Interval Graphs with Alternate Cliques of Size 3 - Roman Domination Number

M. REDDAPPA¹, C. JAYA SUBBA REDDY², B. MAHESWARI³
¹ Research Scholar, Department of Mathematics, S. V. University
² Assistant Professor, Department of Mathematics, S. V. University
³ Professor (Retd.), Department of Applied Mathematics, S. P. Mahila Visvavidyalayam

Abstract- Today graph theory is one of the most flourishing branches of modern mathematics. Graphs are useful in enhancing the understanding of the organization and behavioral characteristics of complex system. The study of domination in graphs originated around 1850 has become the source of interest to the researchers. Interval graphs form a special class of graphs with many interesting properties and revealed their practical relevance for modelling problems arising in the real world. The last 40 years have witnessed a spectacular growth of domination in interval graphs due to its wide range of applications to many fields. Roman domination in graphs is introduced by Cockayne et.al [3, 4] and they studied this concept for various graphs. In this paper a study of Roman domination in Interval graphs with alternate cliques of size 3 is carried out.

Indexed Terms- Roman dominating function, Roman domination number, Interval family, Interval graph.

I. INTRODUCTION

The theory of domination in graphs introduced by Ore [9] and Berge [2] is an emerging area of research in graph theory today. An introduction and an extensive overview on domination in graphs and related topics is surveyed and detailed in the two books by Haynes et.al. [5, 6]. Many graph theorists, to mention some of them Allan and Laskar. [1], Cockayne. and Hedetniemi [3] and others have studied various types of domination parameters of graphs.

Let $G(V, E)$ be a graph. A subset D of V is said to be a dominating set of G if every vertex in $V - D$ is adjacent to a vertex in D. The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(G)$.

We consider finite graphs without loops and multiple edges.

II. ROMAN DOMINATING FUNCTION

The Roman dominating function of a graph G was defined by Cockayne et.al [3, 4]. The definition of a Roman dominating function was motivated by an article in Scientific American by Ian Stewart [7] entitled “Defend the Roman Empire!” and suggested even earlier by ReVelle [10]. Domination number and Roman domination number in an interval graph with consecutive cliques of size 3 are studied by C. Jaya Subba Reddy, M. Reddappa and B. Maheswari [8].

A Roman dominating function on a graph $G(V, E)$ is a function $f : V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of a Roman dominating function is the value $f(V) = \sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function on a graph G is called as the Roman domination number of G. It is denoted by $\gamma_R(G)$. If $\gamma_R(G) = 2 \gamma(G)$ then G is called a Roman graph.

Let $f : V \rightarrow \{0, 1, 2\}$ and let (V_0, V_1, V_2) be the ordered partition of V induced by f where $V_i = \{v \in V / f(v) = i\}$ for $i = 0, 1, 2$. Then there exists a 1-1 correspondence between the functions $f : V \rightarrow \{0, 1, 2\}$ and the ordered partitions (V_0, V_1, V_2) of V. Thus we write $f = (V_0, V_1, V_2)$.
A function \(f = (V_0, V_1, V_2) \) becomes a Roman dominating function if the set \(V_2 \) dominates \(V_0 \).

III. INTERVAL GRAPH

Let \(I = \{I_1, I_2, I_3, \ldots \ldots \ldots \ldots I_n \} \) be an interval family, where each \(I_i \) is an interval on the real line and \(I_i = [a_i, b_i] \) for \(i = 1, 2, 3, \ldots \ldots \ldots n \). Here \(a_i \) is called left end point and \(b_i \) is called the right end point of \(I_i \). Without loss of generality, we assume that all end points of the intervals in \(I \) are distinct numbers between 1 and 2n. Two intervals \(i = [a_i, b_i] \) and \(j = [a_j, b_j] \) are said to intersect each other if either \(a_j < b_i \) or \(a_i < b_j \). The intervals are labelled in the increasing order of their right end points.

Let \(G(V,E) \) be a graph. \(G \) is called an interval graph if there is a 1-1 correspondence between \(V \) and \(I \) such that two vertices of \(G \) are joined by an edge in \(E \) if and only if their corresponding intervals in \(I \) intersect. If \(i \) is an interval in \(I \) the corresponding vertex in \(G \) is denoted by \(v_i \).

Consider the following interval family.

In what follows we consider interval graphs of this type. We observe that when \(n \) is \(3k+3 \) this interval graph has adjacent cliques of size 3, \(k = 1,2,3 \ldots \\ldots \). When \(n \) is \(3k+2 \) this interval graph has adjacent cliques of size 3 and the last clique is
adjacent with two edges and when \(n \) is 3k+4 the last clique is adjacent with one edge, \(k = 1, 2, 3 \ldots \). We denote this type of interval graph by \(G \). The domination and Roman domination is studied in the following for the interval graph \(G \).

IV. RESULTS

Theorem 4.1: Let \(G \) be the Interval graph with \(n \) vertices. Then the domination number of \(G \) is \(\gamma(G) = k + 1 \) for \(n = 3k + 2, 3k + 3, 3k + 4 \), where \(k = 1, 2, 3 \ldots \) respectively.

Proof: Let \(G \) be the Interval graph. Let \(D \) denote the dominating set of \(G \).

Suppose \(k = 1 \). Then \(n = 5, 6, 7 \). For \(n = 5 \) we can see that \(D = \{v_3, v_5\} \) and for \(n = 6 \) and 7 we can see that \(D = \{v_2, v_6\} \) is a dominating set of \(G \) respectively. Thus \(\gamma(G) = 2 \) for \(n = 5, 6, 7 \).

Similar is the case for \(n = 8, 9, 10 \), where the dominating sets are \(D = \{v_3, v_6, v_8\} \), \(D = \{v_5, v_6, v_9\} \) and the domination number \(\gamma(G) = 3 \).

Again for \(n = 11, 12, 13 \), we see that \(\gamma(G) = 4 \) and the dominating sets are \(D = \{v_3, v_6, v_9, v_{11}\} \), \(D = \{v_5, v_6, v_9, v_{12}\} \). Thus \(\gamma(G) = 2 \) for \(n = 5, 6, 7 \).

Then it is clear that \(\{v_2\} \) is the dominating set when \(n = 2, 3 \) and \(\{v_3\} \) is the dominating set when \(n = 4 \). That is \(\gamma(G) = 1 \).

Theorem 4.3: Let \(G \) be the interval graph with \(n \) vertices, where \(1 < n < 5 \). Then \(\gamma(G) = 1 \).

Proof: Let \(G \) be the interval graph with \(n \) vertices, where \(1 < n < 5 \).

Then it is clear that \(\{v_2\} \) is the dominating set when \(n = 2, 3 \) and \(\{v_3\} \) is the dominating set when \(n = 4 \).

Corollary 4.2: Let \(G \) be the interval graph with \(n \) vertices. Then the dominating set in Theorem 4.1 becomes an independent dominating set.

Proof: Let \(G \) be the Interval graph. By the selection of vertices into the dominating set as in Theorem 4.1, it is obvious that they form an independent set. Hence the dominating set becomes an independent dominating set.

Theorem 4.4: The Roman domination number of an Interval graph \(G \) with \(n \) vertices is \(\gamma_R(G) = 2k + 1 \) for \(n = 3k + 2 \), \(= 2k + 2 \) for \(n = 3k + 3, 3k + 4 \), respectively, where \(k = 1, 2, 3 \ldots \).

Proof: Let \(G \) be the interval graph with \(n \) vertices. Let the vertex set of \(G \) be \(\{v_1, v_2, v_3, v_4, \ldots \} \).

Case 1: Suppose \(n = 3k + 2 \), where \(k = 1, 2, 3 \ldots \).

Let \(f : V \to \{0, 1, 2\} \) and let \((V_0, V_1, V_2) \) be the ordered partition of \(V \) induced by \(f \) where \(V_i = \{v \in V \mid f(v) = i\} \) for \(i = 0, 1, 2 \). Then there exist a 1-1 correspondence between the functions \(f : V \to \{0, 1, 2\} \) and the ordered pairs \((V_0, V_1, V_2) \) of \(V \). Thus we write \(f = (V_0, V_1, V_2) \).

Let \(V_1 = \{v_n\} \), \(V_2 = \{v_1, v_2, v_3, \ldots \} \), \(V_0 = V - (V_1 \cup V_2) = \{v_4, v_5, \ldots \} \). We observe that \(V_1 \cup V_2 \) is a dominating set of \(G \) (by Theorem 4.1) and the set \(V_2 \) dominates \(V_0 \).

Therefore \(f = (V_0, V_1, V_2) \) is a Roman dominating function of \(G \). We know that \(\gamma(G) = k + 1 \).

So \(|V_2| = k, |V_1| = 1, |V_0| = n - k - 1 \).

Therefore

\[
\sum_{v \in V} f(v) = \sum_{v \in V_0} f(v) + \sum_{v \in V_1} f(v) + \sum_{v \in V_2} f(v).
\]

\[
= 1 + 2k = 2k + 1.
\]

Let \(g = (V_0', V_1', V_2') \) be a Roman dominating function of \(G \), where \(V_2' \) dominates \(V_0' \). Then \(g(V) = \)
\[\sum_{v \in V'} g(v) = \sum_{v \in V_0} g(v) + \sum_{v \in V_1} g(v) + \sum_{v \in V_2} g(v) \]

\[= |V_1| + 2|V_2| \]

Since \(V_1 \cup V_2 \) is a minimum dominating set of \(G \)
(by Theorem 4.1), we have \(|V_1| + |V_2| < |V_2| \)
This implies that \(|V_2| < |V_2'| \).

So, \(g(V) = |V_1| + 2|V_2'| > |V_1| + 2|V_2| = f(V) \).
That is \(f(V) \) is the minimum weight of \(G \), where \(f(V_0, V_1, V_2) \) is a Roman dominating function.
Thus \(\gamma_R(G) = 2k + 1 \).

Case 2: Suppose \(n = 3k + 3 \), where \(k = 1, 2, 3 \ldots \).
Now we proceed as in Case 1.

Let \(V_1 = \{ \emptyset \} \),
\[V_2 = \{ v_3, v_5, v_9, v_{11} \ldots \} \]
\[V_0 = V - \{ V_2 \} = \{ v_1, v_2, v_4, \ldots \} \]
We observe that \(V_2 \) is a dominating set of \(G \)
(by Theorem 4.1) and the set \(V_2 \) dominates \(V_0 \).
Therefore \(f = (V_0, V_1, V_2) \) is a Roman dominating function of \(G \).
We know that \(\gamma(G) = k + 1 \).

Thus \(\gamma_R(G) = 2k + 2 \).

Case 3: Suppose \(n = 3k + 4 \), where \(k = 1, 2, 3 \ldots \).
Now we proceed as in Case 1.

Let \(V_1 = \{ \emptyset \} \),
\[V_2 = \{ v_3, v_5, v_9, v_{11} \ldots \} \]
\[V_0 = V - \{ V_2 \} = \{ v_1, v_2, v_4, \ldots \} \]
We observe that \(V_2 \) is a dominating set of \(G \)
(by Theorem 4.1) and the set \(V_2 \) dominates \(V_0 \).
Therefore \(f = (V_0, V_1, V_2) \) is a Roman dominating function of \(G \).
We know that \(\gamma(G) = k + 1 \).

Therefore \(\gamma_R(G) = 2k + 2 \).

Case 2: Suppose \(n = 3k + 3 \).
Let \(v_1, v_2, v_3 \) be the vertices of \(G \).
Let \(V_1 = \{ \emptyset \}, V_2 = \{ v_2 \}, V_0 = V - \{ v_2 \} = \{ v_1, v_3 \} \).
Here \(V_2 \) is a dominating set of \(G \) and the set \(V_2 \) dominates \(V_0 \).
Therefore \(f = (V_0, V_1, V_2) \) is a Roman dominating function of \(G \).

Let \(V_1 = \{ \emptyset \}, V_2 = \{ v_3 \} \),
\[V_0 = V - \{ V_2 \} = \{ v_1, v_2, v_4 \} \]
Here \(V_2 \) is a dominating set of \(G \) and the set \(V_2 \) dominates \(V_0 \).
In similar lines to Case 1, we get \(\gamma_R(G) = 2 \).

Theorem 4.6: For the Interval graph \(G \),
\[\gamma(G) \leq \gamma_R(G) \leq 2 \gamma(G) \].
Proof: Let \(G \) be the interval graph. Then by Theorem 4.1, we have \(\gamma(G) = k + 1 \).
By Theorem 4.4, we have \(\gamma_R(G) = 2k + 1 \).
\(n = 3k + 3, 3k + 4 \)

Where

\(k = 1, 2, 3 \ldots \) Respectively.

Then clearly we have \(\gamma(G) \leq \gamma_r(G) \leq 2\gamma(G) \).

Theorem 4.7: Let \(G \) be the interval graph with \(n \) vertices, where \(1 < n < 5 \). Then \(\gamma_r(G) = \gamma(G) + 1 \).

Proof: Let \(G \) be the interval graph with \(n \) vertices, where \(1 < n < 5 \).

Forn: \(n = 2, 3, 4 \) by Theorem 4.3 we have \(\gamma(G) = 1 \) and by Theorem 4.5 we have \(\gamma_r(G) = 2 \).

Therefore \(\gamma_r(G) = 2 = \gamma(G) + 1 \) form 2, 3, 4.

Theorem 4.8: Let \(G \) be the Interval graph of with \(n \) vertices. Then \(\gamma_r(G) = \gamma(G) + k \) form 3\(k + 2 \), where \(k = 1, 2, 3 \ldots \) respectively.

Proof: Let \(G \) be the Interval graph. Then by Theorem 4.1, we have

\[
\gamma(G) = 2 \text{ for } n = 5 \\
= 3 \text{ for } n = 8 \\
= 4 \text{ for } n = 11
\]

And so on.

By Theorem 4.4, we have

\[
\gamma_r(G) = 3 \text{ for } n = 5 \\
= 5 \text{ for } n = 8 \\
= 7 \text{ for } n = 11
\]

And so on.

So, clearly \(\gamma_r(G) = \gamma(G) + k \) for

\(n = 3k + 2 \) Where \(k = 1, 2, 3 \ldots \) respectively.

Theorem 4.9: Let \(G \) be the interval graph with \(n \) vertices, where \(n = 3k + 3, 3k + 4 \) and \(k = 1, 2, 3 \ldots \) Respectively. Then \(G \) is a Roman graph.

Proof: Let \(G \) be the interval graph with \(n \) vertices, where \(n = 3k + 3, 3k + 4 \) and \(k = 1, 2, 3 \ldots \) Respectively. Then by Theorem 4.4, the Roman domination number is

\[
\gamma_r(G) = 2k + 2
\]

\[
= 2(k + 1)
\]

\[
= 2\gamma(G)
\]

Therefore \(G \) is a Roman graph.

Theorem 4.10: Let \(G \) be the interval graph with \(n \) vertices. Then \(G \) is a Roman graph if and only if there is a \(\gamma_r \)-function \(f = (V_0, V_1, V_2) \) with \(|V_1| = 0 \).

Proof: Let \(G \) be the interval graph with \(n \) vertices. Suppose \(G \) is a Roman graph. Let \(f = (V_0, V_1, V_2) \) be a \(\gamma_r \)-function of \(G \). Then we know that \(V_0 \) dominates \(V_0 \) and \(V_1 \cup V_2 \) dominates \(V \). Hence \(\gamma(G) \leq |V_1 \cup V_2| = |V_1| + |V_2| \leq |V_1| + 2|V_2| = \gamma_r(G) \).

But \(G \) is a Roman graph. So \(\gamma_r(G) = 2\gamma(G) \). Then it follows that \(|V_1| = 0 \), which establishes Case 2, 3 of Theorem 4.4.

Conversely, suppose there is a \(\gamma_r \)-function \(f = (V_0, V_1, V_2) \) of \(G \) such that \(|V_1| = 0 \). By the definition of \(\gamma_r \)-function, we have \(V_1 \cup V_2 \) dominates \(V \) and since \(|V_1| = 0 \), it follows that \(V_2 \) dominates \(V \). As \(V_2 \) is a minimum dominating set of \(G \), we have \(\gamma(G) = |V_2| \). By the definition of \(\gamma_r \)-function we have \(\gamma_r(G) = |V_1| + 2|V_2| = 0 + 2|V_2| = 2\gamma(G) \).

Hence \(G \) is a Roman graph, which also establishes Case 2, 3 of Theorem 4.4.

V. ILLUSTRATIONS

Illustration 1

[Diagram of Interval Graph]

Interval Graph

\[D = \{v_3, v_6\} \text{ and } \gamma(G) = 2. \]

\[V_1 = \emptyset, \quad V_2 = \{v_3, v_6\}, \quad V_0 = V - \{V_2\} = \{v_1, v_2, v_4, v_5\} \]

\[\sum_{v \in V} f(v) = |V_1| + 2|V_2| = 0 + 2 \cdot 2 = 4 = f(V) \]

Therefore \(\gamma_r(G) = 4 \).
Illustration 2:

Interval Family

Interval Graph

\[D = \{v_3, v_6\} \text{ and } \gamma(G) = 2. \]
\[V_1 = \emptyset, V_2 = \{v_3, v_6\} , \]
\[V_0 = V - \{V_2\} = \{v_1, v_2, v_4, v_5, v_7\} \]
\[\sum_{v \in V} f(v) = |V_1| + 2|V_2| = 0 + 2.2 = 4 = f(V) \]
Therefore \(\gamma_R(G) = 4. \)

REFERENCES