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Beam Under the Actions of Concentrated Loads
Travelling At Time Dependent Speeds
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Abstract- This paper is focused on the study of
motions of non- prismatic rotating Timoshenko
beams traversed by constant and harmonic variable
magnitude moving loads. The versatile Galerkin's
method and the integral transform techniques were
employed to treat the coupled second order partial
differential equations governing the motion of the
vibrating system. Numerical analyses in plotted
curves are presented. The analyses depict
interesting results on the effect of some structural
parameters such as foundation moduli, prestressed
forces and circular frequency on the dynamic
behaviour of non- prismatic rotating Timoshenko
beams under the actions of moving loads at time
dependent speed. The resonance condition of the
dynamical systems is also established.

Indexed Terms- non- prismatic, resonance,
foundation  stiffness, prestressed, transverse
response, Galerkin's method.

I INTRODUCTION

The movement of loads (people, cars, trains etc) on
structural members (beams and plates) has always
been an important and fundamental component of
human endeavours since creation. The vibration
analysis of beams or beam-like structural elements
has been and continues to be the subject of numerous
researchers, since it embraces a wide class of
problems with immense importance in Engineering
Science. The work of Timoshenko [1] gave impetus
to research work in this aspect by using energy
methods to obtain solutions in series form for simply
supported finite beams on elastic foundation
subjected to time-dependent point loads moving with
uniform velocity across the beam. Steele [2] studied
the response of a finite, simply supported Bernoulli-
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Euler beam to a unit force moving at a uniform
velocity. The effects of this moving force on beams
with and without an elastic foundation were
analyzed. Zibdeh and Hilal [3] investigated the
vibration analysis of beams with generally boundary
conditions traversed by a moving force. The moving
load is assumed to move with accelerating,
decelerating and constant velocity type of motions.
They showed the effects of type of motion, boundary
conditions and damping. Kargarnovin and Younesian
[4] studied the response of a Timoshenko beam with
uniform cross — section and infinite length supported
by a generalized Pasternak -type viscoelastic
foundation subjected to an arbitrary distributed
harmonic moving load. However, studies on beam
problems have largely been restricted to the case
when the beam structure is uniform. In particular,
both moment of inertia I and mass per unit length p
of the beam did not vary with spartial coordinate x
along the span of the beam. In recent years, such
important Engineering problems as the vibration of
turbines, hulls of ships and bridge girders or variable
depth and so on, involving the theory of vibration of
structures of variable cross-section have intensified
the need for the study of the response of non-uniform
elastic systems under the action of moving loads.

Among the earliest researchers on the dynamic
analysis of an elastic beam was Ayre et al [2] who
studied the e®ect of the ratio of the weight of the
load to the weight of a simply supported beam for a
constantly moving mass load. They obtained the
exact solution for the resulting partial differential
equation by using the infinite series method

Recently, Taha and Abohadima [6] investigated
Mathematical model for vibrations of non-uniform
flexural beams. Very recently, Adedowole [7]
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worked on flexural motions under moving distributed
masses of Beam- type structures on Vlasor
foundation and having time dependent boundary
conditions. The author [8] also consider the dynamic
response under travelling loads of simply supported
non prismatic beam resting on variable elastic
foundation Method of Laplace Integral transforms is
employed to solve this initial valued problem to
obtain the desired approximate solutions of the
reduced equations for the transverse displacement
response of the beam dynamical problem. Analyses
show that higher values of the axial force and
foundation  stiffness decrease the transverse
displacement response of the non-prismatic beam
under the action of travelling loads resting on
variable elastic foundation. Adeoye and Awodola [9]
worked on dynamic response to moving distributed
masses of pre-stressed uniform rayleigh beam resting
on variable elastic pasternak foundation.

In all the aforementioned works, investigations were
limited to the analysis of beam flexure of Bernoulli-
Euler beams models. Specifically, the effects of shear
deformation and rotatory inertia were neglected in the
governing partial differential equations. Wang [10]
who studied the vibration of multi-span Timoshenko
beams to a moving force and Oni [11] who studied
the transverse vibrations under moving loads of deep
beams on a variable elastic foundation. Omolofe and
Ogunyebi [12] studied the dynamic behaviour of a
rotating Timoshenko beam when under the actions of
a variable magnitude load moving at non-uniform
speed. The more practical cases of rotating
Timoshenko beam moving load problems in which
the beam under consideration is of non-uniform
cross-section have received little attention in
literature. Also the case whereby the prestress of
rotating Timoshenko beam is non-uniform at which
the load is travelling is time dependent has been
neglected. In all their works, it is tacitly assumed that
the beam has uniform cross sections.

The main purpose of this study is to obtain closed
form solutions to this dynamical problem for the
boundary conditions. The reason for this is simple.
Solutions so obtained often shed light on vital

This present case study therefore, is concerned with
the problem of the non-prismatic rotating
Timoshenko beam under the actions of constant and
harmonic magnitude loads with time dependent
speeds.

1. PROBLEM FORMULATION

This paper considers the dynamic behaviour of a non-
prismatic rotating Timoshenko beam resting on a
elastic foundation when it is under the action of a
moving load. The beam'’s properties such as moment
of inertia | and the mass per unit length of the beam
vary along the span L of the beam. The beam is
assumed to maintain contact with the subgrade

reaction modulus E; and that there is no friction

forces at the interface. The deflection w(x,t) from

the equilibrium and the rotation u(x,t) of the beam

under the action of moving load is described by the
system of partial differential equations

AW, (%, 1) = K *GA(W, (%, ) — U, (x,1))

+E, (QW(x,t) = F(x, )+ N(x)w,, (x,1) 1)
and

H(x)+ K"GA(W, (x,t) —u(x,t))= 1(x) pu, (x,t) =0 (2)

Where K* is a constant dependent on the shape of the
cross-section, G is the modulus of elasticity in the

shear, A is the cross-sectional area, P(X,t) is the

moving concentrated forces acting on the beam, u is
the mass of the beam per unit length L, w is the
vertical response of the beam, I(x) is the moment of

inertia of the beam cross-section, E is the constant

elastic foundation, N(x) is non-uniform prestress
The flexural moment acting on the beam cross

section is related to the vertical response to rotation
as

H(0=-2 (0, (xth,) ®

DX(X,t) is the flexural stiffness of the beam given

information ~ about the  vibrating  system. as
Subsequently, the closed form solutions are analysed. D, (X,t) = (X) 4)
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I1l.  THE BOUNDARY CONDITIONS

The boundary conditions depend on the constraints at
the beam ends. For a beam whose length is L, the
vertical displacement at the beam ends are given as

w(0,t)=u(0,t)=0, w(L,t)=u(L,t)=0 (5)

It is assumed that the initial conditions are

w(x,0)=0=w,(x,0) and
u(x,0)=0=u,(x,0) (6)

IV.  NON UNIFORM CHARACTERISTICS

The distribution of the non-prismatic characteristics
may be assumed as power functions. The parameters
y andN, are used to approximate the actual non

uniformity of the beam given as
1(x)=1,@+ax)"™, u(x)= 1, L+ 0x)',
N(x)=N,l+ex)" ()

Where I(x) is the variable moment of inertia of the
beam, |, 4, and N are the beam characteristics

at Xx=0.
The velocity of our moving force is non uniform

V. CASE I. DYNAMIC BEHAVIOR OF NON
PRISMATIC ROTATING TIMOSHENKO
BEAM TO CONSTANT MAGNITUDE
LOADS.

The constant vertical excitation acting on the beam is
chosen as

F.(x,t) = PS(x— f(t)) @)

The concentrated load is assumed to be of mass M
and the time t is assumed to be limited to that interval
of time within the mass on the beam, that is;

0<f)<L ©)

The body moves with non-uniform velocity such that
the motion of the contact of the moving load is given

by
X, =f(t) (10)
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The distance covered by the load on the same
structure at any given instance of time t is given as

f(t)=x, +% (11)

Where X,is the equilibrium position of the
longitudinal oscillating load, X;is the distance

covered from equilibrium position X; .

From equations of motion we have

Vv, =V, +at (12b)

Where V; is initial speed, V; is the final speed and

a is the constant acceleration

Substituting equations (7), (8) and (11) into equation
(1) and (2) taking n=1 for simplicity yield

1o L+ ) (%, 1) — K*GAw,, (x,1) U, (x,1))

—N, L+ ax)w,, (x,t) + E, (x)W(x,t)

_ P{x—[xo +Wﬂ (13)

and

g—i(l Jd+ax)u, (x,t))+ K *GA(W, (x,t) —u(x,t))

— 1,1+ ax)’ pu, (x,t) =0 (14)

Now we seek the closed form solution to the
simultaneous second order partial differential
equations (13) and (14). Consequently, an
approximate analytical solution is desirable to obtain
some vital information about the vibrating system.

VI. SOLUTION TECHNIQUE
In order to solve the beam problem above, we shall

use the versatile solution technique called Galerkin's
method often used in solving diverse problems
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involving mechanical vibrations [7]. This technique
requires that the solutions equations of the form

The equation of the motion of an element of the beam
is generally symbolically written in the form.
I'w(x,t)—P(x,t)=0 (15)a

where,

I" is the differential operator, w is the structural
displacement and P is the traverse load acting on the
structure. To this effect, the solutions of the system of
equations (13) and (14) are expressed as

w(x,t) = Zn:ei )z, (x) (15)

and

U0 =Dy O (9 (16)

where the functions Z;(X) and I, (X) are chosen to

satisfy the pertinent boundary conditions.

Thus, substituting equations (15) and (16) into the
coupled simultaneous ordinary differential equations
(13) and (14) we obtain

i=1

¢, (x)e, )2/ (x)+ E, (x)e, ()2, (x)}
= Pa‘[x—(x0 Jr}/z(vi +V,; ))J 17

and

n

Z{m(cg(x)yi DR +c, (x)y, (t)r;(x)j
+ K GA(e, (t)z{ () - y; ()r; (%))
-1 0C3 (X)py| (t) r (X)} =0 (18)

where

Cl(x): (1"'00()
¢,(X) = (8a + 62 x +3a:*x?)
Co(X) = (1+3ax+3a2X* +a°¢)  (19)
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i{ﬂocl(x)éi (t)z,(x) - K*GA(e, () Z/(X) - ¥; () (X))

To determine €, (t) and Y, (t), the expressions on
the left hand sides of equations (17) and (18) are
required to be orthogonal to the functions €, (t) and

Y, (t) respectively. Thus,

I{{ ¢, (%) (17, () - K*GA(e, (1)2/(x) - ¥, ©)r(x))

¢, (x)e, ©)z/(x)+ E, (¥)e, ()2, (x)}
—P&[x—(x, + 5V, +v, k)| (x)dx=0 (20)

and

I|: n { [ y (tr, ™)+ C, (X)yi (t)ri’(X)J
+ K GA(e; 1)z (x) - y; (), (x))
—1oC(X)a¥, Or () (X)dx =0 (a1)

Equation (20) and (21) after some rearrangements
yield

> o, kR )+ 6, .k )+ 0, k) 1)

=y (22)

And

2[31 (0)+2, . ke 1)+ a1,y (0] =0 23)
Where

,0,K) = 11| 4+ el (), (x)ix

o

q, (i, k) = (_ K*GAZ/(X) — Ny (1+ ax)z{(x)+ E, z, (X))Zk (x)dx

O ey

q.(i,k)= K*GA_L[ r/(x)z, (x)dx

_[Pé[x X, +y(v +V )[)]z (x)dx 24y
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L
a,(i,k)= —Iopj(l+ 3+ 3a2x% + &% ), (¥)r, (X)dx
0

a,(i,k)= K*GAJL'zi'(x)rk (x)dx

L
a,(i,k)= _[[ylo((1+ 3ax +3a°X* +a*X° r(x)
0
+ (3 + 62+ 3% (X))K “GAnR (X (x)dx (249
Since our beam has simple supports at both ends x =
0 and x = L, we therefore choose the

functions Z;(X) and h,(X) to be
. iz
z,(x)=sin T
172X
and h (x)cosT (25)
Thus, in view of (25), integrals (24) are evaluated to

yield
q,(i,k)= 1[I, +a,]

q,(i.k) = ('I’j (K*GAL + N, (1, + 71,)+ E, 1,

qc(i,k):—K*GA(irﬁjll

q, = Psin k7z(x0 +}/2L(vi +V, )t) 26)

a,(i,k)=—1,p[l, +3al, +3a°1, +’l,

a,(i,k)= K*GA(%jll

. 2
as(i,k)z—ylo(%j (1, +3al, +3°1, +a’l,]

—ﬂo[lfj[wh +3021,+30°1, |- K'GAI,

(27)
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Where
Il:jLsinﬂsink—ﬂde,
0 L L
I, :JLxsinﬂsink—nxdx
0 L L

L i 77X k 72x
= I C0S——Cc0S——dx
0 L L

) .
I, :j xcosﬂcosk—ﬂxdx
0 L L

I :J'Lx2 cosﬂcosk—ﬂxdx,
0 L L

I :ILX3 cos ™ cos*™ dx
L L
I —I sm—cos—dx

I :I xsinﬁcosk—dx
0 L L

(Lo dax o kax
|9 —J.OX SlnTCOSTdX (28)

Considering only ith concentrated moving force,
equation (23) and (24) can be simplified further to
give

Qa(i’ k)éi (t)"‘Qb(i’ k)ei (t)"‘CIc(i’ k)Yi (t)
= P,a,(cos B,tcos Bt —sin gitsin B,t)
+ P,b, (sin B,tcos Bt —cos B, sin B,t) (29)

and
a, (i, k)Y, (t)+a, (i, k)e; (t)+a, (i, k)y;(t) = 0
(30)
Where
kav, kav,
B = oL and f3, = 2L (31)

which can further be simplified to take form

Q. (i, k)&, (t)+ 0, (1, KJes (£) + 0, (1 Ky (t) =

H,singt +H, cosgt (32)
and
a, (i, k)Y (t)+a, (i, kJe; (t) + &, (1. k)y; (t) =0

(33)
Where
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H,=PRa,, szPob0
and ¢ =, + f3, (34)

In what follows we subject the system of ordinary
differential equations (32) and (33) to a Laplace
transform defned as

()= 7 ()edt (35)
where s is the Laplace parameter. In conjunction with

the initial conditions define in (6), vyields the
following algebraic simultaneous equation

[0, . k)s? + g, (. k) (5)+ 0. (. Ky, t)

_ ¢ S

_HP32+¢2+H""SZ+¢2 (36)

And

. K)s? + 2, i,k ), (5)+ 2,1, K (6)=0
@37)

Further simplification and maodification using
Laplace transform.

Thus

0(s)="12 @)
Yo

and

y,(s)=22 (39)
Vo

where

Furthermore, equations (38) and (39) can be re-
written in the form

1 1 1
i(S)= R A N TP S NPT R
(s“+mn’) (i —ny) ("+ny) (@ —n3)
S
* Zq|:Hp 82f¢2+H3 82+¢2:|

(43)
and

yi(S)=Q{ : : }

(s2+n2) (s2+n2)

) S
*{Hpm+Ham}
(44)
Where
- B, +,/ZB1 —4B,
2 __Bl_ B1_482
m = 2
(45)
5 - Gl ka0, (a0
d. (i, k)a, (i, k)

. (i.k)as i,k)— g, i,k Ja, i, k)

S (KK

(45)
Solving equations (43) and (44) further, one obtains

1 1
ei(s):{ 2 2N g2 2}
(s"+m) (s"+m;)

*ZQ{HP SZ?_¢2 +Ha SZ'S|‘¢2}

(46)
(41) And
" _a{HpszmﬁHaszwz A [ e
(42) S
*{Hp SZ?_¢2 +H3 82+¢2}
Where
(47)
Some simplifications and rearrangements of
equations (46) and (47) yield
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e6)= il e
(771 ) (s? +771) S? +¢°
1t 9

(s°+m;) S*+¢°

+HZ [ 1 s
(771 )(S +771) s? +¢

1 s s
(s°+m;) S*+¢°

m(s):m{ 1, ¢

(s*+m) S*+¢°

R
(s*+m;) S°+¢°
+Han|: L >

*
(s*+m) S°+¢°

1 s s
(s°+m;) S*+¢°

Where
0, = a,(i,k)
=t
B, (7 —13)
- 2 -
! B, (7712 - 7722)
Subjecting equations (48) and (49) to Laplace
transformation with the initial conditions

w(x,0)=0=w,(x,0) and

L
s [nzjsinnl(t —u)cosgudu
0

2T

—771'Lfsin772 (t —u)cos@duj}

(52)
and

m®=@{Hp

[nzjsinnl(t—u)sianu

2Th

—r;l‘L[sinn?_ (t —u)sin¢uduj

_l_

L
H, [nzjsinnl(t—u)coswm
YPUA 0

—771'|L-sin772 (t —u)cos@du]}

(53)
Further modifications of equations (52) and (53) we
have

€ (t): ZqH {( Slim?;t ) [(771)(1 —¢K, + )

+cotrnt(n,z, — o<, )]
sin772t

(¢ )[(

—cotn,t(n,7, — o<, )|}

+2,H, { SNt [(¢71 mk,)

X, — 9K, + )

u(x,0)=0=u,(x0) (51) (1 =¢°)
Thus +cotnt (¢Zl —IhK+ 771)]
H L sinz,t
e (t)= zq{ : [nzfsinnl(t—u)sianu +( " ; )[(¢Tz 11,,)
2T 0
L +cotzt (¢Zl Kt 771)]} (54)
—nljsinnz(t —u)sinqﬁudu] and
0 sinm;t
Yi (t) =QH { T [(7717(1 - ¢K; + @)
(! —¢%)
+cotrt (77171 ¢§1)]
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sin772

( 72 ¢ )[(772)(2 — K, + )
—cotrn,t 77272 ¢é’2)]}
+QH { Sln771 P, — 1K)

—ThK T+ 771)]
[(¢Tz —17,K;,)

+cotmt(sy,
smn2

(; —¢°)
+cotrt (¢Z1 —IhK t 771)]} (55)

Where

X =sindsingt,
K, =Ccosgtcosnt,
7, =singtcosnt,

&, =cosdtsinnt,
(56)

X, =sindtsinn,t
K, = COSgi cosm,t
7, =singtcosn,t
£, =cosgtsinm,t

The transverse displacement response of the non-
prismatic rotating Timoshenko beam under the action
of constant magnitude load travelling at time
dependent speed can be represented by

w(x,t) = Z<z H {(;L_";) (7.2, — #5, + 9)

+cott(nz, ~ 42,
e
_ c0t772 (772 7, - ¢S]}
+ cotnlt(gzﬁ;(l — i+ )]

MX: — 9K, + )

magnitude load travelling at time dependent speed is
represented by

u(x,t) = Z<Q H {% (072, — e, + )

+cotmt(nz, —p<,)]

sm772 ~
( 72 ¢ )[(772)(2 Pr, + )

—cotn,t(n,7, — %, )|}

sinz,t
kH 1 1™1
+Q {(1 ¢)[(¢ ~ 1K)

+cotr,t (¢Zl —IhK 771)]

5|n772
( 72 ¢ )[(¢ 2 —11,K;)

i 72X
COtUlt(¢Z1 —ThK + 771)]}COST (58)

VII. CASE Il RESPONSE OF NON-
PRISMATIC ROTATING TIMOSHENKO
BEAM TO HARMONIC VARIABLE
MAGNITUDE MOVING LOADS.

The dynamic behavior of non-prismatic rotating
Timoshenko beam when subjected to harmonic
variable magnitude moving load is investigated in

this section. Thus, the load F, (X,t) is given as
F, (X,t) = PcosQto(x— f(t)) (59)

where Q2 is the circular frequency of the harmonic
force and all parameters are as defined previously .

In view of (59) in equations (13) and (14), vibration
of the beam is then described by

1o (L+ X)W, (%,8) = K*GAW,, (x,t) —u, (x,1))

__sinp,t B
(07— gy 97 1eK) N, L+ e, (X )+ E, (OW(X,1)
Cotnlt(gzﬁ)(l — K, + nl)]}sin% (57) = PCOS(?Ot)é‘lX_(Xo "‘]/Z(Vi + Vi HJ
Similarly, the rotation of the non-prismatic rotating and
Timoshenko beam under the action of constant
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16 _sing,t (@7, — 1)
&(Io(l+ax)3ux(x,t))+ K*GA(w, (x,t) —u(x,t)) (2 -Q3) " 2
— 11+ o) pu (x,1) =0 6D ~COUPNQ, 20 =k + 1)
Using the property of Dirac delta, after some Sm771 [(Q To — 1K)
f . ) 3%5 1™5
simplifications and rearrangements, the above ( Ui )
equations can be rewritten as —cotn t(Q _ ]
N . ) Qs 15 — ks +17,)
qa(l’k)ei(t)+qb(|’k)ei(t)+qc(l’k)yi(t) sinm,t
H . . 2 2 [(sz'e —17,K)
= %(stzt—stSt) (17, —€23) .
. IaX
e/ (cost —cosyt) (62) = 0Ot (Qu 2 = 1,55 +,) isin ==
And (66)
a, (i, k), (t) + &, (i, k)e, (t) +a,(i. k)y; (t) = 0 were o
(63) X3 =sInQutsinpt,  y, =sinQ,tsinmn,t
Where K, =C0sQ,tcosmt, x, =cosQ,tcosm,t
Q,=0 n Q,=0Q- . .
2 (;f and 3 ¢ 7, =sinQ,tcosnt, 7, =sinQ,tcosn,t
4
Equations (62) and (63) are analogous to equations gy =cosQtsinyt, £, =cosQ,tsiny,t
(29) and (30), thus subjecting equations (62) and (63) =sinQ.tsinz.t =sinQ.tsinn.t
to Laplace transform in conjunction with the s 3 't Zs 3 &
boundary conditions stated in (6) and using ks =cosCdtcosmt, kg =C0SC2tcosn,t
convolution theory we obtain t 7, = siant cospt, 4= sinQSt cosn,t
w(x,t) = Z<z H { S'””l (7.2, — i, +Q,) &5 =cOSQutsingt, ¢, =CcosQ,tsing,t
= (! - ©Q3)
(67)
+cotn,t (77173 24”3)] Similarly, the rotation of the non-prismatic rotating
sin,t Timoshenko beam under the action of variable
——2[( M, — Sk, +Q,) magnitude load travelling at time dependent speed is
( m, - 2) represented by
—cotnt(m,7, — 2,8, )] " sinzt
n
sinzt U(X,t)=z QH {(f;))[( Xz — QK5 Q)
m[( 1 X5 — 3K L) i h
+cotrn,t (77175 Q.05 )] +cotn,t (77173 Q,¢, )]
sinz,t 7 sinzn,t
— 2,55 —Qurs +Q) — =2 [, x5 — i, + Q)
(Z—Q) 2 6 376 3 (7722_95) 243 273 2
+cotrn,t (77175 Q38 )]} —cotr,t (77274 -0, )]
sinn.t SIﬂ?]t
n ZqHa{ . £ . [(9273 —n.K,) ( ;2 )[( 1 X5 — sk +€25)
(m —Q;) &

+cotnt(gy, — i, +m,)] +cotrt(imz, — Qs )]
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sin7,t

S
(; — %)

+ cotmt(m s — Q. )]}
+QH, { Sin_m )[(9273_771’(3)
+cotnt(gr, —ma, +m)]

sim]2 O —
( 72 )[( 2Ta —T12K,)

—cotrn,t (Q2754 —1K, +772)]

siny,t
(7712 —5115) [(sts —111Ks)

- cotnlt(Qg;(;, — K5 + 771)]

sinn,t
- (7722 _ég) [(Qsz's —11,Ks)

I7X
— ot t(Qa s — 1156 +10, )]}COST
(68)

[( M2 Xs — Qaks +€23)

which is the rotation of the non-prismatic rotating
Timoshenko beam under the action of variable
magnitude load

VIIl. RESONANCE CONDITION OF THE NON-
PRISMATIC BEAM

At this juncture, in an undamped system such as this,
it is pertinent to establish conditions under which
resonance occurs. This occurs when the transverse
displacement of elastic non-prismatic rotating
Timoshenko beam grows without bound. Equation
(57) clearly shows that the non-prismatic rotating
Timoshenko beam resting on elastic foundation will
experience resonance effects whenever

$500,6.00-2,(1.K)+ 250, .00- 2,6,

=0, (i.k)-a,(i,k)- {0, i.k)- a4 (i.k) - g, (1. k)-a, (i, k)}

7712 = ¢2' 7722 = ¢2 (69)
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while equation (66) shows that the same beam under
the action of moving harmonic load experiences a
state of resonance whenever

7712 :Q;, 7712 :le 7722 :Q;,
and 7,° = Q2 (70)

It is also observed that as the foundation modulli and
presstress increase the critical speed of the dynamical
system increases thereby reducing the risk of
resonant effects.

IX.  FINDINGS AND COMMENTS ON THE
OUTCOMES

The theory presented in this paper is illustrated
numerically. For the purpose of Numerical analysis

in this study, we consider the initial velocity V, of

the fast moving concentrated loads to be 8.128m/s
and the span L of the beam to be 50m. The value of
flexural rigidity El is 6068242, the values of
foundation moduli are varied between 0 N/m® and 4 x
10* N/ m®, and the values of presstress N are varied
between 0 N/ m* and 7 x10° N / m®. The results are as
shown on the various graphs below.

In figure 1 and figure 3, the transverse displacement
response of non- prismatic rotating Timoshenko
beams beam under the actions of traveling
concentrated forces when the travelling forces are of
constant and variable magnitude respectively are
displayed. It is clearly seen that when the value of
prestress N is fixed, the displacements of a non-
prismatic beam resting on elastic foundation and
traversed by concentrated moving forces decreases as
the values of foundation modulus E; increases.

Figure 2 and Figure 4 display the deflection profile of
a non- prismatic rotating Timoshenko beam resting
on elastic foundation and under the actions of
concentrated forces when the travelling loads are of
constant and variable magnitude respectively. From
the figure it is obvious that as the values of prestress
N increases, for fixed value of foundation modulus E;
, the response amplitudes of the beam decreases.

Figure 5 depicts the deflection profile of the non-
prismatic rotating Timoshenko beam resting on
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elastic foundation and subjected to fast traveling
load. It is shown from the figure that for fixed values
of foundation reaction E; and prestress N, the
deflection of the beam reduces as the values of the

circular frequency €2 increases.

Figure 6 displays the comparison of the response
amplitude of a non- prismatic rotating Timoshenko
beam resting on elastic foundation and under the
actions of concentrated forces when the travelling
loads are of constant and variable magnitude
respectively for  fixed values of prestress N and
foundation modulus. The response amplitude of
constant magnitude moving load is higher than that
of the variable magnitude moving load.
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Figure 1: Transverse displacement of a non-prismatic
rotating Timoshenko beam under the actions of
constant moving force for various values of

foundation moduli E .
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Figure 2: Displacement response of a non-prismatic
rotating Timoshenko beam on elastic foundation and
traversed by moving constant force for various
values of N.
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Figure 3: Deflection profile of a non-prismatic
rotating Timoshenko beam subjected to Harmonic
variable magnitude moving loads for various values

of foundation moduli E; and for fixed values of

presstress N
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Figure 4: Transverse displacement response of a non-
prismatic rotating Timoshenko beam resting on
elastic foundation and subjected to Harmonic
variable magnitude moving loads for various values
of presstress N and for fixed value of foundation
modulus
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FIGURE 5. The response amplitude of a non-
prismatic rotating Timoshenko beam resting on
elastic foundation and under the actions of moving
load for various values of circular frequency .
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Figure 6: Comparison of the response of the non-
prismatic rotating Timoshenko beam to constant and
variable magnitude moving load for foundation

modulus E and presstress N.

X. CONCLUDING REMARKS

This study investigated the behavior of a non-
prismatic rotating Timoshenko beam resting on
elastic foundation In particular, analytical solution in
series form is obtained for the deflection and the
rotation of the rotating Timoshenko beamand the

effects of foundation stiffness Ef, the natural

frequency w and the presstress N on the vibrating
system are investigated. Analytical solution and
Numerical result in plotted curves show that, as the
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value of foundation stiffness Ef increases the

deflection profile of the non-prismatic rotating
Timoshenko beam resting on elastic foundation
decreases. It is also observed that the response
amplitudes of the dynamical systems decrease with
an increase in the values of presstress N. Thus, in
general, higher values of presstress N reduce the risk
of resonance in a dynamical system involving non-
prismatic rotating Timoshenko beam resting on
elastic foundation
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