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Abstract- The basic concepts of fluid motion are 

expressed Laurent’s Theorem, Residue Theorem, 

Circle theorem are presented-Blasiu’s theorem and 

it’s application are also discussed. A source outside 

a cylinder with and without circulation around the 

cylinder is described. A doublet outside a cylinder is 

studied. 

 

Indexed Terms- Moment, Laurent. Residue, Circle 

Theorem. 

 

I. INTRODUCTION 

 

When a long cylinder is placed with its generators 

perpendicular to the incident stream of a moving 

fluid containing hydrodynamic singularities, such as 

sources, sinks it experience forces tending to produce 

translation and rotation of the cylinder. These effects 

are calculated using the following theorem due to 

Blasius. The cylinder can be of any general section. 

In practice it can be an aerofoil. We confine attention 

to the case when the fluid is incompressible. 

 

II. LAURENT’S THEOREM 

 

Let f(z) be analytic in a domain containing two 

concentric circles C1 and C2 with center Z0 and the 

annulus between them. Then f(z) can be represented 

by the Laurent series 

f(z) =  
 

n n
n 0 n

n 0 n 1 0

b
a (z z )

z z
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Consisting of nonnegative and negative powers. The 

coefficients of this Laurent series are given by the 

integrals 
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

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c
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b z z f z dz

2 i



 
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Takencounter clockwise around any simple closed 

path C that lies in the annulus and encircles the inner 

circle. 

 

III. RESIDUE THEOREM 

 

Let f(z) be analytic inside a simple closed path C and 

on C, except for finitely many singular points z1, z2, 

..., zk inside C. Then the integral of f(z) taken 

counterclockwise around C equals 2 i  times the 

sum of the residues of f(z) at z1, z2,…, zk. 

    
j

k

z z
j 1c

f z dz 2 i  Res  f z




   (3) 

 

IV. CIRCLE THEOREM 

 

Suppose there is irrotational two-dimensional motion 

of an incompressible inviscid fluid, having no rigid 

boundaries, in the z-plane given by a complex 

potential f(z), where the singularities of f(z) are at a 

generator distance than a from the origin. If a circular 

cylinder whose cross-section C is z a is 

introduced into the fluid and held fixed, then the 

complex potential becomes 

2a
W f (z) f

z

  
    

 

(4) 

V. DOUBLET 

 

 
Figure 1.Doublet 
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Suppose there is a source of strength m at the point 

A, i
0z ae  , and a sink of equal and opposite 

strength at the origin, 

i
0Then OA  a,  z ae    

For the system of sources, 

W   i m log z-m log z ae    

  i m[ log z ae log z]     

 
iz ae

 m log 
z


    

 
iae

 m log 1-
z

 
   

  

(5) 

Using logarithmic series, we get 

 W  = 
i 2 2i 3 3i

2 3

ae a e a e
 m

z 2z 3z

   
     

  

 

 = 
i 2 2i 3 3i

2 3

mae ma e ma e
...

z 2z 3z

  

    

Then W  = 
i 2i 2 3i

2 3

e ae ua e
...

z 2z 3z

   
   (6) 

Taking a 0 and m , so that     = constant we 

get the complex potential for a doublet at the origin z 

= 0 as w =
ie

z


. 

 

VI. BLASIU”S THEOREM (THRUST ON A 

CYLINDER) 

 

An incompressible fluid moves steadily and 

irrationally under no external forces parallel to the z-

pane past a fixed cylinder whose section in that plane 

is bounded by a closed curve C. The complex 

potential for the flow is w. Then the action of the 

fluid pressure on the cylinder is equivalent  to a force 

per unit length having components (X,Y) and a 

couple per unit length of moment M, where 

  Y+ iX = 

2

c

P dw
dz;

2 dz

 
  

   

  M = Re

2

w
z

zc

dP
z d

2 d

   
  

   
 .. (7) 

 

 
Figure 2. Thrust on a cylinder 

 

The above figure shows the section C of the cylinder 

in the plane XOY. PP’ is an arc elements of C of 

length s . Then if p denotes the pressure at P,. the 

force on unit length of the section s  is p s  normal 

to C. If   is the inclination to OX of the tangent at P 

to C, then x and y components of this force are  

p yand p x,     
 

where x s cos  and y = ssin  .        

Hence X = 

c c

pdy,  Y= pdx.     

So that Y+ iX =  
c

p dx idy .  

From Bernoulli’s equation 
2P 1

q c,
2

 


 

c = constant we obtain, P = 
21

c q ,
2

  

 
where q is the fluid velocity, p the pressure, and 

density.  

And so Y + iX =    2

c c

c dx idy q dx idy
2


       

 = 

 2

c c

dx dy
q i  ds,  since c dx idy 0

2 ds ds
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c

q cos sin  ds
2


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c

q e ds
2
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dw
But 

dz  

i u iv  qe       
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2q

 

2
2i dw

e  and so
dz

  
  

 
 

 

Y iX

 

2
i

c

dw
e ds.

2 dz

  
   

 
 

Since dz i= dx +idy =(cos i sin ) ds = e ds, 

 The moment about O of the force components 

 where M = px x + py y, so that total moment about O is  

 

 p y,  p x  is M,   
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1
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2
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     

 
 

 

M

 

 2

c
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2
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 
 

 

   2 2ix i y q e dx i dy   

 

  

  2 2i ix i y q e e ds   

 

  

 2 iq x i y e ds  

 

  

   2q x i y  cos i sin ds   

 

  

   2q x i y  dx i dy  

 

  

   2 2q xdx  ydy  + iq ydx xdy  

(8)
 

Hence from Equation (7) and (8), we have 

 M
2

c

dw
Re z dz

2 dz

    
   

   
 (9)

 

Evaluation of the integrals for Y + iX and  for M is 

effected using residue calculus. 

 

VII. A SOURCE OUTSIDE A CYLINDER 

 

A. Without circulation around the cylinder 

We consider a source of strength m at a distance f 

from the  

 centre of the  cylinder z a f a . 

 

Then the complex potential due to the source without 

boundary is given by 

 

 f z
 

  m log z f   (10)

 By circle theorem,  the complex potential  with boundary 

 

z a.
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f

 
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  

 Neglecting constant term mlog( f )]. 

 Then differentiating with respect to z, we get 

 

dw

dz

2

m m m

z f z a
z

f

   




 Squaring both sides, we get 

   

 

2
2

2 2 2
2
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dw 1 1 1 2
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dz z f zzz f a
z

f
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              ]
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z f z z z
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 
         
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        
   

 If the above expression is put into partial fractions, 

we obtain 
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2f 2f 2f 2f2 2
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
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 
 

 2
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Therefore the sum of residues of at z = 0 
dz

 
 
 

 2a
and z =  is
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2

2 2 2 2

2 2f 2f 2f
m
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 
   
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2 2
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 



 

Using the theorem of Blasius, 
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Y iX

 

2

c
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  
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 
 

  

2 2
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 
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 2 2

2 2
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f (f a )


 


 

 

B. With circulation around the cylinder 

 

We shall consider here a source of strength m which 

is situated at the point z = c on the real axis 

 

outside the circular cylinder z a and there is a circulation

 

of a circulation of strength 2 k around the cylinder.  

 

 

Figure 3. With Circulation around the Cylinder 

 

Then, by Circle theorem, we obtain 

 

w

 

2a z
f (z) f ik log .
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2
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2

2
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c
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By Blasius’ theorem, we get 

Y iX

2

c

dw
dz

2 dz
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 
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  

2 2

2 2

2 m a 2 mk
 i  .

cc c a

 
 

  

 

2 2

2 2

2 mk 2 m a
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c c c a
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 If   is the angle made by the resultant thrust with the positive 

\

x axis, it is given by  

 1 Y
 = tan

X


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1

2 2

c c a2 mk
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c 2 m a


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1

2

k c a
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ma



 
 
 
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VI. A  DOUBLET OUTSIDE A CYCLINDER 

 

Let a doublent of strength  be at a distance f from the 

 

 centre of the cylinder  z a. f a .   

 
               Figure 4. Doublet Outside a Cylinder 

Then the complex potential due to the doublet at z = f 

is 

 
 f z . 

z f






By circle theorem, the complex potential

 due to the doublet with boundary z a is given by
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2

2
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
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Squaring and expressing the result inpartial fractions,  

 

we obtain
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    

  
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 
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By  Boasiu’s theorem we obtain, 
2

c

dw
Y iX = dz

2 dz

  
   

 


 
2 2dw a

Y iX = 2 i sum of residues of  at z = 
2 dz f
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 

2 2 3

2 3
2 2

2 a 2f
Y iX = i

f f a

  
     

      

 

 

2 2

3
2 2

4 a f
Y iX = i

f a






 

 

2 2

3
2 2

4 a f
Therefore Y=0 and X = 

f a




(26)  

 

VIII. CONCLUSION 

 

Finally, this paper is concluded that, Blasiu’s theorem 

stated that an incompressible fluid is moved by a 

steady irrotational fluid motion under no external 

force. Blasiu’s theorem is expressed by the action of 

the fluid pressure on the cylinder.  

 

The Blasiu’s theorem gives a convenient formula for 

the force on a two- dimensional body in an 

incompressible potential flow field. The direct way to 

find the force on the body is to integrate the pressure 

forces over the surface. 
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