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Abstract- MapReduce is currently a parallel 

computing framework for distributed processing of 

large-scale data intensive application. The most 

important performance metric is job execution time 

but it can be seriously impacted by straggler 

machines. Speculative execution is a common 

approach for this problem by backing up slow tasks 

on alternative machines. Some schedulers with 

speculative execution have been proposed but they 

have some weaknesses:(i) they cannot calculate the 

progress rate accurately because the progress scores 

of the phases are set to constant values which may 

be totally different for heterogeneous environment, 

(ii) they define the stragglers by specifying a static 

threshold value which calculates the temporal 

difference between an individual task and the 

average task progression. To get the better 

performance, this paper proposes an algorithm 

identifying the stragglers by the more accurate 

progress of each job based on its own historical 

information and using a dynamic threshold value 

adjusting the continuously varying environment 

automatically. 

 

I. INTRODUCTION 

 

The Apache Hadoop, an open-source implementation 

of MapReduce has been widely recognized and 

applied with high degree of reliability, extensibility, 

effectiveness and fault tolerance. One significant 

characteristic of Hadoop is fault-tolerance. If a task 

performs poorly on a node, a straggler, Hadoop 

would re-execute the task on another node to finish 

the job faster. Without the speculative execution 

mechanism, the stragglers will prolong the job’s 

execution time. Hadoop default scheduler is 

considered for homogeneous environment. So, it 

cannot find the slow tasks correctly in heterogeneous 

environment. In Hadoop culsters, hardware 

configuration and resource virtualization are different 

and leads to heterogeneous environment. Therefore, 

detecting 

these straggler tasks in such environment is the key 

topic of the research. Some schedulers with 

speculative execution have been proposed but they 

cannot detect straggler tasks correctly because they 

compute the progress of tasks in static manner. In this 

paper, the system is proposed to overcome the above 

limitations. Some important contributions are also 

presented. The proposed system:  

 Estimates the progress rate of the running task 

accurately by using historical information on 

every node. 

 Calculates the dynamic threshold value to find the 

slow tasks effectively. 

 Classifies slow nodes into map slow nodes and 

reduce slow nodes. 

The rest of this paper is organized as follows. Section 

2 provides the background information; Section 3 

surveys the related work: Section 4 describes the 

details of the proposed system; Section 5 discusses 

conclusions and future work. 

 

II. BACKGROUND THEORY 

 

In this section, the operating principles of 

MapReduce and Hadoop platform are described and 

the long tail behaviour in distributed system is 

overviewed. 

 

2.1 Operating Principles of MapReduce 

Hadoop is the most widely adopted 

opensourceimplementation of MapReduce 

framework which is created by Google. MapReduce 

plays a critical role for executing highly 

parallelizable and distributed algorithms for huge 

data sets across large clusters of hardware nodes. 

Moreover, it also meets multiple quality requirements 

by monitoring the order and distribution of users, 

jobs and tasks execution. It allows the developers to 

write programs in the programming model which 
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originates from two functions. One is a map function 

that processes a key/value pair to generate a set of 

intermediate key/value pairs. Another is a reduce 

function that merges all intermediate values 

associated with the same intermediate key.  

 

Many real world tasks are representable in this 

model. Programs are written in functional style and 

can be executed parallel on a large cluster of 

commodity machines [1]. In a MapReduce cluster, 

the input files for the submitted job is divided into 

multiple map tasks, and then both the map tasks and 

reduce tasks are and keeps the task’s progress to the 

master with the periodic heartbeat. Map tasks extract 

key-value pairs from the input, transfer them to some 

user defined map and combine function to generate 

the intermediate outputs. After the reduce tasks copy 

the map outputs, reduce tasks merge these pieces to a 

single ordered pair stream by a merge sort. These 

stream pairs are transferred to user defined reduce 

function. Finally the reduce task generates the result 

for the job [4]. In MapReduce execution system, a 

map task is divided into map and combine phases and 

a reduce task is into three phases(copy, sort and 

reduce) as shown in figure 1. Therefore, the progress 

score of a task is obtained by combining the progress 

score of every phase. 

 

 
Figure 1. Two phases of a map task and three 

phases of a reduce task 

 

The progress of a phase can be calculated as in 

equation (1). M is the number of key/value pairs that 

have been processed in the phase and N is the overall 

number of key/value pairs needed to be processed in 

the phase. For a reduce task, if the first K phases has 

finished, since each phase occupies 1/3 of the 

progress score, PS is calculated by adding the 

progress score of the finished phases and the progress 

score of the current phase. 

 

 
For n running tasks, the average progress score is 

denoted by PSavg which is calculated as in (2). 

 

2.2 Long Tail Behaviour in Distributed System 

In MapReduce model, a job is not completed until all 

data is processed completely; the execution time of 

the MapReduce job is decided by the last finished 

tasks, straggler tasks. But it is not a serious problem 

in homogeneous environments because the nodes in 

this environment execute tasks with the same data set 

size in similar time. In heterogeneous environments, 

the job execution time will be prolonged by the 

straggler tasks seriously since workers require 

various time in accomplishing even the same tasks 

due to their differences, such as capacities of 

computation and communication, architectures, and 

memories [3]. Service response time is a vital issue in 

pay-by- the-hour environments, Amazon EC2, and 

systems which require rapid response to users. 

Therefore, this important requirement becomes 

increasingly challenging in large-scale systems 

because of the Long Tail in distributed systems [2]. 

The causes for stragglers can be categorized as 

shown in table 1. 
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One of the reasons becoming slow tasks is high CPU 

utilization which is occurred due to low time-slice 

sharing and process scheduling due to certain bad 

user-defined worker logic, unbalanced workload 

aggregation, etc. High disk utilization is due to local 

disk read and write conflicts, unbalanced tasks 

aggregation, disk faults, etc. Distributed file system 

request surging (usually read request) and overpass 

the capability of request handling leads to unhandled 

operational access request. When network traffic 

loses a package, repeating intermediate file and data 

transmission may be resulted. Because of hardware 

faults, stragglers can occur with server timing-out, 

hang, etc. Uneven file block input resulting in data 

skew is one of factors for the occurrence of 

stragglers. Stragglers significantly extend job 

execution time, thus impacting QoS and consumer 

Service Level Agreement (SLA). Even unusual 

performance abnormalities can affect a significant 

portion of all requests in large-scale distributed 

systems. As a result, the detecting and solving long 

tail challenge is critical in order to speed up job 

completion and enhance operational efficiency of 

heterogeneous system performance. 

 

There are two approaches to mitigate stragglers; 

avoidance and tolerance. Avoidance occurs within 

the task scheduling phase and tolerance is in run-time 

phase. To avoid the stragglers, schedulers assign map 

tasks to a node with data locality overcoming the 

unnecessary network transmission overhead. They try 

not to schedule tasks on faulty nodes by adopting 

blacklist techniques. However, blacklisting may be 

unsatisfactory when stragglers are not restricted to a 

small set of machines. For most of these factors, 

straggler tolerance is the most commonly applied 

method for speculative execution. As high CPU 

utilization and high disk utilization, the resource 

competition due to co-hosted applications cannot be 

avoided since it is not impossible to control over 

other users’ VMs. Among these root-causes, the 

resource capacity heterogeneity of worker nodes is 

usually steady and predictable. For most of these 

factors, speculative execution is an effective way to 

solve the long tail problem. 

 

2.3 Speculative Execution 

When Hadoop framework encounters that a certain 

task is taking longer on average compared to the 

other tasks from the same job, it clones that task and 

runs it on another node. This is called Speculative 

Execution [6]. After completion of a task, all running 

duplicate tasks are killed. Detecting the real straggler 

tasks to duplicate is very important because the 

remaining time of all the tasks can be estimated 

wrongly. The mistaken detected straggler tasks can 

cause at least two problems. First, the performance of 

the MapReduce job cannot be upgraded because of 

the wrong straggler tasks since the real straggler tasks 

still prolong the job execution time. Second, the 

backup tasks for the wrong straggler tasks also waste 

system resources. The disputation on the system 

resources even degrades the overall performance of 

the MapReduce job. In speculative execution, two 

policies: the least progress policy and the longest 

remaining time policy are used for detecting the slow 

tasks. Some speculative execution based Hadoop 

MapReduce schedulers are analyzed in next section. 

 

III. RELATED WORKS 

 

Several speculative execution strategies have been 

proposed in the literature, including MapReduce in 

Google [3], Hadoop [7], LATE [2], Dryad in 

Microsoft [8], SAMR [9], ESAMR [10]. The original 

MapReduce implementation in Google and Dryad 

use the same speculative execution mechanism. 

When the tasks are close to completion, the 

remaining tasks are selected arbitrarily to backup as 

long as slots are available. This strategy is very 

simple and natural. However, they do not consider 

whether the remaining task is really slow or if they 

have more data to process. They never consider 

whether the worker node chosen to run is fast or not 

and if the backup task could complete before the 

original task. Hadoop default scheduler improves this 

mechanism by using the progress of a task and starts 

the speculative execution when a job has no new task 

to assign. It identifies a straggler and subsequently 

launches a replica based on progress score of task 

execution as shown in equation (3). For a task k, 

 
Where PSavg is the average progress score of a job 

and n is the number of tasks being executed. Longest 

Approximation Time to End (LATE) algorithm is 

robust to node heterogeneity, because it will launch 

only the slowest tasks. It monitors the progress rate 
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of tasks and estimates their remaining time. It selects 

the tasks as backup candidates when task’s progress 

rate is below slow Task Threshold. Among the 

backup tasks, the task with the longest remaining 

time is given the highest priority to be backed up. It 

tries to launch the speculative tasks on fast nodes. 

However, the truth of the remaining time calculation 

depends on the weight of each phase, which is static, 

without considering the characteristics of different 

tasks. Therefore, LATE’s estimated result may differ 

from the actual value. Self-Adaptive MapReduce 

Scheduling Algorithm (SAMR) updates dynamically 

the phase weights based on historical information 

improving the accuracy of the estimation of task’s 

remaining execution time. However, it assumes that 

there is only a single job executing in the system. 

SAMR has also a problem because the actual phase 

weights of the jobs will be different while multiple 

jobs are executing in parallel. Enhanced Self-

Adaptive MapReduce Scheduling Algorithm 

(ESAMR) was proposed to identify the slow tasks 

accurately. By using k-means clustering algorithm, it 

differentiates the historical stage weights information 

on each node and divides them into K clusters. While 

executing, it classifies the tasks into one of the 

clusters and uses the clusters weights to estimate the 

execution time of the job’s tasks on the node. 

ESAMR leads to the smallest error in estimation and 

identifies slow tasks most accurately but it is limited 

to only K-means clustering algorithm. To overcome 

the shortcomings mentioned above, the proposed 

system improves the selecting accuracy of stragglers 

among multiple jobs executing simultaneously. 

Similar to SAMR and ESAMR, it calculates the task 

progress rate by using the historical information on 

each node to tune parameters. Different from them, 

the proposed system considers the fact that the 

different types of jobs may have different phase 

weights during multiple types of jobs executing. The 

above schedulers configured a default threshold value 

of 80% which is an unavoidable limitation where 

tasks that have completed more than 80% progress 

can never be speculatively executed. To alleviate this 

limitation, the dynamic threshold value is calculated 

in the proposed system as illustrated in section 4.4. 

 

 

 

 

IV. THE PROPOSED SYSTEM 

 

In this section, the environment heterogeneity aware 

scheduling algorithm is proposed. 

Algorithm 1 The Runtime algorithm 

Input: Key/Value pairs 

Output: Statistical results 

 

 Initialize the scheduler: 

Step1: Reading historical information and adjusting 

parameters by using the self-learning strategy on 

every worker node as shown in section 4.2. 

 

 Process tasks: 

Step2: Computing the progress scores of all the 

running tasks on every worker node by using the 

progress monitoring algorithm and the dynamic 

threshold calculating algorithm as shown in section 

4.3. 

 

Step3: Processing tasks, detecting straggler tasks 

using the straggler detecting algorithm as shown in 

section 4.4. 

 

Step4: Detecting slow nodes using the slow node 

detecting algorithm as shown in section 4.5. 

 

Step5: Beginning backup tasks on a suitable node 

which is determined by step 4. 

 

 Termination: Collecting results and updates 

historical information on every node. 

 

4.1 Overview of the Proposed System 

Algorithm 1 lists the runtime algorithm of the 

proposed system. It will detect straggler tasks based 

on the accurate progress score and achieve better 

performance. Starting to execute a MapReduce job, 

from the local node, each worker reads historical 

information which contains the values of M1, M2, 

R1, R2 and R3. Based on these dynamic-tuned 

values, the proposed system will compute the 

progress scoreof tasks more accurately, detect the 

straggler tasks and classify slow nodes by using the 

average progress rate of map tasks and reduce tasks 

on every node. During monitoring the stragglers, the 

dynamic threshold will be used. If there are any 

straggler tasks, backup tasks will be launched to fast 
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worker nodes. After all input data has been 

processed; the proposed system will terminate the 

MapReduce job and report the final result. 

 

4.2 The Self-Learning Strategy 

On each worker node, M1, M2, R1, R2 and R3 may 

be different because the task processing speeds can’t 

be same on different nodes. To get the accurate 

process speed for each worker, the self-learning 

strategy adjusts the values of M1, M2, R1, R2 and R3 

dynamically. In this strategy, these values are read 

from the corresponding node. The default values are 

used for the first time. Whenever a map task finishes 

on each worker node, the values of M1 and M2 are 

updated with the new ones. After a reduce task, R1, 

R2 and R3 are also updated [11]. After a task, the 

new weight value wnew is obtained by (4) where 

wold is the last recorded value and wfinished is the 

recently finished task. The value of TH ranges from 0 

to 1. If TH closes to 1, wnew mostly depends on 

wold and wnew cannot reflect up-to-date features of 

the current running task. On the other hand, if TH 

closes to 0, the new weight value may be destroyed 

by random factors, since wfinished is likely to be 

influenced by random events. The best parameter for 

TH is chosen after a series of experiments. 

 

Wnew = wold * TH + wfinished * (1 - TH) (4) 

 

Since a worker reads and updates historical 

information from local node, there is not any 

additional communication. This condition leads to be 

a scalable system. 

 

4.3 The Progress Monitoring Algorithm and the 

Dynamic Threshold Calculating Algorithm 

While a MapReduce task is being executed, the 

progress scores of all the running tasks are computed 

periodically. Suppose the running task 𝜃 has been 

finished K phases and the progress score is computed 

as in (5) and (6). PS phase has been got by (1). 

 
 

Progress score is used to measure the task progress 

rate (PR) which is calculated by (7). 

PR[i] = PS[i]/T … (7) 

where T is the amount of time that task 𝜃 has been 

executed. 

 

Using the progress rate addresses the limitations of 

progress score based methods. However, it still 

comes with its own limitations. For example, there 

are two tasks: A and B which has faster progress rate 

but B is only at 10% of its execution lifecycle. At this 

time, a progress rate based threshold would detect 

task A as a straggler due to its slower progress than 

B. However, in reality, task B will significantly delay 

total job completion time. To solve this limitation, 

LATE uses the estimated finish time based threshold 

to calculate the estimated time to completion [2]. 

TTE[i] = (1 − PS[i])/PR[i] …..(8) 

 

Among the tasks of the same job, a task is defined as 

a straggler task when Time To End (TTE) value is 

longer than a certain percentage compared to the 

average value in the same job. In the proposed 

system, estimated finish time based threshold only 

speculatively executes the backup task which will 

improve job response time. In this paper, this time 

threshold is the primary type of focused threshold for 

enhancing performance. 

 

The previous works used a pre-defined value, a static 

time threshold value which can decline the efficiency 

of speculative replica generation. The resource 

contention for launching a backup is ignored in 

previous works. This may be a negative impact 

within the system. To be effective time threshold 

calculation method, the essential diversity of job 

timing constraints should be considered. The 

proposed system also considers the ability to execute 
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different levels of severity for a backup creation to 

organize with the specified levels of QoS [12]. 

 

The proposed system also defines a dynamic time 

threshold which indicates when a backup task should 

be created for accepting task stragglers by 

considering three key features: QoS timing 

constraints, task progress and system resource usage. 

 

The dynamic threshold calculator for task i at time 

interval tj is 

 

Thj = Qj +𝛿 * Pj + 𝜃 * Rj           (9) 

where Q calculates the difference between a task’s 

estimated completion time with respect to specified 

job QoS timing requirement at time interval tj in (10). 

P represents the optimal backup tasks creation 

according to task lifecycle as in (11). R determines 

the current resource utilization level of the 

heterogeneous system as in (12). System 

administrator can specify the process weight 

parameter 𝜹 and utilization weight 𝜽 to optimize the 

trade-off for replica creation based on specific system 

operation goals. At the time of greater value Thj , it 

means that fewer tasks will be defined as stragglers 

while a lower Thj value allows a more comfortable 

condition for creating speculated replicas. 

 

4.3.1 The QoS influence 

QoS timing constraint is an important factor to be 

considered when deciding how severe the time 

threshold should be based on the nature of the 

application. 

 

 
 

where TTEi represents the estimated time to 

completion for the ith task within the cluster, and 

QoS is the request time requirement. 

 

4.3.2 Progress Adjustor (Pj) 

Pj =  
 PS [i]n

i=1

n
−  μ  (11) 

PS[i] value ranges from 0 to 1, the start and the end 

of taski respectively. μ is the standard parameter that 

represents the specified maximum point within a 

task’s lifecycle suitable for generating a replica. 

 

4.3.3 System Environment Adjustor (Rj) 

 
Rj affects the threshold value which depends on the 

system utilization at tj. The parameter n denotes the 

number of servers within the cluster system. CPUreq 

and MEMreq represent the CPU and memory 

requirement of taski and α, β are standard thresholds 

respectively. By using the above three parameters, 

the required dynamic threshold value is calculated as 

in (9). 

 

4.4 The Straggler Detecting Algorithm 

If the taski satisfies the equation (13), it is defined as 

a straggler task. After that, a replica iscreated and 

will launch execution. 

 

 
4.5 The Slow Node Detecting Algorithm 

To detect slow nodes in the system, the average 

progress rate of the running map/reduce tasks on a 

node is used. For a node ∅ with M map tasks and R 

reduce tasks, 

 
For node ∅, if 

𝑀𝑅∅ <  1 − 𝑁𝑜𝑑𝑒𝑐𝑎𝑝  ∗ 𝑀𝑅𝑎𝑣𝑔 , it is a map 

slow node. 

 

If 𝑃𝑅∅ <  1 − 𝑁𝑜𝑑𝑒𝑐𝑎𝑝  ∗ 𝑃𝑅𝑎𝑣𝑔 , it is a reduce slow 

node. MRavg and PRavg are the average map/reduce 

tasks progress rate of all the nodes. Nodecap is a cap 

of slow proportion of the slow node. Since the 

proposed system has detected out straggler tasks and 

map/reduce slow nodes, it can simply allocate backup 

tasks on the appropriate worker node. 

 

V. CONCLUSION AND FUTURE WORK 

 

Traditional MapReduce schedulers cannot identify 

slow tasks correctly because the progress scores of 

tasks are estimated based on inaccurate weight of 

each phase in the overall progress of a task. The 
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proposed system uses the record of the previous 

works to detect the stragglers accurately and 

classifies slow nodes into map slow nodes and reduce 

slow nodes. Moreover, a dynamic threshold captures 

job QoS, system resource usage level, and task 

progress. So, it leads to achieve better performance 

and the dynamic time threshold can improve job 

completion, decrease timing failure occurrence and 

save resource under high utilization scenarios by 

generating fewer replicas. To evaluate the 

performance of the proposed system, a series of 

simulation experiments will be accompanied using 

distributed system simulator. The future work is to 

launch backup tasks on nodes with the corresponding 

data set of the straggler task. 
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