
© SEP 2019 | IRE Journals | Volume 3 Issue 3 | ISSN: 2456-8880 

IRE 1701638          ICONIC RESEARCH AND ENGINEERING JOURNALS 102 

On The Response of Non-Prismatic Rotating Timoshenko 

Beam Under the Actions of Concentrated Loads 

Travelling At Time Dependent Speeds 
 

A. ADEDOWOLE 

Adekunle Ajasin University Akungba-Akoko, Department of Mathematical Sciences, PMB 001, 

Akungba-Akoko Ondo State Nigeria 

 

Abstract- This paper is focused on the study of 

motions of non- prismatic rotating Timoshenko 

beams traversed by constant and harmonic variable 

magnitude moving loads. The versatile Galerkin's 

method and the integral transform techniques were 

employed to treat the coupled second order partial 

differential equations governing the motion of the 

vibrating system.  Numerical analyses in plotted 

curves are presented. The analyses depict 

interesting results on the effect of some structural 

parameters such as foundation moduli, prestressed 

forces and circular frequency on the dynamic 

behaviour of non- prismatic rotating Timoshenko 

beams under the actions of moving loads at time 

dependent speed. The resonance condition of the 

dynamical systems is also established. 

 

Indexed Terms- non- prismatic, resonance, 

foundation stiffness, prestressed, transverse 

response, Galerkin's method. 

 

I. INTRODUCTION 

 

The movement of loads (people, cars, trains etc) on 

structural members (beams and plates) has always 

been an important and fundamental component of 

human endeavours since creation.  The vibration 

analysis of beams or beam-like structural elements 

has been and continues to be the subject of numerous 

researchers, since it embraces a wide class of 

problems with immense importance in Engineering 

Science. The work of Timoshenko [1] gave impetus 

to research work in this aspect by using energy 

methods to obtain solutions in series form for simply 

supported finite beams on elastic foundation 

subjected to time-dependent point loads moving with 

uniform velocity across the beam. Steele [2] studied 

the response of a finite, simply supported Bernoulli-

Euler beam to a unit force moving at a uniform 

velocity. The effects of this moving force on beams 

with and without an elastic foundation were 

analyzed. Zibdeh and Hilal [3] investigated the 

vibration analysis of beams with generally boundary 

conditions traversed by a moving force. The moving 

load is assumed to move with accelerating, 

decelerating and constant velocity type of motions. 

They showed the effects of type of motion, boundary 

conditions and damping. Kargarnovin and Younesian 

[4] studied the response of a Timoshenko beam with 

uniform cross – section and infinite length supported 

by a generalized Pasternak –type viscoelastic 

foundation subjected to an arbitrary distributed 

harmonic moving load. However, studies on beam 

problems have largely been restricted to the case 

when the beam structure is uniform. In particular, 

both moment of inertia I and mass per unit length μ 

of the beam did not vary with spartial coordinate x 

along the span of the beam. In recent years, such 

important Engineering problems as the vibration of 

turbines, hulls of ships and bridge girders or variable 

depth and so on, involving the theory of vibration of 

structures of variable cross-section have intensified 

the need for the study of the response of non-uniform 

elastic systems under the action of moving loads.  

 

Among the earliest researchers on the dynamic 

analysis of an elastic beam was Ayre et al [2] who 

studied the e®ect of the ratio of the weight of the 

load to the weight of a simply supported beam for a 

constantly moving mass load. They obtained the 

exact solution for the resulting partial differential 

equation by using the infinite series method 

 

Recently, Taha and Abohadima [6] investigated 

Mathematical model for vibrations of non-uniform 

flexural beams. Very recently, Adedowole [7] 
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worked on flexural motions under moving distributed 

masses of Beam- type structures on Vlasor 

foundation and having time dependent boundary 

conditions. The author [8] also consider the dynamic 

response under travelling loads of simply supported 

non prismatic beam resting on variable elastic 

foundation Method of Laplace Integral transforms is 

employed to solve this initial valued problem to 

obtain the desired approximate solutions of the 

reduced equations for the transverse displacement 

response of the beam dynamical problem. Analyses 

show that higher values of the axial force and 

foundation stiffness decrease the transverse 

displacement response of the non-prismatic beam 

under the action of travelling loads resting on 

variable elastic foundation. Adeoye and Awodola [9] 

worked on dynamic response to moving distributed 

masses of pre-stressed uniform rayleigh beam resting 

on variable elastic pasternak foundation.  

 

In all the aforementioned works, investigations were 

limited to the analysis of beam flexure of Bernoulli-

Euler beams models. Specifically, the effects of shear 

deformation and rotatory inertia were neglected in the 

governing partial differential equations. Wang [10] 

who studied the vibration of multi-span Timoshenko 

beams to a moving force and Oni [11] who studied 

the transverse vibrations under moving loads of deep 

beams on a variable elastic foundation. Omolofe and 

Ogunyebi [12] studied the dynamic behaviour of a 

rotating Timoshenko beam when under the actions of 

a variable magnitude load moving at non-uniform 

speed. The more practical cases of rotating 

Timoshenko beam moving load problems in which 

the beam under consideration is of non-uniform 

cross-section have received little attention in 

literature. Also the case whereby the prestress of 

rotating Timoshenko beam is non-uniform at which 

the load is travelling is time dependent has been 

neglected. In all their works, it is tacitly assumed that 

the beam has uniform cross sections. 

 

The main purpose of this study is to obtain closed 

form solutions to this dynamical problem for the 

boundary conditions. The reason for this is simple. 

Solutions so obtained often shed light on vital 

information about the vibrating system. 

Subsequently, the closed form solutions are analysed.  

 

This present case study therefore, is concerned with 

the problem of the non-prismatic rotating 

Timoshenko beam under the actions of constant and 

harmonic magnitude loads with time dependent 

speeds. 

 

II. PROBLEM FORMULATION 

 

This paper considers the dynamic behaviour of a non-

prismatic rotating Timoshenko beam resting on a 

elastic foundation when it is under the action of a 

moving load. The beam's properties such as moment 

of inertia I and the mass per unit length of the beam 

vary along the span L of the beam. The beam is 

assumed to maintain contact with the subgrade 

reaction modulus 
fE  and that there is no friction 

forces at the interface. The deflection ),( txw  from 

the equilibrium and the rotation ),( txu  of the beam 

under the action of moving load is described by the 

system of partial differential equations 

   ),(),(),( txutxwGAKtxwx xxxtt  

  ),(),(),()( txwxNtxFtxwxE xxf     (1) 

and 

    0),()(),(),(   txuxItxutxwGAKxH ttx   (2) 

 

Where K* is a constant dependent on the shape of the 

cross-section, G is the modulus of elasticity in the 

shear, A is the cross-sectional area,  txP ,  is the 

moving concentrated forces acting on the beam, 𝜇 is 

the mass of the beam per unit length L, w is the 

vertical response of the beam, I(x) is the moment of 

inertia of the beam cross-section, 
fE  is the constant 

elastic foundation, N(x) is non-uniform prestress 

 

The flexural moment acting on the beam cross 

section is related to the vertical response to rotation 

as  

    xx utxD
x

xH ,



   (3) 

 txDx ,  is the flexural stiffness of the beam given 

as 

   xItxDx ,    (4) 



© SEP 2019 | IRE Journals | Volume 3 Issue 3 | ISSN: 2456-8880 

IRE 1701638          ICONIC RESEARCH AND ENGINEERING JOURNALS 104 

III. THE BOUNDARY CONDITIONS 

 

The boundary conditions depend on the constraints at 

the beam ends. For a beam whose length is L, the 

vertical displacement at the beam ends are given as 

    0,0,0  tutw ,     0,,  tLutLw  (5) 

 

It is assumed that the initial conditions are

   0,00, xwxw t  and 

   0,00, xuxu t   (6) 

 

IV. NON UNIFORM CHARACTERISTICS 

 

The distribution of the non-prismatic characteristics 

may be assumed as power functions. The parameters 

  and n , are used to approximate the actual non 

uniformity of the beam given as 

    2
1




n

o xIxI  ,    no xx   1 ,

   n

o xNxN  1  (7) 

Where  xI  is the variable moment of inertia of the 

beam, oI , o  and oN  are the beam characteristics 

at 0x . 

 

The velocity of our moving force is non uniform 

 

V. CASE I. DYNAMIC BEHAVIOR OF NON 

PRISMATIC ROTATING TIMOSHENKO 

BEAM TO CONSTANT MAGNITUDE 

LOADS. 

 

The constant vertical excitation acting on the beam is 

chosen as 

 )(),( tfxPtxFc     (8) 

 

The concentrated load is assumed to be of mass M 

and the time t is assumed to be limited to that interval 

of time within the mass on the beam, that is; 

Ltf  )(0     (9) 

 

The body moves with non-uniform velocity such that 

the motion of the contact of the moving load is given 

by 

 tfX p      (10) 

 The distance covered by the load on the same 

structure at any given instance of time t is given as 

  1xxtf o      (11) 

 

Where ox is the equilibrium position of the 

longitudinal oscillating load, 1x is the distance 

covered from equilibrium position ox .  

 

From equations of motion we have 

 
2

1

tvv
x

fi 
     (12a) 

atvv if      (12b) 

 

Where iv  is initial speed, 
fv  is the final speed and 

a  is the constant acceleration 

 

Substituting equations (7), (8) and (11) into equation 

(1) and (2) taking n=1 for simplicity yield  

   ),(),(),(1 txutxwGAKtxwx xxxtto  

  

  ),()(),(1 txwxEtxwxN fxxo      

 
















 


2

tvv
xxP

fi

o   (13) 

and 

    ),(),(),(1
3

0 txutxwGAKtxuxI
x

xx 


 


  0),(1
3

0  txuxI tt    (14) 

 

Now we seek the closed form solution to the 

simultaneous second order partial differential 

equations (13) and (14). Consequently, an 

approximate analytical solution is desirable to obtain 

some vital information about the vibrating system. 

 

VI. SOLUTION TECHNIQUE 

 

In order to solve the beam problem above, we shall 

use the versatile solution technique called Galerkin's 

method often used in solving diverse problems 
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involving mechanical vibrations [7]. This technique 

requires that the solutions equations of the form 

 

The equation of the motion of an element of the beam 

is generally symbolically written in the form. 

0),(),(  txPtxw    (15)a 

 

where, 

  is the differential operator, w is the structural 

displacement and P is the traverse load acting on the 

structure. To this effect, the solutions of the system of 

equations (13) and (14) are expressed as 





n

i

ii xztetxw
1

)()(),(    (15) 

and 





n

i

ii xrtytxu
1

)()(),(    (16) 

 

where the functions )(xzi  and )(xri  are chosen to 

satisfy the pertinent boundary conditions. 

 

Thus, substituting equations (15) and (16) into the 

coupled simultaneous ordinary differential equations 

(13) and (14) we obtain 

   









n

i

iiiiiio xrtyxzteGAKxztexc
1

1 )()()()()()(

  )()()()()(1 xztexExztexcN iifiio    

   tvvxxP fio  2
1   (17) 

and 

   
 













n

i

iiiio xrtyxcxrtyxcI
1

23 )()()()(  

 )()()()( xrtyxzteGAK iiii  
  

   0)()(30  xrtyxcI ii
   (18) 

where 

   xxc  11  

   232

2 363 xxxc    

   3322

3 331 xxxxc             (19)  

 

To determine  )(tei  and )(tyi , the expressions on 

the left hand sides of equations (17) and (18) are 

required to be orthogonal to the functions )(tek  and 

)(tyk  respectively. Thus, 

 

    













L n

i

iiiiiio xrtyxzteGAKxztexc
0 1

1 )()()()()()(

  )()()()()(1 xztexExztexcN iifiio    

      02
1  dxxztvvxxP kfio     (20) 

and 

 

    




















L n

i

iiiio xrtyxcxrtyxcI
0 1

23 )()()()(  

 )()()()( xrtyxzteGAK iiii  
  

     0)()(30  dxxrxrtyxcI kii
  (21) 

 

Equation (20) and (21) after some rearrangements 

yield 

 

            



n

i

icibia tykiqtekiqtekiq
1

,,, 

dq     (22) 

And 

             0,,,
1

321 


n

i

iii tykiatekiatykia 
    

(23) 

Where 

       dxxzxzxkiq ki

L

a  
0

0 1,   

            

L

kifiib dxxzxzExzxNxzGAKkiq
0

0 1)(, 

       

L

kic dxxzxrGAKkiq
0

,  

      

L

kfiod dxxztvvxxPq
0

2
1 (24)a 
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        

L

ki dxxrxrxxxIkia
0

3322

01 331, 

       

L

ki dxxrxzGAKkia
0

2 ,  

      

L

i xrxxxIkia
0

3322

03 331,   

       dxxrxGArKxrxx kii

*232 363     (24)b 

 

Since our beam has simple supports at both ends x = 

0 and x = L, we therefore choose the 

functions )(xzi  and )(xhi  to be  

L

xi
xzi


sin)(   

and 
L

xi
xhi


cos)(    (25) 

 

Thus, in view of (25), integrals (24) are evaluated to 

yield 

   21, IIkiq oa    

     12101

2

, IEIINGAIK
L

i
kiq fb 








  



 

  1, I
L

i
GAKkiqc 








  

 

  
L

tvvxk
Pq

fio

d




2
1

sin


           (26) 

   6

3

5

2

4301 33, IIIIIkia    

  12 , I
L

i
GAKkia 








  

 

   6

3

5

2

43

2

03 33, IIII
L

i
Ikia 


 










 

  39

3

8

2

70 333 GAIKIII
L

i
I 








 




 

     

(27) 

 

 

 

Where 

dx
L

xk

L

xi
I

L 
sinsin

0
1  , 

 dx
L

xk

L

xi
xI

L 
sinsin

0
2 

 

dx
L

xk

L

xi
I

L 
coscos

0
3   ,

 dx
L

xk

L

xi
xI

L 
coscos

0
4   

dx
L

xk

L

xi
xI

L 
coscos2

0
5  , 

 dx
L

xk

L

xi
xI

L 
coscos3

0
6   

dx
L

xk

L

xi
I

L 
cossin

0
7  , 

 dx
L

xk

L

xi
xI

L 
cossin

0
8   

dx
L

xk

L

xi
xI

L 
cossin2

0
9   (28) 

Considering only ith concentrated moving force, 

equation (23) and (24) can be simplified further to 

give  

           tykiqtekiqtekiq icibia ,,, 

 ttttaP 212100 sinsincoscos    

 tttbP 212100 sincoscossin    (29) 

and 

            0,,, 321  tykiatekiatykia iii
  

     

 (30) 

Where 

L

vk f

2
1


   and  

L

vk i

2
2


    (31) 

which can further be simplified to take form 

           tykiqtekiqtekiq icibia ,,,  

tHtH ap  cossin     (32) 

and 

            0,,, 321  tykiatekiatykia iii
  

  (33) 

Where 
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00aPH a  , 
00bPH p   

 and 21      (34) 

In what follows we subject the system of ordinary 

differential equations (32) and (33) to a Laplace 

transform defned as  

(~) = dte st  )(   (35) 

where s is the Laplace parameter. In conjunction with 

the initial conditions define in (6), yields the 

following algebraic simultaneous equation 

          tykiqsekiqskiq iciba ,,, 2 

2222 









S

S
H

S
H ap   (36) 

And 

           0,,, 23

2

1  tekiasykiaskia ii

 
(37)

 
Further simplification and modification using 

Laplace transform. 

Thus 

 
0

1




sei

     (38) 

and 

 
0

2




syi

    (39) 

 

where 

         kiaskiakiqskiq ba ,,*,, 3

2

1

2

0 

 

    kiqkia c ,,2
  

 
(40) 

    kiaskia ,, 3

2

11   

 * 











 2222 



S

S
H

S
H ap

 (41) 
















222222





S

S
H

S
Ha ap

 (42) 

 

Where 

 

Furthermore, equations (38) and (39) can be re-

written in the form 

 
)(

1

)(

1

)(

1

)(

1
2

2

2

1

2

2

22

2

2

1

2

1

2  
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 (43) 

and 
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



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S

S
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S
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(44) 

Where 

2

4 2112

1

BBB 
 and 

2

4 2112

2

BBB 


  

 

(45) 

       
   kiakiq

kiakiqkiakiq
B

a
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,,

,,,,

1

13
1


  and  

       
   kiakiq
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a
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,,

,,,,

1

23
2


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 (45) 

Solving equations (43) and (44) further, one obtains 
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And 
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Some simplifications and rearrangements of 

equations (46) and (47) yield 
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Where 

 
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,
2

2

2
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2
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3
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Subjecting equations (48) and (49) to Laplace 

transformation with the initial conditions  

   0,00, xwxw t  and 

   0,00, xuxu t    (51) 

Thus  
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 (52) 

and 
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Further modifications of equations (52) and (53) we 

have  
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Where 

tt 11 sinsin   , tt 22 sinsin    

tt 11 coscos   , tt 22 coscos    

tt 11 cossin   , tt 22 cossin  

tt 11 sincos   , tt 22 sincos     

(56) 

 

The transverse displacement response of the non-

prismatic rotating Timoshenko beam under the action 

of constant magnitude load travelling at time 

dependent speed can be represented by  
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 sin)cot 11111    (57) 

Similarly, the rotation of the non-prismatic rotating 

Timoshenko beam under the action of constant 

magnitude load travelling at time dependent speed is 

represented by 
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VII. CASE II RESPONSE OF NON-

PRISMATIC ROTATING TIMOSHENKO 

BEAM TO HARMONIC VARIABLE 

MAGNITUDE MOVING LOADS. 

 

The dynamic behavior of non-prismatic rotating 

Timoshenko beam when subjected to harmonic 

variable magnitude moving load is investigated in 

this section. Thus, the load ),( txFH  is given as 

))((cos),( tfxtPtxFH    (59) 

 

where   is the circular frequency of the harmonic 

force and all parameters are as defined previously . 

In view of (59) in equations (13) and (14), vibration 

of the beam is then described by 

   ),(),(),(1 txutxwGAKtxwx xxxtto  

  

  ),()(),(1 txwxEtxwxN fxxo      

   tvvxxtP fio  21cos   

 (60) 

and 
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Using the property of Dirac delta, after some 

simplifications and rearrangements, the above 

equations can be rewritten as 
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 (63) 

Where 

  32 and  

 (64) 

Equations (62) and (63) are analogous to equations 

(29) and (30), thus subjecting equations (62) and (63) 

to Laplace transform in conjunction with the 

boundary conditions stated in (6) and using 

convolution theory we obtain 
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(66) 

where 

tt 123 sinsin   , tt 224 sinsin    

tt 123 coscos   , tt 224 coscos    

tt 123 cossin   , tt 224 cossin  

tt 123 sincos   , tt 224 sincos     

tt 135 sinsin   , tt 235 sinsin    

tt 135 coscos   , tt 236 coscos    

tt 135 cossin   , tt 236 cossin  

tt 135 sincos   , tt 236 sincos     

(67) 

 

Similarly, the rotation of the non-prismatic rotating 

Timoshenko beam under the action of variable 

magnitude load travelling at time dependent speed is 

represented by 
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(68) 

 

 

which is the rotation of the non-prismatic rotating 

Timoshenko beam under the action of variable 

magnitude load 

 

VIII. RESONANCE CONDITION OF THE NON-

PRISMATIC BEAM 

 

At this juncture, in an undamped system such as this, 

it is pertinent to establish conditions under which 

resonance occurs. This occurs when the transverse 

displacement of elastic non-prismatic rotating 

Timoshenko beam grows without bound. Equation 

(57) clearly shows that the non-prismatic rotating 

Timoshenko beam resting on elastic foundation will 

experience resonance effects whenever 
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while equation (66) shows that the same beam under 

the action of moving harmonic load  experiences a 

state of resonance whenever 
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It is also observed that as the foundation modulli and 

presstress increase the critical speed of the dynamical 

system increases thereby reducing the risk of 

resonant effects. 

 

IX. FINDINGS AND COMMENTS ON THE 

OUTCOMES 

 

The theory presented in this paper is illustrated 

numerically. For the purpose of Numerical analysis 

in this study, we consider the initial velocity iv  of 

the fast moving concentrated loads to be 8.128m/s 

and the span L of the beam to be 50m. The value of 

flexural rigidity EI is 6068242, the values of 

foundation moduli are varied between 0 N/m
3
 and 4 x 

10
4
 N/ m

3
, and the values of presstress N are varied 

between 0 N/ m
3
 and 7 x10

3
 N / m

3
. The results are as 

shown on the various graphs below. 

 

In figure 1 and figure 3 , the transverse displacement 

response of non- prismatic rotating Timoshenko 

beams beam under the actions of traveling 

concentrated forces when the travelling forces are of 

constant and variable magnitude respectively  are 

displayed. It is clearly seen that when the value of 

prestress N is fixed, the displacements of a non- 

prismatic beam resting on elastic foundation and 

traversed by concentrated moving forces decreases as 

the values of foundation modulus Ef increases. 

 

Figure 2 and Figure 4 display the deflection profile of 

a non- prismatic rotating Timoshenko beam resting 

on elastic foundation and under the actions of 

concentrated forces when the travelling loads are of 

constant and variable magnitude respectively. From 

the figure it is obvious that as the values of prestress 

N increases, for fixed value of foundation modulus Ef 

, the response amplitudes of the beam decreases. 

 

Figure 5 depicts the deflection profile of the non- 

prismatic rotating Timoshenko beam resting on 
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elastic foundation and subjected to fast traveling 

load. It is shown from the figure that for fixed values 

of foundation reaction Ef  and prestress N, the 

deflection of the beam reduces as the values of the 

circular frequency  increases. 

 

Figure 6 displays the comparison of the response 

amplitude of a non- prismatic rotating Timoshenko 

beam resting on elastic foundation and under the 

actions of concentrated forces when the travelling 

loads are of constant and variable magnitude 

respectively for   fixed values of prestress N and 

foundation modulus. The response amplitude of 

constant magnitude moving load is higher than that 

of the variable magnitude moving load. 

 

 
Figure 1: Transverse displacement of a non-prismatic 

rotating Timoshenko beam under the actions of 

constant moving force for various values of 

foundation moduli
fE . 

 

 

Figure 2: Displacement response of a non-prismatic 

rotating Timoshenko beam on elastic foundation and 

traversed by moving constant force for  various 

values of N. 

 

 
Figure 3: Deflection profile of a non-prismatic 

rotating Timoshenko beam subjected to Harmonic 

variable magnitude moving loads for various values 

of foundation moduli 
fE  and for fixed values of 

presstress N 

 

 
Figure 4: Transverse displacement response of a non-

prismatic rotating Timoshenko beam resting on 

elastic foundation and subjected to Harmonic 

variable magnitude moving loads for various values 

of presstress N and for fixed value of foundation 

modulus 
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FIGURE 5. The response amplitude of a non-

prismatic rotating Timoshenko beam resting on 

elastic foundation and under the actions of moving 

load for various values of circular frequency ω. 

 

 
Figure 6: Comparison of the response of the non-

prismatic rotating Timoshenko beam to constant and 

variable magnitude moving load for foundation 

modulus 
fE  and presstress N. 

 

X. CONCLUDING REMARKS 

 

This study investigated the behavior of a non-

prismatic rotating Timoshenko beam resting on 

elastic foundation In particular, analytical solution in 

series form is obtained for the deflection and the 

rotation of the rotating Timoshenko beamand the 

effects of foundation stiffness 
fE , the natural 

frequency ω and the presstress N on the vibrating 

system are investigated. Analytical solution and 

Numerical result in plotted curves show that, as the 

value of foundation stiffness 
fE  increases the 

deflection profile of the non-prismatic rotating 

Timoshenko beam resting on elastic foundation 

decreases. It is also observed that the response 

amplitudes of the dynamical systems decrease with 

an increase in the values of presstress N. Thus, in 

general, higher values of presstress N reduce the risk 

of resonance in a dynamical system involving non-

prismatic rotating Timoshenko beam resting on 

elastic foundation 
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