tree with at most $\delta(G)+1$.

Indexed Terms: cut vertex, cut edge, vertex- cut, edge- cut, cyclic edge, components, cycle, path, tree, minimally connected

I. INTRODUCTION

A graph $G=(V(G), E(G))$ with n vertices and m edges consists of a vertex set $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and an edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ where each edge consists of two vertices called its end-vertices. We write uv for an edge $e=\{u, v\}$. If $u v \in E(G)$, then u and v are adjacent. The ends of an edge are said to be incident with the edge. The number of vertices of G is called the order of G, is denoted by $\mathrm{n}(\mathrm{G})$. A graph is finite if its vertex set and edge set are finite. A graph with no edges is called an empty graph. We call a graph with just one vertex trivial and all other graphs nontrivial. A loop is an edge whose endpoints are equal. Parallel edges or multiple edges are edges that have the same pair of endpoints. A graph is simple if it has no loops and no parallel edges, A graph H is a sub graph of G if $V(H) \subseteq V(G)$ and $\mathrm{E}(\mathrm{H}) \subseteq \mathrm{E}(\mathrm{G})$.

The component of a graph G is the maximal connected sub graph of G. We denote the number of components of G by $\boldsymbol{\omega (G)}$. The degree $\mathrm{d}_{\mathrm{G}}(\mathrm{v})$ (or valency) of a vertex v in G is the number of edges of G incident with v , each loop counting as two edges. We denote by $\boldsymbol{\delta}(\mathbf{G})$ and $\Delta(\mathbf{G})$ the minimum and maximum degrees, respectively of vertices of G. A vertex of degree zero is called an isolated vertex. A vertex of degree one is called a pendant vertex.

A walk in G is a finite sequence $\mathrm{W}=\mathrm{v}_{0} \mathrm{e}_{1} \mathrm{v}_{1} \mathrm{e}_{2} \mathrm{v}_{2} \ldots \mathrm{e}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}$, whose terms are alternately vertices and edges, such that, for $1 \leq i \leq k$, the ends of e_{i} are V_{i-1} and V_{i}. We say that W is a walk from v_{0} to V_{k} or a $\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{k}}\right)$-walk. The vertices v_{0} and V_{k} are called the origin and terminus of W , respectively and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-1}$ its internal vertices. The integer k is the length of W . If all the edges of a walk are distinct, then it is called a trail. If, in addition, the vertices are distinct, W is called a path.

The length of a path is the number of edges in that path. A walk is closed if its origin and terminus are the same. A cycle is a closed trail in which all the vertices are distinct, except that the first vertex equals the last vertex.

An acyclic graph is one that contains no cycles. A tree is a connected acyclic graph.

Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. A graph is said to be connected if every two of its vertices are connected; otherwise it is disconnected. The vertex-connectivity or simply the connectivity ${ }^{\kappa(G)}$ of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $\kappa(\mathrm{G})=\mathrm{n}-1$ if $\mathrm{G}=\mathrm{K}_{\mathrm{n}}$ for some positive integer n. Hence $\kappa(G)$ is the minimum number of vertices whose removal form G results in a disconnected or trivial graph. If G is either trivial or disconnected, $\kappa(\mathrm{G})=0$. G is said to be k-connected if $\kappa(\mathrm{G}) \geq \mathrm{k}$. All non-trivial connected graphs are 1connected. An acyclic graph is one that contains no cycles. A tree is a connected acyclic graph.

II. CUT VERTEX AND CUT EDGE IN A CONNECTED GRAPH

A vertex v of a graph G is a cut vertex of G if $\omega(\mathrm{G}-\mathrm{v})>\omega(\mathrm{G})$.

An edge e of a graph G is a cut edge of G if $\omega(\mathrm{G}-\mathrm{e})>\omega(\mathrm{G})$. A vertex -cut in a graph G is a set U of vertices of G such that $G-U$ is disconnected. A complete graph has no vertex-cut. Every graph that is not complete has a vertex-cut. Indeed, the set of all vertices distinct from two nonadjacent vertices is a vertex-cut.

An edge-cut in a graph G is a set X of edges of G such that $G-X$ is disconnected. An edge-cut X is minimum if no proper subset of X is also an edge-cut. If X is a minimum edge-cut of a connected graph G, then, necessarily $G-X$ contains exactly two components. Every non-trivial graph has an edge-cut.

2.1 Theorem

For a connected graph G, the following statements are equivalent:
(i) v is a cut vertex .
(ii) The vertex subset $\mathrm{V}-\{\mathrm{v}\}$ can be partitioned as $U \cup W$ such that for any $u \in U$ and any $\mathrm{w} \in \mathrm{W}$ every (u, w)-path passes through v .
(iii) There exist vertices $u, w \in V-\{v\}$ such that every (u, w)-path in G passes through v.

Proof

(i) \Rightarrow (ii) :

Since v is a cut vertex, $G-v$ is disconnected. Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{k}}$ be the components of $\mathrm{G}-\mathrm{v}$.

Let $U=V\left(G_{1}\right)$ and $W=\bigcup_{i=2}^{k} V\left(G_{i}\right)$. Let $u \in U$ and ${ }_{w} \in W$. Specifically, let $w \in V\left(G_{i}\right)(i \neq 1)$. If there is a (u, w) - path P in G not passing through v, then P connects u and w in $\mathrm{G}-\mathrm{v}$ also. Thus $\mathrm{G}_{\mathrm{i}} \cup_{G_{i}}$ is a single component in $\mathrm{G}-\mathrm{v}$, contradicting our assumption. Thus every (u, w) - path in G passes through v and U and W satisfy the condition (ii).
(ii) \Rightarrow (iii) : Obvious .
${ }_{\text {(iii) }} \Rightarrow{ }_{\text {(i) }}$:

Since every (u, w)-path in G passes through v, there is no (u, w)-path in $\mathrm{G}-\mathrm{v}$. Thus u and w belong to different components of $G-v$. That is $G-v$ is disconnected and v is a cut vertex of G.

2.2 Theorem

For a connected graph G, the following statements are equivalent:
(i) e is a cut edge of G.
(ii)If $\mathrm{e}=a b$, there is a partition of the edge subset E

- $\{\mathrm{e}\}$ as $\mathrm{E}_{1} \cup_{\mathrm{E}_{2}}$ with $\mathrm{a} \in \mathrm{V}\left(\left[\mathrm{E}_{1}\right]\right)$ and b $\in \mathrm{V}\left(\left[\mathrm{E}_{2}\right]\right)$ such that for any $\mathrm{u} \in \mathrm{V}\left(\left[\mathrm{E}_{1}\right]\right)$ and any w $\in \mathrm{V}\left(\left[\mathrm{E}_{2}\right]\right)$ every (u, w)-path contains e.
(iii) There exist vertices u and w such that every (u, w) - path in G contains e.
(iv) e is not a cyclic edge of G.

Proof
(i) \Rightarrow (ii) :

Let G_{1} and G_{2} be the two components of $G-e$ and E_{1} $=E\left(G_{1}\right)$ and $E_{2}=E\left(G_{2}\right)$. If $u \in V\left(G_{1}\right)$ and w $\in \mathrm{V}\left(\mathrm{G}_{2}\right)$ exist such that there is a (u, w)-path P in G which does not contain e, then u and w are connected in $\mathrm{G}-\mathrm{e}$ by the path P . This means that $\mathrm{G}_{1} \cup \mathrm{G}_{2}$, that is $\mathrm{G}-\mathrm{e}$, is connected, contradicting the hypothesis.
(ii) \Rightarrow (iii) : Obvious.
(iii) \Rightarrow (iv) :

We prove the contra - positive. Suppose e lies on a cycle C . Then $\mathrm{C}-\mathrm{e}$ gives an (a, b)-path Q not containing e. With vertices u and w following the condition given in statement (iii), let P be any (u, w)path. Without loss of generality let us assume that a and b occur in that order in P. Let u_{0} and w_{0} be the first and last vertices that P has in common with C (the possibility of these coinciding with $\mathrm{a}, \mathrm{b}, \mathrm{u}$ or w is not ruled out).

Then $\mathrm{P}_{\mathrm{u}, \mathrm{u}_{0}} \cup \mathrm{Q}_{\mathrm{u}_{0}, w_{0}} \cup \mathrm{P}_{\mathrm{w}_{0}, \mathrm{w}}$ is a (u, w) -path P^{\prime} of G which does not contain e, contradicting (iii). (See Figure 1)
(iv) \Rightarrow (i) :

To prove the contra - positive suppose $G-e$ is connected. Then there is an (a,b)- path P in $\mathrm{G}-\mathrm{e}$. But then $\mathrm{P} \bigcup_{\mathrm{e}}$ is a cycle containing e. This contradicts (iv).

Figure 1.

III. MINIMALLY CONNECTED WITH A TREE

A graph is said to be minimally connected if removal of any one edge from it disconnects the graph. Clearly, a minimally connected graph has no cycles.

3.1 Theorem

A graph is a tree if and only if there is exactly one path between every pair of its vertices.

Proof

Let G be a graph and let there be exactly one path between every pair of vertices in G. So G is connected. Now G has no cycles, because if G contains a cycle, say between vertices u and v, then there are two distinct paths between u and v, which is a contradiction. Thus G is connected and is without cycles, therefore it is a tree.

Conversely, let G be a tree. Since G is connected, there is at least one path between every pair of vertices in G. Let there be two distinct paths between two vertices u and v of G. The union of these two paths contains a cycle which contradicts the fact that G is tree. Hence there is exactly one path between every pair of vertices of a tree.

3.2 Theorem

A tree with n vertices has $\mathrm{n}-1$ edges.

Proof

We prove the result by using induction on n , the number of vertices. The result is obviously true for $\mathrm{n}=1,2$ and 3. Let the result be true for all trees with fewer than n vertices. Let T be a tree with n vertices and let e be an edge with end vertices u and v. So the only path between u and v is e. Therefore deletion of e from T disconnects T . Now, $\mathrm{T}-\mathrm{e}$ consists of exactly two components T_{1} and T_{2} say, and as there were no cycles to begin with, each component is a tree. Let n_{1} and n_{2} be the number of vertices in T_{1} and T_{2} respectively, so that $\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}$. Also, $\mathrm{n}_{1}<\mathrm{n}$ and $\mathrm{n}_{2}<\mathrm{n}$. Thus, by induction hypothesis, number of edges in T_{1} and T_{2} are respectively $\mathrm{n}_{1}-1$ and $\mathrm{n}_{2}-1$.

Hence the number of edges in

$$
\begin{aligned}
\mathrm{T} & =\mathrm{n}_{1}-1+\mathrm{n}_{2}-1+1 \\
& =\mathrm{n}_{1}+\mathrm{n}_{2}-1 \\
& =\mathrm{n}-1 .
\end{aligned}
$$

3.3 Theorem

Any connected graph with n vertices and $n-1$ edges is a tree.

Proof

Let G be a connected graph with n vertices and $n-1$ edges. We show that G contains no cycles. Assume to the contrary that G contains cycles.

Remove an edge from a cycle so that the resulting graph is again connected. Continue this process of removing one edge from one cycle at a time till the resulting graph H is a tree. As H has n vertices, so number of edges in H is $\mathrm{n}-1$. Now the number of edges in G is greater than the number of edges in H. So $\mathrm{n}-1>\mathrm{n}-1$, which is not possible. Hence, G has no cycles and therefore is a tree.

3.4 Theorem

A graph is a tree if and only if it is minimally connected.

Proof

Let the graph G be minimally connected. Then G has no cycles and therefore is a tree.

Conversely, let G be a tree. Then G contains no cycles and deletion of any edge from G disconnects the graph. Hence G is minimally connected.

The following results give some more properties of trees.

3.5 Theorem

A graph G with n vertices, $\mathrm{n}-1$ edges and no cycles is connected.

Proof

Let G be a graph without cycles with n vertices and $\mathrm{n}-1$ edges. We have to prove that G is connected. Assume that G is disconnected. So G consists of two or more components and each component is also without cycles. We assume without loss of generality that G has two components, say G_{1} and G_{2}. Add an edge e between a vertex u in G_{1} and a vertex v in G_{2}. Since there is no path between u and v in G, adding e did not create a cycle. Thus $G \bigcup e$ is a connected graph (tree) of n vertices, having n edges and no cycles. This contradicts the fact that a tree with n vertices hasn-1 edges. Hence Gis connected.

Figure. 2

3.6 Theorem

Any tree with at least two vertices has at least two pendant vertices.

Proof

Let the number of vertices in a given tree T be $\mathrm{n}(\mathrm{n}>1)$. So the number of edges in T is $\mathrm{n}-1$. Therefore the degree sum of the tree is $2(n-1)$. This
degree sum is to be divided among the n vertices. Since a tree is connected it cannot have a vertex of 0 degree. Each vertex contributes at least 1 to the above sum. Thus there must be at least two vertices of degree exactly 1.

Alternative Proof 1

We use induction on n . The result is obviously true for all trees having fewer than n vertices. We know that T has $\mathrm{n}-1$ edges, and is every edge of T is incident with a pendant vertex, then T has at least two pendant vertices, and the proof is complete. So let there be some edge of T that is not incident with a pendant vertex and let this edge be $\mathrm{e}=\mathrm{uv}$ (Figure.3). Removing the edge e, we see that the graph $\mathrm{T}-\mathrm{e}$ consists of a pair of trees say T_{1} and T_{2} with each having fewer than n-vertices. Let $\mathrm{u} \in \mathrm{V}\left(\mathrm{T}_{1}\right), \mathrm{v} \in \mathrm{V}\left(\mathrm{T}_{2}\right), \quad$ and $\left|\mathrm{V}\left(\mathrm{T}_{1}\right)\right|=\mathrm{n}_{1},\left|\mathrm{~V}\left(\mathrm{~T}_{2}\right)\right|=\mathrm{n}_{2}$. Applying induction hypothesis on both T_{1} and T_{2}, we observe that each of T_{1} and T_{2} has two pendant vertices. This shows that each of T_{1} and T_{2} has at least one pendant vertex that is not incident with the edge e. Thus the graph $\mathrm{T}-\mathrm{e}+\mathrm{e}=\mathrm{T}$ has at least two pendant vertices.

Figure 3

Alternative Proof 2

Let T be a tree with $n(n>1)$ vertices. The number of edges in T is $\mathrm{n}-1$ and the sum of degrees in T is $2(\mathrm{n}-1)$, that is , $\sum \mathrm{d}_{\mathrm{i}}=2(\mathrm{n}-1)$. Assume T has exactly one vertex v_{1} of degree one, while all the other
$n-1$ vertices have degree ≥ 2. Then sum of degrees is
$\mathrm{d}\left(\mathrm{v}_{1}\right)+\mathrm{d}\left(\mathrm{v}_{2}\right)+\cdots+\mathrm{d}\left(\mathrm{v}_{\mathrm{n}}\right) \geq 1+2+2+\cdots+2=1+2(\mathrm{n}-1)$.

So, $2(\mathrm{n}-1) \geq 1+2(\mathrm{n}-1)$, implying $0 \geq 1$, which is absurd. Hence at least two vertices of degree one.

3.7 Theorem

The sequence $\left[\mathrm{d}_{\mathrm{i}}\right]_{1}^{\mathrm{n}}$ of positive integers is a degree sequence of a tree if and only if
(i) $\mathrm{d}_{\mathrm{i}}>1$ for all $\mathrm{i}, 1<\mathrm{i}<\mathrm{n}$ and
(ii) $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{d}_{\mathrm{i}}=2 \mathrm{n}-2$.

Proof

Since a tree has no isolated vertex, therefore $d_{i} \geq 1_{\text {for }}$ i. Also,
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{d}_{\mathrm{i}}=2(\mathrm{n}-1)$
, as a tree with n vertices has $\mathrm{n}-1$ edges.

We use induction on n . For $\mathrm{n}=2$, the sequence is [1,1$]$ and is obviously the degree sequence of K_{2}. Suppose the claim is true for all positive sequences of length less than n.
Let $\sum_{i=1}^{\mathrm{n}} \mathrm{d}_{\mathrm{i}}$ be the non-decreasing positive sequence of n terms, satisfying conditions (i) and (ii).

Then $\mathrm{d}_{1}=1$ and $\mathrm{d}_{\mathrm{n}}>1$.
Now, consider the sequence $D^{\prime}=\left[d_{2}, d_{3}, \cdots, d_{n-1}, d_{n}-1\right]$, which is a sequence of length $\mathrm{n}-1$. Obviously in $\mathrm{D}^{\prime}, \mathrm{d}_{\mathrm{i}} \geq 1$ and

$$
\begin{aligned}
\sum_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} & =\mathrm{d}_{2}+\mathrm{d}_{3}+\cdots+\mathrm{d}_{\mathrm{n}-1}+\mathrm{d}_{\mathrm{n}}-1 \\
& =\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}+\cdots+\mathrm{d}_{\mathrm{n}-1}+\mathrm{d}_{\mathrm{n}}-1-1 \\
& =2 \mathrm{n}-2-2 \\
& =2(\mathrm{n}-1)-2 .
\end{aligned}
$$

So D^{\prime} satisfies conditions (i) and (ii), and by induction hypothesis there is a tree T^{\prime} realizing D^{\prime}. In T^{\prime}, add a new vertex and join it to the vertex having degree $d_{n}-1$ to get a tree T. Therefore the degree sequence of T is $\left[d_{1}, d_{1}, \cdots, d_{n}\right]$.

3.8 Theorem

A forest of k trees which have a total of n vertices has $\mathrm{n}-\mathrm{k}$ edges.

Proof

Let G be a forest and $T_{1}, T_{2}, \ldots, T_{k}$ be the k trees of G. Let G have n vertices and $T_{1}, T_{2}, \ldots, T_{k}$ have respectively $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$ vertices.

$$
\begin{aligned}
& \text { Then } \mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{k}}=\mathrm{n} \text {. Also, the number of } \\
& \text { edges in } T_{1}, T_{2}, \ldots, T_{k} \text { are respectively } \\
& \mathrm{n}_{1}-1, \mathrm{n}_{2}-1, \ldots, \mathrm{n}_{\mathrm{k}}-1 \text {. } \\
& \text { in } \\
& \mathrm{G}=\mathrm{n}_{1}-1+\mathrm{n}_{2}-1+\ldots+\mathrm{n}_{\mathrm{k}}-1=\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{k}}-\mathrm{k}=\mathrm{n}-\mathrm{k} .
\end{aligned}
$$

3.9 Theorem

Let T be a tree with k edges. If G is a graph whose minimum degree satisfies $\delta(\mathrm{G}) \geq \mathrm{k}$, then G contains T as a subgraph. Alternatively, G contains every tree of order at most ${ }^{\delta(G)+1}$ as a subgraph.

Proof

We use induction on k . If $\mathrm{k}=0$, then $\mathrm{T}=\mathrm{K}_{1}$ and it is clear that K_{1} is a subgraph of any graph. Further, if $\mathrm{k}=1$, then $\mathrm{T}=\mathrm{K}_{2}$ and K_{2} is a subgraph of any graph whose minimum degree is one. Assume the result is true for all trees with $k-1$ edges $(k \geq 2)$ and consider a tree T with exactly k edges. We know that T contains at least two pendant vertices. Let v be one of them and let w be the vertex that is adjacent to v. Consider the graph $T-v$, Since $T-v$ has $k-1$ edges, the induction hypothesis applies, so $\mathrm{T}-\mathrm{v}$ is a subgraph of G. We can think of
$\mathrm{T}-\mathrm{v}$ as actually sitting inside G (meaning w is a vertex of G, too). Since G contains at least $k+1$ vertices, and
$T-v$ contains k vertices, there exist vertices of G that are not a part of the subgraph $T-v$. Further, since the degree of w in G is at least k, there must be a vertex u not in $\mathrm{T}-\mathrm{v}$ that is adjacent to w . The subgraph $\mathrm{T}-\mathrm{v}$ together with u forms the tree T as a subgraph of G .

G

Figure. 4.

IV. TREES AND COTREES OF A CONNECTED GRAPH

A tree in which one vertex (called the root) is distinguished from all the others is called a rooted tree.

A binary tree is defined as a tree in which there is exactly one vertex of degree two and each of the remaining vertices is of degree one or three. Obviously, a binary tree has three or more vertices. Since the vertex of degree two is distinct from all other vertices, it serves as a root, and so every binary tree is a rooted tree.

The height of a rooted tree is the length of a longest path from the root. If T is a binary tree of height h , then its left and right subtrees both have height less than or equal to $h-1$. If H is a subgraph of G , the complement of H in G, denoted by $\overline{\mathrm{H}}(\mathrm{G})$, is the subgraph $G-E(H)$. If G is connected, a subgraph of the form $\overline{\mathrm{T}}$, where T is a spanning tree, is called a cotree of G.

For subsets S and S^{\prime} of V, we denote by $\left[S, S^{\prime}\right]$ the set of edges with one end in S and the other in S^{\prime}. An edge cut of G is a subset of E of the form $[\mathrm{S}, \overline{\mathrm{S}}]$, where S is a nonempty proper subset of v and $\overline{\mathrm{S}}=\mathrm{V} / \mathrm{S}$. A minimal edge cut of G is called a bond; each cut edge e, for instance, gives rise to a bond \{e\}

If G is connected, then a bond B of G is a minimal subset of E such that
$\mathrm{G}-\mathrm{B}$ is disconnected.

(a)

(b)

Figure 5 (a) An edge cut; (b) A bond

4.1Theorem

The binary tree of fixed height h has $2^{h+1}-1$ vertices.

Proof

The assertion is trivially true if $\mathrm{h}=0$. Assume for some $k \geq 0$, that a binary tree of fixed height k has $2^{\mathrm{h}+1}-1$ vertices, and let T be a binary tree of height $\mathrm{k}+1$. Since T is a binary tree, its left and right subtrees, say T_{1} and T_{2} must be binary tree. Furthermore, trees T_{1} and T_{2} are both of height k, so by the induction hypothesis, they each contain $2^{h+1}-1$ vertices. Thus, the number of vertices of T is $1+2^{k+1}-1+2^{k+1}-1=2^{k+2}-1$.

4.2 Theorem

Every connected graph has at least one spanning tree.

Proof

Let G be a connected graph. If G has no cycles, then it is its own spanning tree. If G has cycles, then on deleting one edge from each of the cycles, the graph
remains connected and cycle free containing all the vertices of G.

4.3 Theorem

Let T be a spanning tree of a connected graph G and let e be an edge of G not in T. Then $\mathrm{T}+\mathrm{e}$ contains a unique cycle.

Proof

Since T is acyclic, each cycle of $\mathrm{T}+\mathrm{e}$ contains e . Moreover, C is a cycle of $\mathrm{T}+\mathrm{e}$ if and only if $\mathrm{C}-\mathrm{e}$ is a path in T connecting the ends of e . By theorem 2.2, T has a unique such path; therefore $\mathrm{T}+\mathrm{e}$ contains a unique cycle.

4.4 Theorem

Let T be a spanning tree of a connected graph G, and let e be any edge of T. Then
(i) the cotree $\overline{\mathrm{T}}_{\text {contains no bond of } G \text {; }}$
(ii) $\overline{\mathrm{T}}+\mathrm{e}_{\text {contains }}$ a unique bond of G .

Proof

(i)Let B be a bond of G. Then $G-B$ is disconnected, and so cannot contain the spanning tree T . Therefore B is not contained in $\overline{\mathrm{T}}$.
(ii) Denote by S the vertex set of one of the two components of $\mathrm{T}-\mathrm{e}$. The edge cut $\mathrm{B}=[\mathrm{S}, \overline{\mathrm{S}}]$ is clearly a bond of G, and is contained in $\overline{\mathrm{T}}+\mathrm{e}$. Now, for any $b \in B, T-e+b$ is a spanning tree of G. Therefore every bond of G contained in $\bar{T}+e$ must include every such element b. It follows that B is the only bond of G contained in $\overline{\mathrm{T}}+\mathrm{e}$.

II. CONCLUSION

We conclude that every connected graph has at least one spanning tree. And then, one edge added to a tree, which contains a unique cycle. Finally, the result reveals that spanning tree T of a connected graph G , its cotree \bar{T} with no bound of G and $\bar{T}+e$ with a unique bound of G are obtained.

REFERENCES

[1] Bollobas , B ., " Modern Graph Theory ", Springer - Verlag, New York, 1998
[2] Bondy, J. A. and Murty, U. S. R., "Graph Theory with Applications", The Macmillan Press Ltd, London, 1976.
[3] Chartrand, G. and Lesniak. L., "Graphs and Digraphs", Chapman and Hall/CRC, New York, 2005.
[4] Grossman, J. W., "Discrete Mathematics", Macmillan Publishing Company, New York, 1990.
[5] Parthasarathy, K. R., "Basic Graph Theory", Tata McGraw - Hill, Publishing Company Limited, New Delhi, 1994

