
© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701535 ICONIC RESEARCH AND ENGINEERING JOURNALS 487

Hadoop MapReduce Performance Improvement in

Distributed System

SAW MYA NANDAR
1
, THAINT ZARLI MYINT

2

1, 2
 Faculty of Computer Technologies, University of Computer Studies, Pakokku, Myanmar

Abstract- MapReduce is currently a parallel

computing framework for distributed processing of

large-scale data intensive application. The most

important performance metric is job execution time

but it can be seriously impacted by straggler

machines. Speculative execution is a common

approach for this problem by backing up slow tasks

on alternative machines. Some schedulers with

speculative execution have been proposed but they

have some weaknesses:(i) they cannot calculate the

progress rate accurately because the progress scores

of the phases are set to constant values which may

be totally different for heterogeneous environment,

(ii) they define the stragglers by specifying a static

threshold value which calculates the temporal

difference between an individual task and the

average task progression. To get the better

performance, this paper proposes an algorithm

identifying the stragglers by the more accurate

progress of each job based on its own historical

information and using a dynamic threshold value

adjusting the continuously varying environment

automatically.

I. INTRODUCTION

The Apache Hadoop, an open-source implementation

of MapReduce has been widely recognized and

applied with high degree of reliability, extensibility,

effectiveness and fault tolerance. One significant

characteristic of Hadoop is fault-tolerance. If a task

performs poorly on a node, a straggler, Hadoop

would re-execute the task on another node to finish

the job faster. Without the speculative execution

mechanism, the stragglers will prolong the job’s

execution time. Hadoop default scheduler is

considered for homogeneous environment. So, it

cannot find the slow tasks correctly in heterogeneous

environment. In Hadoop culsters, hardware

configuration and resource virtualization are different

and leads to heterogeneous environment. Therefore,

detecting

these straggler tasks in such environment is the key

topic of the research. Some schedulers with

speculative execution have been proposed but they

cannot detect straggler tasks correctly because they

compute the progress of tasks in static manner. In this

paper, the system is proposed to overcome the above

limitations. Some important contributions are also

presented. The proposed system:

 Estimates the progress rate of the running task

accurately by using historical information on

every node.

 Calculates the dynamic threshold value to find the

slow tasks effectively.

 Classifies slow nodes into map slow nodes and

reduce slow nodes.

The rest of this paper is organized as follows. Section

2 provides the background information; Section 3

surveys the related work: Section 4 describes the

details of the proposed system; Section 5 discusses

conclusions and future work.

II. BACKGROUND THEORY

In this section, the operating principles of

MapReduce and Hadoop platform are described and

the long tail behaviour in distributed system is

overviewed.

2.1 Operating Principles of MapReduce

Hadoop is the most widely adopted

opensourceimplementation of MapReduce

framework which is created by Google. MapReduce

plays a critical role for executing highly

parallelizable and distributed algorithms for huge

data sets across large clusters of hardware nodes.

Moreover, it also meets multiple quality requirements

by monitoring the order and distribution of users,

jobs and tasks execution. It allows the developers to

write programs in the programming model which

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701535 ICONIC RESEARCH AND ENGINEERING JOURNALS 488

originates from two functions. One is a map function

that processes a key/value pair to generate a set of

intermediate key/value pairs. Another is a reduce

function that merges all intermediate values

associated with the same intermediate key.

Many real world tasks are representable in this

model. Programs are written in functional style and

can be executed parallel on a large cluster of

commodity machines [1]. In a MapReduce cluster,

the input files for the submitted job is divided into

multiple map tasks, and then both the map tasks and

reduce tasks are and keeps the task’s progress to the

master with the periodic heartbeat. Map tasks extract

key-value pairs from the input, transfer them to some

user defined map and combine function to generate

the intermediate outputs. After the reduce tasks copy

the map outputs, reduce tasks merge these pieces to a

single ordered pair stream by a merge sort. These

stream pairs are transferred to user defined reduce

function. Finally the reduce task generates the result

for the job [4]. In MapReduce execution system, a

map task is divided into map and combine phases and

a reduce task is into three phases(copy, sort and

reduce) as shown in figure 1. Therefore, the progress

score of a task is obtained by combining the progress

score of every phase.

Figure 1. Two phases of a map task and three

phases of a reduce task

The progress of a phase can be calculated as in

equation (1). M is the number of key/value pairs that

have been processed in the phase and N is the overall

number of key/value pairs needed to be processed in

the phase. For a reduce task, if the first K phases has

finished, since each phase occupies 1/3 of the

progress score, PS is calculated by adding the

progress score of the finished phases and the progress

score of the current phase.

For n running tasks, the average progress score is

denoted by PSavg which is calculated as in (2).

2.2 Long Tail Behaviour in Distributed System

In MapReduce model, a job is not completed until all

data is processed completely; the execution time of

the MapReduce job is decided by the last finished

tasks, straggler tasks. But it is not a serious problem

in homogeneous environments because the nodes in

this environment execute tasks with the same data set

size in similar time. In heterogeneous environments,

the job execution time will be prolonged by the

straggler tasks seriously since workers require

various time in accomplishing even the same tasks

due to their differences, such as capacities of

computation and communication, architectures, and

memories [3]. Service response time is a vital issue in

pay-by- the-hour environments, Amazon EC2, and

systems which require rapid response to users.

Therefore, this important requirement becomes

increasingly challenging in large-scale systems

because of the Long Tail in distributed systems [2].

The causes for stragglers can be categorized as

shown in table 1.

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701535 ICONIC RESEARCH AND ENGINEERING JOURNALS 489

One of the reasons becoming slow tasks is high CPU

utilization which is occurred due to low time-slice

sharing and process scheduling due to certain bad

user-defined worker logic, unbalanced workload

aggregation, etc. High disk utilization is due to local

disk read and write conflicts, unbalanced tasks

aggregation, disk faults, etc. Distributed file system

request surging (usually read request) and overpass

the capability of request handling leads to unhandled

operational access request. When network traffic

loses a package, repeating intermediate file and data

transmission may be resulted. Because of hardware

faults, stragglers can occur with server timing-out,

hang, etc. Uneven file block input resulting in data

skew is one of factors for the occurrence of

stragglers. Stragglers significantly extend job

execution time, thus impacting QoS and consumer

Service Level Agreement (SLA). Even unusual

performance abnormalities can affect a significant

portion of all requests in large-scale distributed

systems. As a result, the detecting and solving long

tail challenge is critical in order to speed up job

completion and enhance operational efficiency of

heterogeneous system performance.

There are two approaches to mitigate stragglers;

avoidance and tolerance. Avoidance occurs within

the task scheduling phase and tolerance is in run-time

phase. To avoid the stragglers, schedulers assign map

tasks to a node with data locality overcoming the

unnecessary network transmission overhead. They try

not to schedule tasks on faulty nodes by adopting

blacklist techniques. However, blacklisting may be

unsatisfactory when stragglers are not restricted to a

small set of machines. For most of these factors,

straggler tolerance is the most commonly applied

method for speculative execution. As high CPU

utilization and high disk utilization, the resource

competition due to co-hosted applications cannot be

avoided since it is not impossible to control over

other users’ VMs. Among these root-causes, the

resource capacity heterogeneity of worker nodes is

usually steady and predictable. For most of these

factors, speculative execution is an effective way to

solve the long tail problem.

2.3 Speculative Execution

When Hadoop framework encounters that a certain

task is taking longer on average compared to the

other tasks from the same job, it clones that task and

runs it on another node. This is called Speculative

Execution [6]. After completion of a task, all running

duplicate tasks are killed. Detecting the real straggler

tasks to duplicate is very important because the

remaining time of all the tasks can be estimated

wrongly. The mistaken detected straggler tasks can

cause at least two problems. First, the performance of

the MapReduce job cannot be upgraded because of

the wrong straggler tasks since the real straggler tasks

still prolong the job execution time. Second, the

backup tasks for the wrong straggler tasks also waste

system resources. The disputation on the system

resources even degrades the overall performance of

the MapReduce job. In speculative execution, two

policies: the least progress policy and the longest

remaining time policy are used for detecting the slow

tasks. Some speculative execution based Hadoop

MapReduce schedulers are analyzed in next section.

III. RELATED WORKS

Several speculative execution strategies have been

proposed in the literature, including MapReduce in

Google [3], Hadoop [7], LATE [2], Dryad in

Microsoft [8], SAMR [9], ESAMR [10]. The original

MapReduce implementation in Google and Dryad

use the same speculative execution mechanism.

When the tasks are close to completion, the

remaining tasks are selected arbitrarily to backup as

long as slots are available. This strategy is very

simple and natural. However, they do not consider

whether the remaining task is really slow or if they

have more data to process. They never consider

whether the worker node chosen to run is fast or not

and if the backup task could complete before the

original task. Hadoop default scheduler improves this

mechanism by using the progress of a task and starts

the speculative execution when a job has no new task

to assign. It identifies a straggler and subsequently

launches a replica based on progress score of task

execution as shown in equation (3). For a task k,

Where PSavg is the average progress score of a job

and n is the number of tasks being executed. Longest

Approximation Time to End (LATE) algorithm is

robust to node heterogeneity, because it will launch

only the slowest tasks. It monitors the progress rate

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701535 ICONIC RESEARCH AND ENGINEERING JOURNALS 490

of tasks and estimates their remaining time. It selects

the tasks as backup candidates when task’s progress

rate is below slow Task Threshold. Among the

backup tasks, the task with the longest remaining

time is given the highest priority to be backed up. It

tries to launch the speculative tasks on fast nodes.

However, the truth of the remaining time calculation

depends on the weight of each phase, which is static,

without considering the characteristics of different

tasks. Therefore, LATE’s estimated result may differ

from the actual value. Self-Adaptive MapReduce

Scheduling Algorithm (SAMR) updates dynamically

the phase weights based on historical information

improving the accuracy of the estimation of task’s

remaining execution time. However, it assumes that

there is only a single job executing in the system.

SAMR has also a problem because the actual phase

weights of the jobs will be different while multiple

jobs are executing in parallel. Enhanced Self-

Adaptive MapReduce Scheduling Algorithm

(ESAMR) was proposed to identify the slow tasks

accurately. By using k-means clustering algorithm, it

differentiates the historical stage weights information

on each node and divides them into K clusters. While

executing, it classifies the tasks into one of the

clusters and uses the clusters weights to estimate the

execution time of the job’s tasks on the node.

ESAMR leads to the smallest error in estimation and

identifies slow tasks most accurately but it is limited

to only K-means clustering algorithm. To overcome

the shortcomings mentioned above, the proposed

system improves the selecting accuracy of stragglers

among multiple jobs executing simultaneously.

Similar to SAMR and ESAMR, it calculates the task

progress rate by using the historical information on

each node to tune parameters. Different from them,

the proposed system considers the fact that the

different types of jobs may have different phase

weights during multiple types of jobs executing. The

above schedulers configured a default threshold value

of 80% which is an unavoidable limitation where

tasks that have completed more than 80% progress

can never be speculatively executed. To alleviate this

limitation, the dynamic threshold value is calculated

in the proposed system as illustrated in section 4.4.

IV. THE PROPOSED SYSTEM

In this section, the environment heterogeneity aware

scheduling algorithm is proposed.

Algorithm 1 The Runtime algorithm

Input: Key/Value pairs

Output: Statistical results

 Initialize the scheduler:

Step1: Reading historical information and adjusting

parameters by using the self-learning strategy on

every worker node as shown in section 4.2.

 Process tasks:

Step2: Computing the progress scores of all the

running tasks on every worker node by using the

progress monitoring algorithm and the dynamic

threshold calculating algorithm as shown in section

4.3.

Step3: Processing tasks, detecting straggler tasks

using the straggler detecting algorithm as shown in

section 4.4.

Step4: Detecting slow nodes using the slow node

detecting algorithm as shown in section 4.5.

Step5: Beginning backup tasks on a suitable node

which is determined by step 4.

 Termination: Collecting results and updates

historical information on every node.

4.1 Overview of the Proposed System

Algorithm 1 lists the runtime algorithm of the

proposed system. It will detect straggler tasks based

on the accurate progress score and achieve better

performance. Starting to execute a MapReduce job,

from the local node, each worker reads historical

information which contains the values of M1, M2,

R1, R2 and R3. Based on these dynamic-tuned

values, the proposed system will compute the

progress scoreof tasks more accurately, detect the

straggler tasks and classify slow nodes by using the

average progress rate of map tasks and reduce tasks

on every node. During monitoring the stragglers, the

dynamic threshold will be used. If there are any

straggler tasks, backup tasks will be launched to fast

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701535 ICONIC RESEARCH AND ENGINEERING JOURNALS 491

worker nodes. After all input data has been

processed; the proposed system will terminate the

MapReduce job and report the final result.

4.2 The Self-Learning Strategy

On each worker node, M1, M2, R1, R2 and R3 may

be different because the task processing speeds can’t

be same on different nodes. To get the accurate

process speed for each worker, the self-learning

strategy adjusts the values of M1, M2, R1, R2 and R3

dynamically. In this strategy, these values are read

from the corresponding node. The default values are

used for the first time. Whenever a map task finishes

on each worker node, the values of M1 and M2 are

updated with the new ones. After a reduce task, R1,

R2 and R3 are also updated [11]. After a task, the

new weight value wnew is obtained by (4) where

wold is the last recorded value and wfinished is the

recently finished task. The value of TH ranges from 0

to 1. If TH closes to 1, wnew mostly depends on

wold and wnew cannot reflect up-to-date features of

the current running task. On the other hand, if TH

closes to 0, the new weight value may be destroyed

by random factors, since wfinished is likely to be

influenced by random events. The best parameter for

TH is chosen after a series of experiments.

Wnew = wold * TH + wfinished * (1 - TH) (4)

Since a worker reads and updates historical

information from local node, there is not any

additional communication. This condition leads to be

a scalable system.

4.3 The Progress Monitoring Algorithm and the

Dynamic Threshold Calculating Algorithm

While a MapReduce task is being executed, the

progress scores of all the running tasks are computed

periodically. Suppose the running task 𝜃 has been

finished K phases and the progress score is computed

as in (5) and (6). PS phase has been got by (1).

Progress score is used to measure the task progress

rate (PR) which is calculated by (7).

PR[i] = PS[i]/T … (7)

where T is the amount of time that task 𝜃 has been

executed.

Using the progress rate addresses the limitations of

progress score based methods. However, it still

comes with its own limitations. For example, there

are two tasks: A and B which has faster progress rate

but B is only at 10% of its execution lifecycle. At this

time, a progress rate based threshold would detect

task A as a straggler due to its slower progress than

B. However, in reality, task B will significantly delay

total job completion time. To solve this limitation,

LATE uses the estimated finish time based threshold

to calculate the estimated time to completion [2].

TTE[i] = (1 − PS[i])/PR[i] …..(8)

Among the tasks of the same job, a task is defined as

a straggler task when Time To End (TTE) value is

longer than a certain percentage compared to the

average value in the same job. In the proposed

system, estimated finish time based threshold only

speculatively executes the backup task which will

improve job response time. In this paper, this time

threshold is the primary type of focused threshold for

enhancing performance.

The previous works used a pre-defined value, a static

time threshold value which can decline the efficiency

of speculative replica generation. The resource

contention for launching a backup is ignored in

previous works. This may be a negative impact

within the system. To be effective time threshold

calculation method, the essential diversity of job

timing constraints should be considered. The

proposed system also considers the ability to execute

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701535 ICONIC RESEARCH AND ENGINEERING JOURNALS 492

different levels of severity for a backup creation to

organize with the specified levels of QoS [12].

The proposed system also defines a dynamic time

threshold which indicates when a backup task should

be created for accepting task stragglers by

considering three key features: QoS timing

constraints, task progress and system resource usage.

The dynamic threshold calculator for task i at time

interval tj is

Thj = Qj +𝛿 * Pj + 𝜃 * Rj (9)

where Q calculates the difference between a task’s

estimated completion time with respect to specified

job QoS timing requirement at time interval tj in (10).

P represents the optimal backup tasks creation

according to task lifecycle as in (11). R determines

the current resource utilization level of the

heterogeneous system as in (12). System

administrator can specify the process weight

parameter 𝜹 and utilization weight 𝜽 to optimize the

trade-off for replica creation based on specific system

operation goals. At the time of greater value Thj , it

means that fewer tasks will be defined as stragglers

while a lower Thj value allows a more comfortable

condition for creating speculated replicas.

4.3.1 The QoS influence

QoS timing constraint is an important factor to be

considered when deciding how severe the time

threshold should be based on the nature of the

application.

where TTEi represents the estimated time to

completion for the ith task within the cluster, and

QoS is the request time requirement.

4.3.2 Progress Adjustor (Pj)

Pj =
 PS [i]n

i=1

n
− μ (11)

PS[i] value ranges from 0 to 1, the start and the end

of taski respectively. μ is the standard parameter that

represents the specified maximum point within a

task’s lifecycle suitable for generating a replica.

4.3.3 System Environment Adjustor (Rj)

Rj affects the threshold value which depends on the

system utilization at tj. The parameter n denotes the

number of servers within the cluster system. CPUreq

and MEMreq represent the CPU and memory

requirement of taski and α, β are standard thresholds

respectively. By using the above three parameters,

the required dynamic threshold value is calculated as

in (9).

4.4 The Straggler Detecting Algorithm

If the taski satisfies the equation (13), it is defined as

a straggler task. After that, a replica iscreated and

will launch execution.

4.5 The Slow Node Detecting Algorithm

To detect slow nodes in the system, the average

progress rate of the running map/reduce tasks on a

node is used. For a node ∅ with M map tasks and R

reduce tasks,

For node ∅, if

𝑀𝑅∅ < 1 − 𝑁𝑜𝑑𝑒𝑐𝑎𝑝 ∗ 𝑀𝑅𝑎𝑣𝑔 , it is a map

slow node.

If 𝑃𝑅∅ < 1 − 𝑁𝑜𝑑𝑒𝑐𝑎𝑝 ∗ 𝑃𝑅𝑎𝑣𝑔 , it is a reduce slow

node. MRavg and PRavg are the average map/reduce

tasks progress rate of all the nodes. Nodecap is a cap

of slow proportion of the slow node. Since the

proposed system has detected out straggler tasks and

map/reduce slow nodes, it can simply allocate backup

tasks on the appropriate worker node.

V. CONCLUSION AND FUTURE WORK

Traditional MapReduce schedulers cannot identify

slow tasks correctly because the progress scores of

tasks are estimated based on inaccurate weight of

each phase in the overall progress of a task. The

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701535 ICONIC RESEARCH AND ENGINEERING JOURNALS 493

proposed system uses the record of the previous

works to detect the stragglers accurately and

classifies slow nodes into map slow nodes and reduce

slow nodes. Moreover, a dynamic threshold captures

job QoS, system resource usage level, and task

progress. So, it leads to achieve better performance

and the dynamic time threshold can improve job

completion, decrease timing failure occurrence and

save resource under high utilization scenarios by

generating fewer replicas. To evaluate the

performance of the proposed system, a series of

simulation experiments will be accompanied using

distributed system simulator. The future work is to

launch backup tasks on nodes with the corresponding

data set of the straggler task.

REFERENCES

[1] H. Li, Introduction to Big Data, New York,

October 31, 2015.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R.

Katz, I.Stoica, “Improving MapReduce

Performance in Heterogeneous

Environments”, 8th USENIX Symposium on

Operating Systems Design and

Implementation, March 2009, pp. 29-42.

[3] J. Dean and S. Ghemawat "MapReduce:

simplified data processing on large clusters",

Communications of the ACM, vol.51, January

2008, pp.107-113.

[4] Q. Chen, C. Liu, and Z. Xiao, “Improving

MapReduce Performance Using Smart

Speculative Execution Strategy”, IEEE

Transactions on Computers, Volume 63, Issue

4, April 2014, pp. 1-14.

[5] P. Garraghan, X. Ouyang, R. Yang, D.

McKee, J. Xu, “Straggler Root-Cause and

Impact Analysis for Massive-scale Virtualized

Cloud Data centres”, IEEE Transactions on

Services Computing, 2016, pp. 1-13.

[6] Speculative Execution. [Online]. Available:

http://hadoopinrealworld.com/speculative-

execution/

[7] “Apache hadoop, http://hadoop.apache.org/”.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.

Fetterly, “Dryad: distributed data-parallel

programs from sequential building blocks,” in

Proc. of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems

2007, ser. EuroSys ’07, 2007.

[9] Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo,

Y. Shen, “SAMR: A Self-adaptive

MapReduce Scheduling Algorithm In

Heterogeneous Environment”, 10th IEEE

International Conference on Computer and

Information Technology, 2010, pp. 2736-2743.

[10] Xiaoyu Sun, “An Enhanced Self-adaptive

MapReduce Scheduling Algorithm”, Master

Thesis, University of Nebraska, Lincoln, 2012.

[11] Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo,

Y. Shen, “HAT: history-based auto-tuning

MapReduce in heterogeneous environments”,

The Journal of Supercomputing, June 2013,

Volume 64, Issue 3, pp 1038–1054.

[12] X. Ouyang, P. Garraghan, D. Mckee, P.

Townend, J. Xu, “Straggler Detection in

Parallel Computing Systems through Dynamic

Threshold Calculation”, 30th IEEE

International Conference on Advanced

Information Networking and Applications”,

2016, pp.414-421.

