
© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701801 ICONIC RESEARCH AND ENGINEERING JOURNALS 56

Review on Concepts Related to Object Oriented

Programming System

VISHAL V. MEHTRE1, YASH NIGAM2
1,2 Department of Electrical Engineering, Bharati Vidyapeeth Deemed University, College of Engineering,

Pune

Abstract - This review paper states that the concept of

object-oriented programming and its characteristics such

as polymorphism, inheritance and encapsulation. Object

oriented programming tell us about the concept of class,

object and several other concepts which defines the

characteristics of object-oriented programming. In this,

inheritance plays a major role in enhancing the

characteristics of OOPs.

I. INTRODUCTION

Object Oriented Programming is an applied language

which works on the basic concept of objects, used to

store data which can be in fields, code or procedure.

Object oriented programming language is supported

by worlds most widely used multi-paradigm languages

such as (C++, Python, Java, PHP, Dart, and Ruby).

By using oops we can design computer programmers

by casting them out of objects which can interact with

one another. There is a feature in objects- object’s

procedure, that can ingress and can modify the data

fields of the objects from which they are linked.[1]

While using object-oriented programming we have

advantage over procedural programming that is this

enable helps to enable programmers to create modules

and there is no need to change when there is an

addition of new objects. By this advantage a

programmer can create a new object which contains

many features from existing software. This advantage

of object-oriented programs over procedural program

makes it easier to adapt.

Object oriented programming gives the programmers

an ease in structuring the various software programs.

The primary step in OOP is to spot the entire object

which a programmer needs to operate and the way they

connect from each other, this is also known as data

modelling. Primary, OOPS focus on the object which

a programmer has to operate. In OOPS data is

accessed, than it is processed.

II. DATA ABSTRACTION

Abstraction is a basic concept in software developing.

This process of abstraction can also be said to be

connected to concepts of theory and design. One of the

main abstractions in computing is language

abstraction. The process of the selecting the important

data for an object and leaving which is not necessary

is known as abstraction. Once you have modified your

object with the help of abstraction in different

applications same data can be used.[2]

The advantage of abstraction is that it reduces the

efforts in complexity of programming. Abstraction

helps you to group different classes as one. We can

understand abstraction concept by using an example:

Like if you want to develop a banking application and

there you have to collect information about the

customers.

You will get much information about your customers,

but you only need to keep to important ones, like

Names, Address, etc. for this you have to develop a

banking application. As we have extracted the

information about the customer from a larger database,

this process is known as abstraction.

Example:

Class bankacc

{

private:

 Float currentbal;

Protected:

Virtual float minimum dpst () =0;

Virtual float minimum wdw () =0;

Public:

bankacc(){currentbal=0;}

Virtual ~bankacc(){};

Void deposit(float amt)

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701801 ICONIC RESEARCH AND ENGINEERING JOURNALS 57

{If (amt>=minimum dpst()) currentbal +=amt;}

Float wdw(float amt = 100.0)

{

If ((amt>+minimum wdw ()) && (current bal>+amt))

Current bal-+amt;

}

Float query bal(float amt =100.0){return currentbal;}

};

III. INHERITANCE

In object-oriented programming, inheritance be an

object or class is based some other object or class,

using the same implementation (inheriting from an

object or class) specifying implementation to maintain

the same character (realizing an interface; inheriting

behaviour). It is a mechanism for code reuse and to

permit independent extensions of the genuine software

via public classes and interfaces. The relationships in

objects and classes through inheritance develop in a

hierarchy. The invention of Inheritance was in 1967

for Simula. The term "inheritance" is generally used

for the class-based and prototype-based programming,

but in narrow use is fixed for class-based

programming (one class inherits from another), with

the same technique in prototype-based programming

being instead called delegation (one object delegates

to another). [3]

Inheritance is the reuse of an existing code. Suppose

that we have a class Maruti that define features and

functionality of Maruti cars now Swift is also a Maruti

car but it has some its own extra functionality. Now

what Swift will do? It will inherit the existing

properties of Maruti instead of writing that same code

again and will also add on its own functionality in the

code . So here Maruti is a parent class and Swift is a

child class.

Example:

#include <iostream>

using namespace std;

class A{

 public:

 void display()

 {

 cout<<"This is base class"; }

};

class B : public A

{};

class C : public B

{};

int main()

{ C obj;

 obj.display();

 return 0;

}

IV. ENCAPSULATION

In Object Oriented Programming, encapsulation is in

regard of object design. It means that all of the object's

data is stored and hidden in the object and access to it

is not allowed to members of that class.

When information is wider and more open, it becomes

very risky as it leads to surges and various changes

elsewhere. It is safe to restrict the direct way in of one

piece of data. Encapsulation is one of the basic

concepts in object-oriented programming (OOP) that

states the notion of bundling data and methods that

work on that data without one unit. When it restricts

entry to the member of a class, it protects access to the

member of a class from manipulating objects in ways

that the designer does not want. [4]

Its use is to hide the interior representation of an

object, from the inside. It sums up elements to generate

a new entity. If there is an attribute that is not in view

from the outside of an object and tie-up with methods

that provide read or write access then it is possible to

hide the information and handle access to the internal

state of the subject. It works as a mechanism

decreasing the accessibility of attributes to the current

class and uses public getter and setter methods to

control and limit external access. It also enables to

prove the new value before modifying the attribute.

Encapsulations preven data from any accidental

corruption and lower coupling between objects and

keeps code maintainability.

Generally, there is uncertainty that, what is different

b/w encapsulation and abstraction

Programmatically, when we can have a way in the

hidden data somehow and know something.

© DEC 2019 | IRE Journals | Volume 3 Issue 6 | ISSN: 2456-8880

IRE 1701801 ICONIC RESEARCH AND ENGINEERING JOURNALS 58

Abstraction and when we know zero about the interior

its Encapsulation.

Example:

#include <iostream>

using namespace std;

class add { public:

 add(int i = 0) {

 total = i; }

 void addNum(int number) {

 total += number; }

 int getTot() {

 return tot; };

 private:

 int tot;

};

int main() { add a;

 a.add(10);

 a.add(20);

 a.add(30);

 cout <<"Total "<< a.getTot() <<endl;

 return 0;}

V. POLYMORPHISM

Polymorphism is derived from 2 greek words: poly

and morphs. The word "poly" means many and

"morphs" means forms. The meaning of

Polymorphism is form. Polymorphism is not a

programming concept, but it is one of the basic of

OOPs.

Following are the advantages of polymorphism

1. Simplicity

- If you need to write code that gets with family of

types, the code can neglect type-specific details and

just contacted with the base type of the family

- This thing makes code easy to write and to

understand also.

2. Extensibility

Other subclasses could be added after to the family of

types, and objects of those new subclasses would also

work with the existing code.[5]

Examples:

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0) {

 width = a;

 height = b;

 }

 virtual int area() {

 cout <<"This is the area of parent class :"<<endl;

 return 0;

 }

VI. CONCLUSION

This review paper shows us the benefits of OOPs to

the programming. Here, we had analysed the business

world and word with encapsulation of related strings

and numbers into classes. Achieve reuse without

instruction lists from the programmer who wrote the

code you are reusing.

ACKNOWLEDGEMENT

We would like to express our special thanks of

gratefulness to Dr. D.S Bankar Head of Department of

Electrical Engineering for their able guidance and

support for completing my research paper. I would

also like to thank the faculty members of the

Department of Electrical Engineering would helped us

with extended support.

REFERENCES

[1] Balguruswami, “Object oriented

programming with C++”, (Mc Grawhill
Education).

[2] Sumita Arora, “Concept of C++”,(Dhanpat
Rai &co.)

[3] Prof. Dharminder Kumar, “Introduction of
OOP”.2011

[4] Shivam, “A Study on Inheritance Using
OOP with C++”, Issue 2 July, 2013.

[5] Ashwin Urdhwareshe, “Object-Oriented
Programming and its Concepts”, Issue 1
Aug, 2016.

[6] Saïda Benlarbi, “Polymorphism Measures

for Early Risk Prediction”,IEEE.

