
© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701781 ICONIC RESEARCH AND ENGINEERING JOURNALS 12

Newton Forward and Backward Interpolation Method

VISHAL VAMAN MEHTRE
1
, MOHIT PRAJAPATI

2
1
Assistant Professor, Department of Electrical Engineering Bharati Vidyapeeth Deemed College of

Engineering, PUNE
2
 Department of Electrical Engineering Bharati Vidyapeeth Deemed College of Engineering, PUNE

Abstract- This paper gives us the basic information

of “Newton forward and backward interpolation

method”. These methods are used to solve problem

on newton interpolation by forward or backward

interpolation method. For different problem we

have different method, this is explained by solving

problem below on both newton forward and

backward interpolation method. We are also

deriving formula for newton forward interpolation

method and newton backward interpolation method.

I. INTRODUCTION

 Interpolation is the method of finding the value of

a function for any intermediate value for

independent variable, while the process of

calculating the value of the function outside the

given range is called extrapolation. [4]

 Forward Differences: The differences y1 – y0, y2

– y1, y3 – y2… yn – yn–1 when denoted by dy0,

dy1, dy2… dyn–1 are respectively, called the first

forward differences.

II. NEWTON’S GREGORY FORWARD

INTERPOLATION METHOD

This formula is mainly useful for interpolating the

values of f(x) near the starting of the set of values

given. “h” is the common difference and u = (x – a) /

h, here “a” is first term.

Example: -

Input: - value of sin 52

a 45° 50° 55° 60°

a° 0.7071 0.7660 0.8192 0.8660

Output:

Value at Sin 52 is 0.788003

Below is the implementation of newton forward

interpolation method.

CPP Program to interpolate using

 newton forward interpolation

#include <bits/stdc++.h>

using namespace std;

 // calculating u mentioned in the formula

float u_cal(float u, int n)

{

 float temp = u;

 for (int i = 1; i < n; i++)

 temp = temp * (u - i);

 return temp;

}

// calculating factorial of given number n

int fact(int n)

{

 int f = 1;

 for (int i = 2; i <= n; i++)

 f *= i;

 return f;

}

int main()

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701781 ICONIC RESEARCH AND ENGINEERING JOURNALS 13

{

 // Number of values given

 int n = 4;

 float x[] = { 45, 50, 55, 60 };

 // y[][] is used for difference table

 // with y[][0] used for input

 float y[n][n];

 y[0][0] = 0.7071;

 y[1][0] = 0.7660;

 y[2][0] = 0.8192;

 y[3][0] = 0.8660;

 // Calculating the forward difference

 // table

 for (int i = 1; i < n; i++) {

 for (int j = 0; j < n - i; j++)

 y[j][i] = y[j + 1][i - 1] - y[j][i - 1];

 }

 // Displaying the forward difference table

 for (int i = 0; i < n; i++) {

 cout << setw(4) << x[i]

 << "\t";

 for (int j = 0; j < n - i; j++)

 cout << setw(4) << y[i][j]

 << "\t";

 cout << endl;

 }

 // Value to interpolate at

 float value = 52;

 // initializing u and sum

 float sum = y[0][0];

 float u = (value - x[0]) / (x[1] - x[0]);

 for (int i = 1; i < n; i++) {

 sum = sum + (u_cal(u, i) * y[0][i]) /

 fact(i);

 }

 cout << "\n Value at " << value << " is "

 << sum << endl;

 return 0;

}

Output

45 0.7071 0.0589 -

0.00569999

-

0.000699997

50 0.766 0.0532 -

0.00639999

55 0.8192 0.0468

60 0.866

Value at 52 is 0.788003

 Backward Differences

The differences y1 – y0, y2 – y1, ……, yn – yn–1

when denoted by dy1, dy2, ……, dyn, respectively,

are named as first backward difference. Thus the first

backward differences are :

III. NEWTON’S GREGORY BACKWARD

INTERPOLATION FORMULA

This formula is used when the value of f(x) is

required at the end of the table. h is known as the

common difference and u = (x – an) / h, Here an is

last term in table.[3]

Example:Input: Population in 1925

Year(x): 1891 1901 1911 1921 1931

Population(y):

(in thousands)

46 66 81 93 101

Output:

Value in 1925 is 96.8368

Below is the implementation of newton backward

interpolation method.

// CPP Program to interpolate using

// newton backward interpolation

#include <bits/stdc++.h>

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701781 ICONIC RESEARCH AND ENGINEERING JOURNALS 14

using namespace std;

// Calculation of u mentioned in formula

float u_cal(float u, int n)

{

 float temp = u;

 for (int i = 1; i < n; i++)

 temp = temp * (u + i);

 return temp;

}

// Calculating factorial of given n

int fact(int n)

{

 int f = 1;

 for (int i = 2; i <= n; i++)

 f *= i;

 return f;

}

int main()

{

 // number of values given

 int n = 5;

 float x[] = { 1891, 1901, 1911,

 1921, 1931};

 // y[][] is used for difference

 // table and y[][0] used for input

 float y[n][n];

 y[0][0] = 46;

 y[1][0] = 66;

 y[2][0] = 81;

 y[3][0] = 93;

 y[4][0] = 101;

 // Calculating the backward difference table

 for (int i = 1; i < n; i++) {

 for (int j = n - 1; j >= i; j--)

 y[j][i] = y[j][i - 1] - y[j - 1][i - 1];

 }

 // Displaying the backward difference table

 for (int i = 0; i < n; i++) {

 for (int j = 0; j <= i; j++)

 cout << setw(4) << y[i][j]

 << "\t";

 cout << endl;

 }

 // Value to interpolate at

 float value = 1925;

 // Initializing u and sum

 float sum = y [n - 1][0];

 float u = (value - x [n - 1]) / (x [1] - x[0]);

 for (int i = 1; i < n; i++) {

 sum = sum + (u_cal(u, i) * y[n - 1][i]) /

 fact(i);

 }

 cout << "\n Value at " << value << " is "

 << sum << endl;

 return 0;

}

Output:

46

66 20

81 15 -5

93 12 -3 2

101 8 -4 -1 -3

Value at 1925 is 96.8368

IV. USE OF NEWTON FORWARD AND

BACKWARD INTERPOLATION METHOD

Forward interpolation formula is used to interpolate

the values of y nearer to the beginning value of the

given table. Also this formula is applicable if in case

where h (difference in in travel) is constant.

Now coming to backward difference formula. [1]

This formula is used to interpolate the values of y

nearer to the end of the table (or) tabular values.

These are the places, where we need to apply those

formulas.

These formulas are used when the in travels for

computing a value of a function are equidistant.

CONCLUSION

The degree of the polynomial is one less than the

number of pairs of observations. The polynomial that

represents the given set of numerical data can be used

for interpolation at any position of the independent

variable lying within its two extreme values. The

approach of interpolation, described here, can be

suitably applied in inverse interpolation also.

Newton’s forward interpolation formula is valid for

estimating the value of the dependent variable under

the following two conditions [2]: 1. The given values

of the independent variable are at equal interval. 2.

The value of the independent variable corresponding

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701781 ICONIC RESEARCH AND ENGINEERING JOURNALS 15

to which the value of the dependent variable is to be

estimated lies in the first half of the series of the

given values of the independent variable.[2]

Therefore, the formula derived here is valid for

representing a set of numerical data on a pair of

variables by a polynomial under these two conditions

only. Consequently, there is necessity of searching

for some formula for representing a set of numerical

data on a pair of variables by a polynomial if the

value of the independent variable corresponding to

which the value of the dependent variable is to be

estimated lies in the last half of the series of the given

values, which are at equal interval, of the

independent variable. Moreover, there is also

necessity of searching for some formula for

representing a set of numerical data on a pair of

variables by a polynomial if the given values of the

independent variable are not at equal interval.

ACKNOWLEDGEMENT

We would like to express our special thanks of

gratitude to Dr. D.S Bankar Head of

Department of Electrical Engineering for their able

guidance and support for completing my research

paper. I would also like to thank the faculty members

of Department of Electrical Engineering would

helped us with extended support.

REFERENCES

[1] Biswajit Das and Dhritikesh Chakrabarty, “A

Study on Newton Forward and Backward

Interpolation”, Published By: - International

Journal of Statistics and Applied Mathematics

2016; 1(2): 36-41, issued on 12, June, 2016.

[2] Prof. Danny Newton Forward and Backward

Interpolation, sixth edition.

[3] “Polymorphism Measures for early risk

prediction”, “Saida Benlarbi”.

[4] Study of Measurements using Newton Forward

and Backward Interpolation Method “Shivam”

issue 2
nd

 July 2013.

