
© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701780 ICONIC RESEARCH AND ENGINEERING JOURNALS 8

Concepts Related to Object Oriented Program OOP‟S:

Basics

VISHAL VAMAN MEHTRE
1
, UTKARSH RAJ VERMA

2

1
 Assistant Prof., Department of Electrical Engineering, Bharati Vidyapeeth Deemed University College of

Engineering, PUNE
2
 Department of Electrical Engineering, Bharati Vidyapeeth Deemed University College of Engineering,

PUNE

Abstract- This paper gives us the basic information

of “object oriented programming” (OOPS).It also

Provides us the concept of object and basic

parameters of OOPS .Such as Data abstraction

Encapsulation modularity inheritance and

polymorphism. OOPS classes tend to be overly

generalized, which make relations among classes

becomes artificial at time. The object oriented

programs are tricky in design. So to program with

OOPS one needs to have proper design skills,

programming skills. Since OOPS codes are more

near to real world models, the programmer must

have to think in terms of object.

I. INTRODUCTION

OBJECT ORIENTED PROGRAMMIN (OOPS) is a

programming paradigm based on the concept of

objects, which contain data in the form of field and

codes in the form procedure (method). The object

oriented approach views a problem in terms of object

involved rather than procedure for doing it. Now the

question arises „What is object‟? Well an object is an

identifiable entity with same characteristics and

behavior.

1) OOPS languages are diverse but the most popular

ones are class based meaning objects are

instances of classes, which also determine their

types. significant OOPS languages includes

JAVA, C++, C/,PYTHON,PHP, JAVA SCRIPT,

RUBY,PERL, OBJECT PASCAL, OBJECTIVE-

C,DORT, SWIFT, SCADA, LISP,MATLAB

AND SMALL TALK.

 CONCEPT:

The OOPS has been developed with a view to

overcome the drawbacks of conventional

programming approaches. These concepts are as

follows:

II. DATAABSTRACTION

It refers to the act of representing essential features

without including the background details or

explanation [2].

Fig1.1 Types of Abstraction

See a simple example of abstraction in header files.

 Program to calculate the power of a number:

#include <iostream.h>

#include<math.h>

Using namespace std;

int main ()

{

int n = 4;

int power = 3;

int result = pow(n,power); // pow(n,power)

isthe power function

std: cout << "Cube of n is: " <<result<< std::endl;

return 0;

}

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701780 ICONIC RESEARCH AND ENGINEERING JOURNALS 9

Output:

Cube of n is: 64

In the above example, pow () function is used to

calculate 4 raised to the power 3. The pow () function

is present in the math.h header file inwhich all the

implementation details of the pow () function is

hidden.

III. ENCAPSULATION

The wrapping up of data/functions (that operates on

the data) into a single unit (called class) is known as

encapsulation. Or simply we can say that it is the way

of combining both data and functions that operate on

the data under a single unit [3].

EXAMPLE: In C++ encapsulation can be

implemented using Class and access modifiers. Look

at the below program:

#include<iostream.h>

Usingnamespacestd;

class Encapsulation

{

private:

// data hidden from outside world Int x;

public:

// function to set value of

// variable x

Void set(int a)

{

x =a;

}

// function to return value of

// variable x

Int get()

{

Return x;

}

};

// main function Int main()

{

Encapsulation obj;

obj.set(5);

cout<<obj.get();

return0;

}

Output: 5

IN the above program the variable x is made private.

This variable can be accessed and manipulated only

using the functions get() and set() which are present

inside the class.

Thus we can say that here, the variable x and the

functions get() and set() are binded together which is

nothing but encapsulation.

IV. MODULARITY

It is the property of a system that has been

decomposed into a set of cohesive and loosely

coupled modules. The act of partitioning a program

into individual components is called modularity.

The justification for partitioning a program is that:-

 It reduces its complexity to some degree.

 It creates a number ofwell-defined documented

boundaries within the program.

V. INHERITENCE

It is the capability of one class of things to inherit

capabilities/properties from another class [4].

Fig1.2 Types of class

We can clearly see that above process results in

duplication of same code 3 times. This increases the

chances of error and data redundancy. To avoid this

type of situation, inheritance is used. If we create a

class Vehicle and write thesethree functions in it and

inherit the rest of the classes from the vehicle class,

then we can simply avoid the duplication of data and

increase re-usability. Look at the below diagram in

which the three classes are inherited from vehicle

class:

https://www.geeksforgeeks.org/access-modifiers-in-c/

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701780 ICONIC RESEARCH AND ENGINEERING JOURNALS 10

Fig1.3 Inheritance in Class

#include <bits/stdc++.h> usingnamespacestd;

//Base class

Class Parent

{

public:

int id_p;

};

// Sub class inheriting from Base Class(Parent) Class

Child : public Parent

{

public: intid_c;

};

//main function

Int main ()

{

Child obj1;

// An object of class child has all data members

// and member functions of class parent

obj1.id_c = 7;

obj1.id_p = 91;

cout << "Child id is "<< obj1.id_c << endl; cout <<

"Parent id is "<< obj1.id_p << endl;

return0;

}

Output

Child id is 7

Parent id is 91

In the above program the „Child‟ class is publicly

inherited from the „Parent‟ class so the public data

members of the class „Parent‟ will also be inherited

by the class „Child‟.

VI. POLYMORPHISM

Polymorphism is a key feature of the object-oriented

paradigm. However, [6] polymorphism induces

hidden forms of class dependencies, which may

impact software quality. In this paper we investigated

about the impact of polymorphism in an object-

oriented design.

It is the ability for a message or data to be processed

in more than one form. It is basically of two types:

 Compile time Polymorphism

 Runtime Polymorphism

Let us have an example of Function Overloading

which is sub type of Compile

time Polymorphism:

#include <bits/stdc++.h>

usingnamespacestd;

class Geeks

{

public:

// function with 1 int parameter Void func(int x)

{

cout << "value of x is "<< x << endl;

}

// function with same name but 1 double

parameter Void func(double x)

{

cout << "value of x is "<< x << endl;

}

// function with same name and 2 int parameters

Void func(int x, int y)

{

cout << "value of x and y is "<< x << ", "<< y <<

endl;

}

};

Int main() {

Geeks obj1;

//Which function is called will depend on parameter

//The first 'func' is called

obj1.func(7);

// The second 'func' is called obj1.func(9.132);

// The third 'func' is called obj1.func(85,64);

return0;

}

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701780 ICONIC RESEARCH AND ENGINEERING JOURNALS 11

Output:

Value of x is 7

Value of x is 9.132

Value of x and y is 85, 64

In the above example, a single function named

function acts differently in three different situations

which is the property of polymorphism.

VII. ADVANTAGES AND DISADVANTAGES

 OOPS codes are nearer to real world models than

other programming methodology codes.

 Encapsulation allows class definition to be reuse

in other applications. The availability of a

consistent interface to objects lessens codes

duplication and there by improves code reusing

ability.

 [5] Use of OOPS concept narrows down the

search for problems in the programs .OOPS

facilitates us for easy redesigning and extension

of a program we can use same code and modify it

asper our use.

Every coin has two sides. The same can be said for

OOPS on one hand it has certain advantage over

other programming methodology, but on the other

hand it has also some disadvantages. It has been

criticized for a number of reasons including not

meeting its stated goals of reuseability and

modularity and for over emphasizing one expects of

software design and modeling (data and objects) at

the expense other important aspects.

CONCLUSION

In our opinion OOPS classes tends to be in

generalized form which make relations among

classes becomes artificial at times. The object

oriented programs are tricky in design. So to program

with OOPS one needs to have proper design skills,

programming skills. Since OOPS codes are more

near to real world models, the programmer must have

to think in terms of object.

ACKNOWLEDGEMENT

We would like to express our special thanks of

gratitude to Dr. D.S Bankar Head of Department of

Electrical Engineering for their able guidance and

support for completing my research paper. I would

also like to thank the faculty members of the

Department of Electrical Engineering would helped

us with extended support.

REFERENCES

[1] Sumita Arora,”Concept of C++” (Dhanpat Rai

&co.)

[2] E Balagurusamy, ”object Oriented Programming

With C++”,(Mc Grawhill Education)

[3] Prof. Dharminder Kumar, “Introduction of

OOPS”

[4] Shivam, “A Study on Inheritance Using OOP

with C++”, International Journal of Advance

research in computer science and management

Studies, Issue 2, July, 2013.

[5] Ashwin Urdhwareshe, “Object-Oriented

Programming and its Concepts”, Issue 1 Aug,

2016.

[6] Saïda Benlarbi, “Polymorphism Measures for

Early Risk Prediction”, IEEE

