
© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701538 ICONIC RESEARCH AND ENGINEERING JOURNALS 494

Data Popularity-Aware Replication Strategy for Cloud

Storage

MAY PHYO THU
1
, KHINE MOE NEW

2
, KYAR NYO AYE

3

1, 2
Faculty of Computer Science, University of Computer Studies, Yangon, Myanmar

Abstract- Replication is one of the important roles

in cloud storage to improve data availability, fault

tolerance and throughput for users and control

storage cost. As data access pattern changes every

time, the nature of popular files is unpredictable

and unstable. Therefore, data popularity is taken

into account as an important factor in replication.

Data popularity in replication impacts an efficient

storage because it is able to reduce waste storage for

unpopular files. Also, data locality is a key issue in

storage system and this consequence occurs

performance overhead of system. Therefore, this

paper introduces a replication strategy for cloud

storage. The proposed strategy contains two

portions; replica popularity and replica placement.

First for replica popularity, popularity is taken into

account by analyzing the changes in data access

pattern. Second for replica placement, replicas are

placed and performed on dedicated assigned nodes

in order to enhance data locality. The proposed

placement algorithm is able to avoid the overloaded

problem of nodes by considering the load of nodes

such as disk utilization, adjustable disk bandwidth

and CPU utilization. This proposed strategy will be

efficient for cloud storage.

Indexed Terms- Popularity, Data Locality, Disk

Utilization, Adjustable Disk Bandwidth, CPU

Utilization

I. INTRODUCTION

Users are allowed to saves their files and given

access permissions to them through cloud in cloud

storage technology. Cloud storage is one of the

services provided by cloud computing. In cloud

storage, data among geographically distributed

multiple servers is converged into a single place and

users is provided with immediate access to this data

for cloud-based applications. It consists of a cluster

of storage nodes or even geographically distributed

data centers. There are many cloud storage products

such as Google File System (GFS) [7], Simple

Storage Service (S3), Hadoop Distributed File

System (HDFS) [8] etc. Among them, HDFS

provides reliable storage for very large data sets and

streams at high throughput access to these data sets.

In HDFS, data is divided into defined -size blocks

and then these data blocks are placed at data nodes

with replication.

In Hadoop, when users submit a job, the incoming

job is executed on these data, such that Hadoop splits

each job into tasks and then assigns each mapper with

these data blocks. In this case, if there is no data

block for this mapper at assigned node, these data

block is have to be copied from hosted node to that

assigned node in that the mapper task is executed. In

order to provide data locality, Hadoop attempts the

collocation of data with assigned node. Data locality

is one of key issues in Hadoop. Better data locality

provides the minimal of network congestion and the

increment of overall system’s throughput. Three

types of data locality are node locality, rack locality

and rack-off locality. Current implementations of

Hadoop use uniform data replication. In data

replication, file popularity that represents whether a

file has been hot in recent time intervals and is

calculated by analyzing file access rate.

In this system, data replication strategy based on data

popularity is proposed in order to provide efficient

replication strategy for cloud storage. In replica

allocation, the analysis of file access patterns using

differential equation is performed to predict the

increment and decrement of file popularity and then,

the number of replicas for each file is computed

according to the result of the prediction. In replica

placement, allocation of replicas is processed using

proposed data placement algorithm to provide better

data locality.

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701538 ICONIC RESEARCH AND ENGINEERING JOURNALS 495

The contributions of this system are as follows:

1) Changes of file popularity in timeslots is analyzed

using first order differential equation.

2) Increment and decrement of the number of

replicas for each file is computed.

3) While the replicas are placed into nodes, the load

of nodes such as disk utilization, CPU utilization

and bandwidth utilization are considered.

4) The predefined threshold is used to compute the

overloaded condition of cluster.

5) If the overloaded condition of that assigned nodes

occurs, proposed replica replacement algorithm is

used.

6) This proposed replacement algorithm considers

not only outgoing blocks but also the access

frequencies for blocks.

The rest organizations of paper are: related works are

described in section 2. Section 3 presents background

theory and proposed system architecture is shown in

section 4 and performance is evaluated in section 5

and the conclusion and future work is concluded in

section 6.

II. RELATED WORKS

Cloud storage provides a storage services that is

hosted remotely on servers and users can access this

through Internet. Data is replicated and maintained in

several nodes to provide high availability and load

balancing. There were several researches on data

replication in cloud storage. In [2], the authors

proposed a replication scheme that focused to achieve

file availability by resolving least replicas for a file,

and to assign them at nodes for attaining in

performance improvement and load balancing. In

data placement, blocking probability is considered as

a factor in order to eliminate access skew and

improve concurrency. Nevertheless, it wasn’t good

for terabyte-sized file. R.S. Chang and H.P. Chang

proposed an algorithm for data grids, Latest Access

Largest Weight (LALW) [9]. It detected only the

most popular file in each timeslot and computed

replicas for that popular file and determined which

nodes were suitable to place these replicas. This did

not consider unpopular files and so did not eliminate

unnecessary replicas.

A. Hunger and J. Myint introduced a replication

algorithm that is based on file popularity: Pop Store

[1]. In that paper, they detected more popular files at

timeslots using Half-life approach. However, file

popularity does not have always decay over the time

because the characteristics of data access is dynamic.

This paper did not consider this condition and data

locality in replica placement. There have been many

researches concerning with improving data locality

on data replication in Hadoop. Scarlett [6] presented

a replication method that replicated proactively files

according to prediction of data popularity. It targeted

to data received at least three requests concurrently.

However, they did not think about node popularity

occurred by relative popular data arrangement.

For achieving improved data locality, the authors

proposed a distributed adaptive data replication

algorithm (DARE) based on the access frequencies of

data blocks [3]. It was a reactive approach and it

retained remote data retrieval and evicted aged

replicas. It automatically increased the number of

replicas when data was replicated to the fetched node.

However, it had the limitation of the optimized

number of replicas. To find the solution of dispute

between data locality and equity on jobs, a delay

scheduling algorithm was introduced in [10]. Delay

scheduling allowed jobs to wait for a small amount of

time, as a consequence, it disobeyed the equity of

jobs. In that, it took assumptions that task durations

were short and bimodal, and a fixed waiting time

worked for all loads and skewness of traffic.

Therefore, it was not adaptable to changes in

workload, node popularity or network conditions.

Also, access count prediction-based data replication

scheme for Hadoop was proposed in [4]. This scheme

determined whether generation of a new replica or

use of data as cache selectively using the predicted

data access count. It placed replicas into nodes using

the structure of circular linked list without

consideration of utilization factor of this nodes. In

[5], the authors introduced adaptive replication

method for supporting availability by increment of

data locality, as a consequence, it increases the

performance of Hadoop. It used supervised learning

for prediction of file access, determination of replicas

and placement of replicas. A proactive re-replication

scheme based on predicted CPU and disk utilization

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701538 ICONIC RESEARCH AND ENGINEERING JOURNALS 496

was proposed as keeping balance condition of nodes.

It applied local regression with historical information

of each node to predict CPU and disk utilization.

That obtained utilization information was used to

perform an efficient re-replication scheme. It used

priority-based grouping to obtain fairness between

reliability and performance.

III. BACKGROUND THEORY

Replication is widely used in storage systems to

enhance the efficiency of data access and the fault-

tolerance. Data locality is considered as a principal

issue in Hadoop. This issue occurs when the

computing node performs remote data retrieval as

there has no assigned replica block to be processed.

The proposed replication strategy takes into account

the data popularity while determination of replicas

and data locality when allocation of replicas. This

section describes architecture of Hadoop cluster and

data locality.

3.1 Architecture of Hadoop Cluster

Hadoop is open-sourced, platform-independent and it

provides faster access of data in distributed

applications. The structure of Hadoop has two parts:

MapReduce and HDFS. MapReduce keeps user jobs

and tasks and HDFS has responsibility of data

storage, data blocks management and their metadata'

information. It keeps three replicas as like GFS.

A job tracker performs division of entering job into

many tasks and assignment of tasks with task

trackers. In order to detect the status of task trackers,

the job tracker performs the collection of heartbeat

information send by task trackers. When data are

stored in HDFS, breaking of data into fixed-sized

blocks with replication and these blocks are stored in

slave nodes. The task tracker is responsible for

arrangement of tasks in the node. When there is no

task slot, it sends a heartbeat information to job

tracker in order to demand a task.

Splitting of input data into blocks and placement of

blocks at nodes are performed when the user

maintains data in them. The job tracker has

responsibility for handling mapreduce job requests of

client. When the job tracker receives the request, it

split a job into tasks and allocates these tasks with

task trackers in consideration of data locality. Then,

allocation of task with node is performed by each

task tracker and that assigned node performs the task

with pulling block from HDFS if necessary.

When users make submission of MapReduce jobs,

Hadoop performs splitting of job into tasks. Then,

input data is broken into predefined-size blocks

separately and map tasks executes them in parallel

and distribution among nodes in the cluster. Each

input block has one map task. After execution of map

tasks, the obtained output is shuffled, sorted and

performed in parallel by one or more reduce tasks.

3.2 Data Locality

At Hadoop framework, data storage is performed in

HDFS. It breaks down the input data into predefined-

size blocks and these blocks are allocated at nodes in

cluster. Each mapper operates the blocks when a job

is operated on the dataset. If the condition, that is

lack of replica at computing node for map task will

occur, prefetching needed replica block into this

node. At this condition, data locality problem occurs.

Data locality has relations with the interval between

data blocks and the computing node. Data locality is

interval between data block and the assigned node.

The closer the distance, the greater data locality. The

greater locality, the more throughput of the system.

Types of data locality are:

1) Node locality: operation data is kept at assigned

node

2) Rack locality: operation data is not kept at

assigned node, however at another node within

one rack,

3) Rack-off locality: operation data is kept at other

node in separate rack. Among these types of data

locality, the most preferred scenario is node

locality and the least preferred scenario is rack-off

locality.

This locality problem occurs when the colocation of

task with node is not in the same place. Moreover,

the impact of rack-off locality is worst in them. In

order to eliminate the impacts of the data locality

problems, we propose a replication strategy using

prediction of the file access count and a data

placement algorithm in decreasing condition of rack

and rack-off locality.

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701538 ICONIC RESEARCH AND ENGINEERING JOURNALS 497

IV. PROPOSED SYSTEM ARCHITECTURE

The basic idea of replication is based on different

replication degree per data file. Keeping the fixed

number of replicas causes wasteful storage for

unpopular data and inefficiency for popular data.

Also, maintaining too much replicas than current

access count for a file does not always guarantee

better locality for all blocks. The proposed system

flow diagram is presented in figure 2. The aim is to

develop a replication technique attempted for

improvement of data locality by increasing replicas

for popular data while maintaining less replicas for

unpopular data.

Firstly, we calculate changes of file popularity with

first order differential equation. The assumption of

popularity is that the popularity of an item grows at a

definite time is relative to the total popularity of the

item at that time. From the first order differential

equation, we compute the growth or decay constant,

k.

where P(t) denotes popularity at time t, P0 is starting

popularity and k is growth or decay constant. From

Yahoo Hadoop audit log file data source [11], we

compute changes of file popularity. The log file is

divided into smaller files according to timeslot

duration. After that, extraction of fields such as Date,

Time and src is performed. Then, from the src link,

access frequency is counted in each timeslot. Then,

changes of file popularity, k, is computed with above

mentioned equation 1. The Yahoo HDFS User Audit

log format is presented in figure 1.

Figure. 1: HDFS user audit log format

At second stage, the number of replicas for each file

is defined using changes of file popularity that is the

outcome of the first stage. Initially, existing replicas

will be assumed as 3 as like the default replica of

HDFS. If k is less than 0.0, then existing replicas is

decreased by 1. If k is greater than 0.0, then existing

replicas is increased by 1. If k is equal to 0.0, then

existing replicas is unvaried. Otherwise, if it is new

file, then existing replicas is determined 3 as like the

default replica of HDFS.

Figure. 2: Proposed System Flow Diagram

At the third step, replicas are placed into assigned

nodes to achieve greater data locality. We will make

the assumption that the incoming jobs must have to

access these replicas at next timeslot.

The entering job is split into tasks and assignment of

task with nodes in the cluster is performed. Each

input block has one map task. It is assumed that one

data block represents one data file. We will let that

maximum replicas are total nodes in the cluster and

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701538 ICONIC RESEARCH AND ENGINEERING JOURNALS 498

minimum replicas is 1. Node locality of task is

checked and if there has node locality, then

placement of task at that assigned node is performed.

If the condition, that is lack of replica at computing

node for map task will occur, prefetching needed

replica block into this node. In this system, the load

of assigned node is considered to avoid overloaded

condition while loading into assigned nodes. That

replica is loaded if the load of assigned node is less

than predefined threshold. Otherwise, replacement of

needed replica block with existing block at assigned

node is performed.

The default placement policy of Hadoop is

randomness and it assumes that all nodes within

cluster have equality condition. Moreover, it does not

consider utilization of nodes in placement. This

condition results in imbalance load to Hadoop. The

proposed system considers inequality condition of

nodes within the cluster. In this system, we consider

disk utilization, adjustable bandwidth and CPU

utilization as the load of nodes. We can carry out the

disk utilization as

Where, U(Di) is the disk utilization of the ith node,

D(i) (use) is the used disk capacity of the ith node

and D_i (total) is the total disk capacity of the ith

node. Then, we can carry out the disk bandwidth as

Where, BW(D_i) is the disk bandwidth of the ith

node, T_b is the total number of bytes transferred and

T_s is the total time between the first request for

service and the completion of the last transfer. Then,

the adjustable disk bandwidth of node for load factor

is considered as

Where, 𝐴𝐵𝑊(𝐷𝑖) is the adjustable bandwidth of the

ith node and 𝑇𝑜𝑡𝑎𝑙𝑖 (𝐵𝑊) is the total bandwidth of

the ith cluster. We can carry out the CPU utilization

as

Where, CU(D_i) is the CPU utilization of the ith

node. To compute the load of assigned node, the

coefficients of storage utilization, disk bandwidth and

CPU utilization are set as ∝, 𝛽 and 𝛾. Then, we can

carry out the load of node as

That replica is placed at that node if the load of

assigned node is less than predefined threshold Ti.

Otherwise, replacement of needed replica block with

existing block at assigned node is performed. The

proposed data replacement algorithm is based on

Least Recently Used (LRU). It is more reliable and

efficient than LRU because it takes into account not

only outgoing blocks but also access frequencies for

blocks in replacement. The proposed data

replacement algorithm and data placement algorithm

are as follows:

Algorithm 1: Data Replacement Algorithm

Step 1: It compute total access frequencies of all

blocks at that assigned node as the replica is loaded

into the assigned node.

Step 2: That replica is selected to evict from the node

if only one block that has minimum access

frequencies is found.

Step 3: If there have more than one block that have

minimum access frequencies are found, outgoing

block is chosen to remove from that assigned node as

LRU.

Figure. 3: Data Replacement Algorithm

Table 1: Notations Used in Data Placement

Algorithm

Notation Description

D Nodes list

ABW Adjustable bandwidth

U Disk utilization

RE Replica List

MAP Map task list

CU CPU utilization

CL Cluster list

L Load factor list

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701538 ICONIC RESEARCH AND ENGINEERING JOURNALS 499

Algorithm 2: Data Placement Algorithm

Input: Nodes List D= {D1, D2 ,.., Dn }, Replica List

RE ={ RE1, RE2, RE3,…., REn }, Map Task List

MAP = {MAP1, MAP 2, MAP 3,…, MAP n}, Load

Factor List L = {L1,L2,L3,…., Ln}, Predefined

Threshold Ti, Cluster List C = {C1, C2, C3,…., Cn}

Output: Nodes List D

 for each entering map task MAP do

 for each node D do

 Detect node locality of task MAPi

 if it has node locality then allocate task MAPi

to that node Di

 else

 Process remote data retrieval for task MAPi

 Calculate disk utilization U of this assigned

node Di using (2)

 Calculate adjustable disk bandwidth ABW of this

assigned node Di using (4)

 Calculate CPU utilization CU of this assigned

node Di using (5)

 Calculate load factor Li for this assigned node

Di using (6)

 Calculate predefined threshold Ti for the

cluster CLi

 if Li > predefined threshold Ti then

 Perform replacement using algorithm 1

 Place replica REi for this task on that node Di

 break

 else

 Place replica REi for this task on that node Di

 break

 end if

 end if

 end for

end for

Figure 4. Data Placement Algorithm

V. PERFORMANCE EVALUATION

The replication algorithms are implemented and

tested. The experiments are set up by using one

evaluation parameter: disk utilization. In this

proposed system, the replicas are almost uniformly

distributed for achieving the load balancing in nodes

in the cluster. Disk utilization of the proposed system

are compared with LALW algorithm in order to

avoid overload condition. LALW does not obey the

placement policy of hadoop because it places the

same data replicas at one host. Therefore, LALW

does not achieve the load balancing as like proposed

system.

Figure 5. Average Disk Utilization of Proposed

System and LALW

VI. CONCLUSION

Cloud storage provides a storage services that is

hosted remotely on servers and users can access this

through Internet. Data is replicated and stored in

multiple data nodes to provide for data availability.

This paper focuses on changes of data access pattern

due to unpredictable popularity. The allocation of

unpopular data leads to waste in cloud storage. The

proposed replication strategy will overcome this issue

of waste in cloud storage. The proposed placement

algorithm is able to avoid the overloaded problem of

nodes by considering the load of nodes such as disk

utilization, adjustable disk bandwidth and CPU

utilization. This system provides optimum replica

number as well as enhancing data locality and load

balancing among the storage server nodes.

Performance evaluation such as disk utilization is

compared with LALW algorithm. According to the

experimental results, this proposed system is more

load balancing than LALW. And as well, this data

replication scheme will be implemented in various

distributed file systems as an ongoing research.

REFERENCES

[1] A. Hunger and J. Myint, “Comparative

Analysis of Adaptive File Replication

Algorithms for Cloud Data Storage”, 2014

International Conference on Future Internet of

Things and Cloud, 2014.

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701538 ICONIC RESEARCH AND ENGINEERING JOURNALS 500

[2] B. Gong, B. Veeravalli, D. Feng L. Zeng, and

Q. Wei, “CDRM: A Cost-Effective Dynamic

Replication Management Scheme for Cloud

Storage Cluster”, 2010 IEEE International

Conference on Cluster Computing, Sep. 2010,

pp. 188–196.

[3] C.L. Abad, Yi Lu, R.H. Campbell, “DARE:

Adaptive Data Replication for Efficient

Cluster Scheduling”, IEEE International

Conference on Cluster Computing (CLUSTER

2011), pp.159-168, 2011.

[4] D. Lee, J. Lee, and J. Chung, “Efficient Data

Replication Scheme based on Hadoop

Distributed File System”, International Journal

of Software Engineering and Its Applications

Vol. 9, No. 12 (2015), pp. 177-186,2015.

[5] D.M. Bui, S. Hussain, E.N. Huh, and S. Lee,

“Adaptive replication managementin hdfs

based on supervised learning,” IEEE

Transcations on Knowledage and Data

Engineering, vol.28, no.6, 2016.

[6] G. Ananthanarayanan et al., “Scarlett: Coping

with skewed content popularity in mapreduce

clusters,” in Proc. Conf. Comput. Syst.

(EuroSys), 2011, pp. 287–300.

[7] H. Gobioff, S. Ghemawat, and S.-T. Leung,

“The Google File System”, Proceedings of

19th ACM Symposium on Operating Systems

Principles (SOSP 2003), New York, USA,

October, 2003.

[8] H. Hardware, and P. Across, “The Hadoop

Distributed File System: Architecture and

Design”, 2007, pp. 1–14.

[9] H.-P. Chang, R.-S. Chang, and Y.-T. Wang,

“A dynamic weighted data replication strategy

in data grids”, 2008 IEEE/ACS International

Conference on Computer Systems and

Applications, Mar. 2008, pp. 414–421.

[10] M. Zaharia, D. Borthakur, J. Sen Sarma, K.

Elmeleegy, S. Shenker, and I. Stoica, “Delay

scheduling: A simple technique for achieving

locality and fairness in cluster scheduling”, In

Proceeding of uropean Conference Computer

System (EuroSys), 2010.

[11] https://webscope.sandbox.yahoo.com.

[12] Andrew S. Tanenbaum. Modern Operating

Systems. Prentice-Hall, 1992.

