# Connected Graph with Trees

SAN SAN TINT<sup>1</sup>, KHAING KHAING SOE  $WAI^2$ 

<sup>1, 2</sup> Department of Engineering Mathematics, Technological University (Myitkyina)

Abstract -- In this paper we mention cut vertex and cut edge in a connected graph. We establish a minimally connected graph with no cycles. And then, a graph G with n vertices, n-1 edges and no cycles, it is connected. Finally, G contains trees, whose minimum degree,  $\delta(G) \ge k$ and it is shown that the order of sub graph tree with at most  $\delta(G)+1$ .

Indexed Terms: cut vertex, cut edge, vertex- cut, edge- cut, cyclic edge, components, cycle, path, tree, minimally connected

## I. INTRODUCTION

A graph G = (V(G), E(G)) with n vertices and m edges consists of a vertex set  $V(G) = \{v_1, v_2, ..., v_n\}$ and an edge set  $E(G) = \{e_1, e_2, ..., e_m\}$  where each edge consists of two vertices called its end-vertices. We write uv for an edge  $e = \{u, v\}$ . If  $uv \in E(G)$ , then u and v are adjacent. The ends of an edge are said to be incident with the edge. The number of vertices of G is called the order of G, is denoted by n(G). A graph is finite if its vertex set and edge set are finite. A graph with no edges is called an empty graph. We call a graph with just one vertex trivial and all other graphs nontrivial. A loop is an edge whose endpoints are equal. Parallel edges or multiple edges are edges that have the same pair of endpoints. A graph is simple if it has no loops and no parallel edges, A graph H is a sub graph of G if  $V(H) \subseteq V(G)$ and  $E(H) \subseteq E(G)$ .

The component of a graph G is the maximal connected sub graph of G. We denote the number of components of G by  $\omega(G)$ . The degree  $d_G(v)$  (or valency) of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges. We denote by  $\delta(G)$  and  $\Delta(G)$  the minimum and maximum degrees, respectively of vertices of G. A vertex of degree zero is called an isolated vertex. A vertex of degree one is called a pendant vertex.

walk G А in is а finite sequence  $W = v_0 e_1 v_1 e_2 v_2 ... e_k v_k, \text{ whose terms are alternately}$ vertices and edges, such that, for  $1 \le i \le k$ , the ends of  $e_i$  are  $V_{i-1}$  and  $V_i$ . We say that W is a walk from  $v_0$  to  $v_k$  or  $a^{(v_0, v_k)}$ -walk. The vertices  $v_0$  and  $v_k$ are called the origin and terminus of W, respectively and  $V_1, V_2, ..., V_{k-1}$  its internal vertices. The integer k is the length of W. If all the edges of a walk are distinct, then it is called a trail. If, in addition, the vertices are distinct, W is called a path.

The length of a path is the number of edges in that path. A walk is closed if its origin and terminus are the same. A cycle is a closed trail in which all the vertices are distinct, except that the first vertex equals the last vertex.

An acyclic graph is one that contains no cycles. A tree is a connected acyclic graph.

Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. A graph is said to be connected if every two of its vertices are connected; otherwise it is disconnected. The vertex-connectivity or simply the connectivity  $\kappa(G)$  of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and  $\kappa(G) = n-1$  if  $G = K_n$  for some positive integer n. Hence  $\kappa(G)$  is the minimum number of vertices whose removal form G results in a disconnected or trivial graph. If G is either trivial or disconnected,  $\kappa(G) = 0$ . G is said to be k-connected if  $\kappa(G) \ge k$ . All non-trivial connected graphs are 1connected. An **acyclic** graph is one that contains no cycles. A **tree** is a connected acyclic graph.

# II. CUT VERTEX AND CUT EDGE IN A CONNECTED GRAPH

A vertex v of a graph G is a cut vertex of G if  $\omega(G-v) > \omega(G)$ . An edge e of a graph G is a cut edge of G if  $\omega(G-e) > \omega(G)$ . A vertex -cut in a graph G is a set U of vertices of G such that G-U is disconnected. A complete graph has no vertex-cut. Every graph that is not complete has a vertex-cut. Indeed, the set of all vertices distinct from two nonadjacent vertices is a vertex-cut.

An edge-cut in a graph G is a set X of edges of G such that G-X is disconnected. An edge-cut X is minimum if no proper subset of X is also an edge-cut. If X is a minimum edge-cut of a connected graph G, then, necessarily G-X contains exactly two components. Every non-trivial graph has an edge-cut.

## 2.1 Theorem

For a connected graph G, the following statements are equivalent:

(i) v is a cut vertex.

(ii) The vertex subset V-{v} can be partitioned
 as U ∪ W such that for any u ∈ U and any
 w∈W every (u, w)-path passes through v.

(iii) There exist vertices u,  $w \in V - \{v\}$  such that every (u, w)-path in G passes through v.

Proof

 $(i) \Rightarrow (ii)$ :

Since v is a cut vertex, G - v is disconnected. Let  $G_1, G_2, \ldots, G_k$  be the components of G - v.

k

Let 
$$U = V(G_1)$$
 and  $W = {}^{i=2}V(G_i)$ . Let  $u \in U$  and  
 $w \in W$ . Specifically, let  $w \in V(G_i)$  ( $i \neq 1$ ). If there  
is a (u, w) - path P in G not passing through v,  
then P connects u and w in  $G - v$  also. Thus  
 $G_i \cup G_i$  is a single component in  $G - v$ , contradicting  
our assumption. Thus every (u, w) - path in G  
passes through v and U and W satisfy the  
condition (ii).

(ii)  $\Rightarrow$  (iii) : Obvious .

 $(iii) \Rightarrow_{(i)}$ :

Since every (u, w)-path in G passes through v, there is no (u, w)-path in G-v. Thus u and w belong to different components of G-v. That is G-v is disconnected and v is a cut vertex of G.

#### 2.2 Theorem

For a connected graph G, the following statements are equivalent:

(i) e is a cut edge of G.

(ii)If e = ab, there is a partition of the edge subset E - {e} as  $E_1 \cup E_2$  with  $a \in V([E_1])$  and  $b \in V([E_2])$  such that for any  $u \in V([E_1])$  and any  $w \in V([E_2])$  every (u, w)-path contains e.

(iii) There exist vertices u and w such that every(u, w) - path in G contains e.

(iv) e is not a cyclic edge of G.

Proof

 $(i) \Rightarrow (ii)$ :

Let  $G_1$  and  $G_2$  be the two components of G-e and  $E_1 = E(G_1)$  and  $E_2 = E(G_2)$ . If  $u \in V(G_1)$  and  $w \in V(G_2)$  exist such that there is a (u, w)-path P in G which does not contain e, then u and w are connected in G-e by the path P. This means that  $G_1 {}^{\bigcup}G_2$ , that is G-e, is connected, contradicting the hypothesis.

(ii)  $\Rightarrow$  (iii) : Obvious. (iii)  $\Rightarrow$  (iv) :

We prove the contra - positive. Suppose e lies on a cycle C. Then C–e gives an (a, b)-path Q not containing e. With vertices u and w following the condition given in statement (iii), let P be any (u, w)-path. Without loss of generality let us assume that a and b occur in that order in P. Let  $u_0$  and  $w_0$  be the first and last vertices that P has in common with C ( the possibility of these coinciding with a , b , u or w is not ruled out).

Then  $P_{u,u_0} \bigcup Q_{u_0,w_0} \bigcup P_{w_0,w}$  is a (u, w) -path P' of G which does not contain e, contradicting (iii). (See Figure 1)

 $(iv) \Rightarrow (i):$ 

To prove the contra - positive suppose G-e is connected. Then there is an (a, b)- path P in G-e. But then P  $\bigcup$  e is a cycle containing e. This contradicts (iv).



Figure 1.

# III. MINIMALLY CONNECTED WITH A TREE

A graph is said to be minimally connected if removal of any one edge from it disconnects the graph. Clearly, a minimally connected graph has no cycles.

## 3.1 Theorem

A graph is a tree if and only if there is exactly one path between every pair of its vertices.

#### Proof

Let G be a graph and let there be exactly one path between every pair of vertices in G. So G is connected. Now G has no cycles, because if G contains a cycle, say between vertices u and v, then there are two distinct paths between u and v, which is a contradiction. Thus G is connected and is without cycles, therefore it is a tree.

Conversely, let G be a tree. Since G is connected, there is at least one path between every pair of vertices in G. Let there be two distinct paths between two vertices u and v of G. The union of these two paths contains a cycle which contradicts the fact that G is tree. Hence there is exactly one path between every pair of vertices of a tree.

# 3.2 Theorem

A tree with n vertices has n-1 edges.

# Proof

We prove the result by using induction on n, the number of vertices. The result is obviously true for n=1,2 and 3. Let the result be true for all trees with fewer than n vertices. Let T be a tree with n vertices and let e be an edge with end vertices u and v. So the only path between u and v is e. Therefore deletion of e from T disconnects T. Now, T– e consists of exactly two components T<sub>1</sub> and T<sub>2</sub> say, and as there were no cycles to begin with, each component is a tree. Let n<sub>1</sub> and n<sub>2</sub> be the number of vertices in T<sub>1</sub> and T<sub>2</sub> respectively, so that  $n_1 + n_2 = n$ . Also,  $n_1 < n$  and  $n_2 < n$ . Thus, by induction hypothesis, number of edges in T<sub>1</sub> and T<sub>2</sub> are respectively  $n_1 - 1$  and  $n_2 - 1$ .

Hence the number of edges in

$$T = n_1 - 1 + n_2 - 1 + 1$$
  
=  $n_1 + n_2 - 1$   
=  $n - 1$ .

## 3.3 Theorem

Any connected graph with n vertices and n-1 edges is a tree.

#### Proof

Let G be a connected graph with n vertices and n-1 edges. We show that G contains no cycles. Assume to the contrary that G contains cycles.

Remove an edge from a cycle so that the resulting graph is again connected. Continue this process of removing one edge from one cycle at a time till the resulting graph H is a tree. As H has n vertices, so number of edges in H is n-1. Now the number of edges in G is greater than the number of edges in H. So n-1 > n-1, which is not possible. Hence, G has no cycles and therefore is a tree.

#### 3.4 Theorem

A graph is a tree if and only if it is minimally connected.

#### Proof

Let the graph G be minimally connected. Then G has no cycles and therefore is a tree.

Conversely, let G be a tree. Then G contains no cycles and deletion of any edge from G disconnects the graph. Hence G is minimally connected.

The following results give some more properties of trees.

#### 3.5 Theorem

A graph G with n vertices, n–1 edges and no cycles is connected.

#### Proof

Let G be a graph without cycles with n vertices and n–1 edges. We have to prove that G is connected. Assume that G is disconnected. So G consists of two or more components and each component is also without cycles. We assume without loss of generality that G has two components, say G<sub>1</sub> and G<sub>2</sub>. Add an edge e between a vertex u in G<sub>1</sub> and a vertex v in G<sub>2</sub>. Since there is no path between u and v in G, adding e did not create a cycle. Thus  $G \cup e$  is a connected graph (tree) of n vertices, having n edges and no cycles. This contradicts the fact that a tree with n vertices hasn–1 edges. Hence Gis connected.



Figure. 2

#### 3.6 Theorem

Any tree with at least two vertices has at least two pendant vertices.

# Proof

Let the number of vertices in a given tree T be n(n > 1). So the number of edges in T is n-1. Therefore the degree sum of the tree is 2(n-1). This degree sum is to be divided among the n vertices. Since a tree is connected it cannot have a vertex of 0 degree. Each vertex contributes at least 1 to the above sum. Thus there must be at least two vertices of degree exactly 1.

#### Alternative Proof 1

We use induction on n. The result is obviously true for all trees having fewer than n vertices. We know that T has n-1 edges, and is every edge of T is incident with a pendant vertex, then T has at least two pendant vertices, and the proof is complete. So let there be some edge of T that is not incident with a pendant vertex and let this edge be e = uv (Figure.3). Removing the edge e, we see that the graph T - econsists of a pair of trees say T1 and T2 with each having fewer than n-vertices. Let and  $|V(T_1)| = n_1, |V(T_2)| = n_2$  $u \in V(T_1), v \in V(T_2)$ Applying induction hypothesis on both  $T_1$  and  $T_2$ , we observe that each of  $T_1$  and  $T_2$  has two pendant vertices. This shows that each of  $T_1$  and  $T_2$  has at least one pendant vertex that is not incident with the

edge e. Thus the graph T-e+e=T has at least two pendant vertices.



Figure 3

#### Alternative Proof 2

Let T be a tree with n(n > 1) vertices. The number of edges in T is n-1 and the sum of degrees in T is 2(n-1), that is ,  $\sum d_i = 2(n-1)$ . Assume T has exactly one vertex  $v_1$  of degree one, while all the other

n –1 vertices have degree  $\geq 2$ . Then sum of degrees is

 $d(v_1) + d(v_2) + \dots + d(v_n) \ge 1 + 2 + 2 + \dots + 2 = 1 + 2(n-1).$ 

So,  $2(n-1) \ge 1+2(n-1)$ , implying  $0 \ge 1$ , which is absurd. Hence at least two vertices of degree one.

# 3.7 Theorem

The sequence  $[d_i]_1^n$  of positive integers is a degree sequence of a tree if and only if

(i) 
$$d_i > 1$$
 for all  $i, 1 < i < n$  and  
(ii)  $\sum_{i=1}^{n} d_i = 2n - 2$ .

## Proof

Since a tree has no isolated vertex, therefore  $d_i \ge 1$  for i. Also ,

$$\sum_{i=1}^{n} d_{i} = 2(n-1)$$
, as a tree with n vertices has n-1 edges.

We use induction on n. For n = 2, the sequence is [1,1] and is obviously the degree sequence of  $K_2$ . Suppose the claim is true for all positive sequences of length less than n.

Let  $\sum_{i=1}^{n} d_i$  be the non-decreasing positive sequence of n terms, satisfying conditions (i) and (ii).

 $\begin{array}{ll} Then \ d_{1} = 1 \ and \ d_{n} > 1 \ . \\ Now, & consider & the & sequence \\ D' = [d_{2}, d_{3}, \cdots, d_{n-1}, d_{n} - 1], \ which \ is \ a \ sequence \ of \\ length \ n-1. \ Obviously \ in \ D', \ d_{i} \geq 1 \\ and \\ \sum_{i} d_{i} = d_{2} + d_{3} + \cdots + d_{n-1} + d_{n} - 1 \end{array}$ 

$$= d_1 + d_2 + d_3 + \dots + d_{n-1} + d_n - 1 - 1$$
  
= 2n - 2 - 2  
= 2(n - 1) - 2.

So D' satisfies conditions (i) and (ii), and by induction hypothesis there is a tree T' realizing D'. In T', add a new vertex and join it to the vertex having degree  $d_n-1$  to get a tree T. Therefore the degree sequence of T is  $[d_1, d_1, \cdots, d_n]$ . 3.8 Theorem

A forest of k trees which have a total of n vertices has n-k edges.

# Proof

Let G be a forest and  $T_1, T_2, ..., T_k$  be the k trees of G. Let G have n vertices and  $T_1, T_2, ..., T_k$  have respectively  $n_1, n_2, ..., n_k$  vertices.

Then  $n_1 + n_2 + \ldots + n_k = n$ . Also, the number of edges in  $T_1, T_2, \ldots, T_k$  are respectively  $n_1 - 1, n_2 - 1, \ldots, n_k - 1$ .

Thus number of edges in  $G = n_1 - 1 + n_2 - 1 + ... + n_k - 1 = n_1 + n_2 + ... + n_k - k = n - k.$ 

3.9 Theorem

Let T be a tree with k edges. If G is a graph whose minimum degree satisfies  $\delta(G) \ge k$ , then G contains T as a subgraph. Alternatively, G contains every tree of order at most  $\delta(G)^{+1}$  as a subgraph.

# Proof

We use induction on k. If k = 0, then  $T = K_1$  and it is clear that  $K_1$  is a subgraph of any graph. Further, if k = 1, then  $T = K_2$  and  $K_2$  is a subgraph of any graph whose minimum degree is one. Assume the result is true for all trees with k - 1 edges  $(k \ge 2)$  and consider a tree T with exactly k edges. We know that T contains at least two pendant vertices. Let v be one of them and let w be the vertex that is adjacent to v. Consider the graph T - v, Since T - v has k - 1edges, the induction hypothesis applies, so T - v is a subgraph of G. We can think of

 $T-v \mbox{ as actually sitting inside } G$  (meaning  $w \mbox{ is a vertex of } G,$  too). Since G contains at least k+1 vertices, and

T - v contains k vertices, there exist vertices of G that are not a part of the subgraph T - v. Further, since the degree of w in G is at least k, there must be a vertex u not in T - v that is adjacent to w. The subgraph T - vtogether with u forms the tree T as a subgraph of G.

# © AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880



Figure.4.

# IV. TREES AND COTREES OF A CONNECTED GRAPH

A tree in which one vertex (called the root) is distinguished from all the others is called a rooted tree.

A binary tree is defined as a tree in which there is exactly one vertex of degree two and each of the remaining vertices is of degree one or three. Obviously, a binary tree has three or more vertices. Since the vertex of degree two is distinct from all other vertices, it serves as a root, and so every binary tree is a rooted tree.

The height of a rooted tree is the length of a longest path from the root. If T is a binary tree of height h, then its left and right subtrees both have height less than or equal to h - 1. If H is a subgraph of G, the complement of H in G, denoted by  $\overline{H}(G)$ , is the subgraph G - E(H). If G is connected, a subgraph of the form  $\overline{T}$ , where T is a spanning tree, is called a cotree of G.

For subsets S and S' of V, we denote by [S,S'] the set of edges with one end in S and the other in S'. An edge cut of G is a subset of E of the form  $[S,\overline{S}]$ , where S is a nonempty proper subset of v and  $\overline{S} = V/S$ . A minimal edge cut of G is called a bond; each cut edge e, for instance, gives rise to a bond  $\{e\}$ . If G is connected, then a bond B of G is a minimal subset of E such that G – B is disconnected.



Figure 5 (a) An edge cut; (b) A bond

# 4.1Theorem

The binary tree of fixed height h has  $2^{h+1}-1$  vertices.

# Proof

The assertion is trivially true if h=0. Assume for some  $k \ge 0$ , that a binary tree of fixed height k has  $2^{h+1}-1$  vertices, and let T be a binary tree of height k + 1. Since T is a binary tree, its left and right subtrees, say  $T_1$  and  $T_2$  must be binary tree. Furthermore, trees  $T_1$  and  $T_2$  are both of height k, so by the induction hypothesis, they each contain  $2^{h+1}-1$  vertices. Thus, the number of vertices of T is  $1+2^{k+1}-1+2^{k+1}-1=2^{k+2}-1$ 

### 4.2 Theorem

Every connected graph has at least one spanning tree.

# Proof

Let G be a connected graph. If G has no cycles, then it is its own spanning tree. If G has cycles, then on deleting one edge from each of the cycles, the graph remains connected and cycle free containing all the vertices of G.

4.3 Theorem

Let T be a spanning tree of a connected graph G and let e be an edge of G not in T. Then T + e contains a unique cycle.

# Proof

Since T is acyclic, each cycle of T + e contains e. Moreover, C is a cycle of T + e if and only if C - e is a path in T connecting the ends of e. By theorem 2.2, T has a unique such path; therefore T + e contains a unique cycle.

# 4.4 Theorem

Let T be a spanning tree of a connected graph G, and let e be any edge of T. Then

(i) the cotree T contains no bond of G;

(ii)  $\overline{T} + e$  contains a unique bond of G.

# Proof

(i)Let B be a bond of G. Then G-B is disconnected, and so cannot contain the spanning tree T. Therefore B is not contained in  $\overline{T}$ .

(ii) Denote by S the vertex set of one of the two components of T-e. The edge cut  $B = \begin{bmatrix} S, \overline{S} \end{bmatrix}$  is clearly a bond of G, and is contained in  $\overline{T}+e$ . Now, for any  $b \in B$ , T-e+b is a spanning tree of G. Therefore every bond of G contained in  $\overline{T}+e$  must include every such element b. It follows that B is the only bond of G contained in  $\overline{T}+e$ .

# II. CONCLUSION

We conclude that every connected graph has at least one spanning tree. And then, one edge added to a tree, which contains a unique cycle. Finally, the result reveals that spanning tree T of a connected graph G, its cotree  $\overline{T}$  with no bound of G and  $\overline{T} + e$  with a unique bound of G are obtained.

# REFERENCES

- [1] Bollobas , B ., " Modern Graph Theory ", Springer - Verlag, New York, 1998
- [2] Bondy, J. A. and Murty, U. S. R., "Graph Theory with Applications", The Macmillan Press Ltd, London, 1976.
- [3] Chartrand, G. and Lesniak. L., "Graphs and Digraphs", Chapman and Hall/CRC, New York, 2005.
- [4] Grossman, J. W., "Discrete Mathematics", Macmillan Publishing Company, New York, 1990.
- [5] Parthasarathy, K. R., "Basic Graph Theory", Tata McGraw - Hill, Publishing Company Limited, New Delhi, 1994