Frequency Analysis of Daily Rainfall Data of Udaipur District

A. BIJARNIYA

Department of Agricultural Engineering, SGI, Sikar

Abstract- Precipitation may be a prime input for varied engineering style like hydraulic structures, conservation structures, bridges and culverts, canals, storm water sewer and road system. The careful applied math analysis of every region is crucial to estimate the relevant input worth for style and analysis of engineering structures and additionally for crop designing. This study includes applied math analysis i.e. frequency analysis of daily most precipitation information of Udaipur district. The daily precipitation information for an amount of fifty six years is collected to judge designed worth of precipitation exploitation c hance distribution models. Around 07 totally different chance distributions (Gamble's Logpearson kind III, extreme worth kind I. Lognormal, Normal, Exponential, Pearson kind III and Gamma distribution) were accustomed appraise most daily precipitation. Kolmogorov-Smirnov and Chi-squared tests were goodness used for the of work of the chance distributions. Results showed that Lognormal distribution and Gumbel distribution found to be have least essential values for each the account because tests thence take into the best work distribution for given sample population. Additionally most daily mean value of precipitation for varied come back periods evaluated exploitation all distribution were model into account.

I. INTRODUCTION

Analysis of daily most precipitation of various come back periods may be a basic tool for safe and economical designing and style of little dams, bridges, culverts, irrigation and emptying work etc. although the character of precipitation is erratic and varies with time and house, nonetheless it's doable to predict style precipitation fairly accurately sure as shooting comeback periods exploitation varied chane distributions (Upadhaya and Singh, 1998). style Engineers and Hydrologists need in the future most precipitation at totally

different frequencies or come back periods for acceptable designing and style of little and medium hydraulic structures like little dams, bridges, culverts, etc. (Agarwal et al., 1998). Chance analysis are often used for predicting the prevalence of future events of precipitation from the obtainable information with the assistance of applied math ways (Kumar and Kumar,

1989). Anaya Kalita et al. (2017) worked on frequency analysis of daily precipitation information of twenty see the four years to annual in the future most precipitation and discharge of Ukiam (Brahmaputra River). Weibull's plotting position Gumbel, Log Pearson and Log traditional chance distribution functions were fitted. For determination of goodness of work chi sq. check was carried out. The results found showed that the Log Pearson and Log traditional were the most effective work chance distribution. Esberto (2018) determined the most effective work distribution of precipitation patterns for event foretelling so as to deal with potential disasters exploitation sixty chance Distribution

Functions

(PDF). Precipitation information were analyzed explo itation Chi-Square and K-S goodness-of-fit tests. Amin et al. (2016) analyzed to search out the bestfit chance distribution of annual most precipitation supported a twenty-fourhour sample within the northern regions of Asian country exploitation four chance distributions: traditi log-Pearson type-III onal, log-normal, and Gumbel goop. Supported the uncountable goodness of work tests, the conventional distribution was found

the best-fit chance distribution the to be at Mardan precipitation gauging station. The log-Pearson type-III distribution was found to be the bestfit chance distribution at the remainder of the precipitation gauging stations. This project is a trial to summaries the precipitation options for the Udaipur district. the overall precipitation received in a very given amount at a location is very variable from one year to a different. The variability depends on the kind of climate and also the length of the thought of amount., the applied math inferences found during this study area unit necessary for coming up with optimum control facilities. essentially frequency employed for analysis of precipitation is various functions as mentioned below: Probability of chance for style purposes: The selection of the chance of chance or come back amount for style functions is expounded to the harm the surplus or the shortage of precipitation could cause the danger one needs to simply accept and also the life time of the project.

Probabilities of chance for management functions Information on the precipitation depth which will be expected in a very specific amount below varied climatic conditions is needed for management and designing functions. For rain-fed agriculture, precipitation is that the single most significant agro-meteorological variable influencing crop production.

II. MATERIALS AND METHODS

T 1 1 4		- 1		a	D. I
Table 1	ι	Formula	ot	Statistical	Parameters

Sr.No.	Parameter	Formula
	name	Tormalu
1	Arithmetic	$\overline{\mathbf{x}} \sum_{\mathbf{N}}^{\mathbf{i}=1} \mathbf{X}_{\mathbf{i}}$
1	mean	$X = \frac{1}{N}$
2	Standard deviation	$S = \sqrt{\frac{\sum_{i=1}^{N} X_i}{N-1}}$
3	Coefficient of variation	$C_v = \frac{S}{\overline{X}}$

	Coefficient	$N\sum (X - \overline{X})^3$
4	of	$C_{s} = \frac{N \sum (X - X)}{(N - A)(N - A)}$
	skewness	$(N-1)(N-2)S^3$

 \overline{X} is the arithmetic Mean, X_i is Variate, N is the total number of observations, S is Standard Deviation, C_v is the coefficient of Variation and C_s is the Coefficient of skewness.

A. Tests for Goodness of Fit (Verification of Sample Population)

The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question.

In stochastic hydrology there are two ways whether or not a particular distribution adequately fits a set of observation-

- Compare observed relative frequency with theoretical relative frequency.
- Using probability papers.

Two tests were used to compare observed relative frequency with theoretical relative frequency

- 1) Chi-square test
- 2) Kolmogorov-Smirnov test
- 1) Chi-square test

The chi-squared test is used to determine whether there is a significant difference between the expected frequencies and the observed frequencies in one or more categories.

$$\chi_{c}^{2} = \sum_{i=1}^{N} (N_{i} - E_{i})^{2} / E_{i}$$

Where N is the total number of observations, N_i is the observed relative frequencies, and E_i is the theoretical or probable relative frequencies. If $\chi_c^2 = 0$, it indicates that observed and theoretical frequencies agree exactly while if $\chi_c^2 > 0$, they do not agree exactly. The hypothesis that the data follows a specific distribution is accepted if,

$$\chi^2_{data} < \chi^2_{\alpha-1,K-p-1}$$

Where α is the significance level and K-P-1 is the degree of freedom. Test is carried out at 10% significance level. Critical values of chi-square test for a particular degree of freedom and at particular significance level can be obtained from Chi-square distribution table.

2) Kolmogorov-smirnov test

In statistics, the Kolmogorov–Smirnov test is a nonparametric test of the equality of continuous (or discontinuous), one-dimensional probability distributions that can be used to compare a sample with a reference probability distribution (like Chi-square Test), this is the alternative to Chi-square test. The absolute difference between theoretical cumulative probability F(x) and calculated cumulative probability P(x) is calculated. The Kolmogorov-smirnov test statistics Δ is the maximum of this absolute difference calculated in step 4.

 Δ = Maximum |P(x)-F(x) |

The critical value of kolmogorov-smirnov test statistics Δ_{α} is obtained from the Kolmogorov-smirnov table for 10% significance level. If $\Delta < \Delta_{\alpha}$, accept the hypothesis. For sample size more than 50, use following formula for critical values of Kolmogorv-smirnov test statistics.

(1.4) $\Delta_{\alpha} = 1.22/\sqrt{N} (\alpha = 10 \%)$

3) Probability plot method

Table 1. Plotting position parameters for probability plotting

P10	un B		
SrNo.	Probability	Parameter Plotted on	Parameter
	Distribution	Abscissa	Plotted on
			Ordinate
1	Normal	Z (Normal Z Value)	(x)Rainfall in
	Distribution		mm
2	Log	Z (Normal Z Value)	(Logx)Rainfall
	Normal		in mm
	Distribution		
3	Gumbel's	Y_t (Reduced Vaiate)	(x)Rainfall in
	Distribution		mm
4	Log	K_t (Frequency Factor)	(Logx)Rainfall
	Pearson		in mm

	Type III		
	Distribution		
5	Gamma	$\Gamma^{-1}(p)$ (Gamma	(x)Rainfall in
	Distribution	Parameter)	mm
6	Exponential	-Log(1-f(x))	(x)Rainfall in
	Distribution		mm
7	Pearson	K_t (Frequency Factor)	(x)Rainfall in
	Type III		mm
	Distribution		

B. Frequency Distribution Models

1. Gumbel's extreme value distribution model Gumbel found that the probability of occurrence of an event, equal or larger than a value is given by the equation,

(1.5)
$$P(X > x_0) = 1 - e^{-e^{-y}}$$

(1.6) $y_t = -(lnln \frac{T}{T-1})$
(1.7) $X_T = \overline{X} + K\sigma_{n-1}$ ____

For N=56 the values for y_n and σ_n are 0.551 and 1.1696 respectively from standard tables (Ghanshyamdas, 2014)

2. Log-Pearson type Ill distribution

(1.8)
$$z = \log x$$

For any recurrence interval T above equation can be expressed as

(1.9)
$$z_t = \log x_t$$

Applying general equation chow, Z_T data series can be expressed a

(1.10)
$$z_T = \overline{z} + K_f \sigma_z$$

The value of K can be determined from the normal probability table.

Where, K_f is the frequency factor, C_z is the coefficient of skewness, \overline{z} is the mean of the representative variate sample z, σ_z is the standard deviation of the representative variate sample z. value

of K_f can be determined by using the standard table

for a specific value of C_z and recurrence interval T.

3. Log normal probability distribution method The flood or rainfall of any return period which follows the log normal probability law is computed from:

(1.11) $Q_T = \overline{Q} + K\sigma_n$ Where K is log normal frequency factor. A function of skewness coefficient, given by

(1.12) $C_s = 3C_v + C_v^3$ Where C_v is a coefficient of variation and given by

(1.13) $C_v = \frac{\sigma}{q}$

4. Normal distribution

(1.14) $X_T = \overline{X} + K_T \sigma$

(1.15) K_T = Z = $\frac{X_T - \overline{X}}{\sigma}$ (1.16) K_T = w - $\frac{2.515517 + 0.80285w + 0.010328w^2}{1 + 1.432788W + 0.189269w^2 + 0.001308w^3}$

5. Gamma distribution

Gamma distribution – a distribution of sum of b independent and identical exponentially distributed random variables.

(1.17)
$$\boldsymbol{f}(\mathbf{x}) = \frac{\lambda^{\beta}(\mathbf{x}-\varepsilon)^{\xi-1}e^{-\lambda(\mathbf{x}-\varepsilon)}}{\Gamma(\beta)}$$

Γ=Gamma function

$$\Gamma(\eta) = \int_0^\alpha t^{n-1} e^{-t} dt$$

6. Pearson type III

Named after the statistician Pearson, it is also called three-parameter gamma distribution. A lower bound is introduced through the third parameter (e).

(1.18)
$$\boldsymbol{f}(\mathbf{x}) = \frac{\lambda^{\beta}(\mathbf{x}-\varepsilon)^{\xi-1}e^{-\lambda(\mathbf{x}-\varepsilon)}}{\Gamma(\beta)}$$

7. Exponential distribution

In hydrology, the inter arrival time (time between stochastic hydrologic events) is described by exponential distribution.

(1.19)
$$f(x) = \lambda e^{-\lambda x}$$
 $x \ge 0, \lambda = \frac{1}{x}$

Variance = $1/\lambda^2$

III. RESULT AND DISCUSSION

18

Sr.no.	Distribution Model	Test Performed	Calculated values for χ_c^2 & KS test	Degree of freedom	Critical values at 10 % significance level	Result
	Gumbel's	Chi-square Test	9.406		12.02	Accepted
1	distribution	Kolmoorov- Smirnov Test	0.092	7	0.163	Accepted
	Log-Pearson	Chi-square Test	22.793		10.64	Rejected
2	Type-III distribution	Kolmoorov- Smirnov Test	0.175	6	0.163	Rejected
3	Normal	Chi-square Test	20.851		12.02	Rejected
	distribution	Kolmoorov- Smirnov Test	0.159	7	0.163	Accepted
4		Chi-square Test	8.444	6	10.64	Accepted

Table 2. Goodness of fit result summary

© JAN 2020 | IRE Journals | Volume 3 Issue 7 | ISSN: 2456-8880

	Lognormal	Kolmoorov-	0.082		0 163	Accorted
	distribution	Smirnov Test	0.082		0.105	Accepted
	Exponential	Chi-square Test	48.331		13.362	Rejected
5	distribution	Kolmoorov- Smirnov Test	0.338	8	0.163	Rejected
	Deerson III	Chi-square Test	54.742		10.64	Rejected
6 distribution	distribution	Kolmoorov- Smirnov Test	0.248	6	0.163	Rejected
	Commo	Chi-square Test	10.163		12.02	Accepted
7	distribution	Kolmoorov- Smirnov Test	0.098	7	0.163	Accepted

Probability Plot Results

Fig 2. Logpearson type III probability plot

Fig 3. Normal probability plot

Fig 4. Lognormal probability plot

© JAN 2020 | IRE Journals | Volume 3 Issue 7 | ISSN: 2456-8880

Fig 5. Pearson type III probability plot

Fig 6. Exponential probability plot

Fig 7. Gamma probability plot

A. Probability plot result summary

Table 3. Probability plot result summary

C. N.	Probability	Correlation	Result	
Sr.No.	Plot	Coefficient		
1	Gumbel's	0.981	Accepted	
1	distribution	0.701		
	Logpearson			
2	type III	0.984	Accepted	
	distribution			
3	Normal	0.942	Accepted	
5	distribution	0.942	Accepted	
4	Log-normal	0.086	Accepted	
4	distribution	0.980		
5	Exponential	0.984	Accepted	
5	distribution	0.964		
	Pearson		Accepted	
6	type III	0.977		
	distribution			
7	Gamma	0.980	Accepted	
/	distribution	0.980		

B. Magnitude of Daily Rainfall (mm) For Various Distribution Models

Distribution	Return period in years									
model	5	10	25	50	100	200	300	400	500	1000
Gumbel	73.85	80 77	109.8	124.8	139.6	154.3	162.9	169.1	173.8	188.5
distribution	75.85	09.11	8	0	1	7	9	0	4	5
Log-Pearson			100 5	100.0	150.0	172.0	100.0	107 1	100 7	225.0
Type-III	69.40	86.03	109.5	128.9	150.0	1/3.2	180.0	187.1	188./	235.9
distribution		00100	2	6	9	1	3	2	3	5
Normal	74.60	85 52	07 17	104.6	111.4	117.6	121.0	123.3	125.1	130.4
distribution	/4.00	85.52	97.17	9	5	4	4	7	4	0
Lognormal	70.16	84 74	103.6	118.0	132.6	147.6	156.5	163.0	168.0	184.0
distribution	70.10	84.74	3	1	5	2	7	0	5	4
Exponential	96 52	123.7	173.0	210.3	247.5	284.8	306.6	322.1	334.1	371.3
distribution	80.55	9	6	2	9	6	5	2	2	8
Pearson-III	72 53	96.07	104.4	116.7	128.7	140.2	143.4	146.5	149.6	165.2
distribution	12.55	80.97	1	9	0	8	1	4	6	9
Gamma	72 74	974 96.05	103.9	115.9	127.4	138.6	144.9	149.4	152.8	163.4
distribution	12.14	00.75	5	6	8	2	9	6	9	2

Table 4. Magnitude of designed value of daily rainfall for various distribution models and return periods.

Fig.8 Comparison of different Probability distribution model of annual maximum daily rainfall

IV. CONCLUSION

56 years of daily downfall information is taken from the IMD manual revealed in 2014. For the series of daily downfall information,

annual most daily downfall information is organized.

The seven likelihood distributions were subjected take a look at|to check} from 2 goodness of match tests (Kolmogorov-smirnov test and Chi-squared test) .Further sample information is additionally tested by likelihood plotting i.e. plotting sample information with distribution parameter and calculate coefficient of correlation. the aim of the study was to search out the bestfit likelihood distributions for district Udaipur. the most values of

expected downfall or downfall estimates

calculated employing a likelihood distribution that doesn't offer the best-fit might yield values that ar higher or under the particular values. These calculations could also be accustomed influence choices regarding native eco hydrologic safety nomic science and systems. Both were performed at 100 the tests percent significance level. Out of 07 models 04 models have passed in one or additional tests. The Log-normal distribution and Gumbel distribution provided the best-fit likelihood distribution with the smallest amount score for each the take a look at. The expected values of styleed downfall or downfall estimates calculated victimisation the best-

fit likelihood distributions at the downfall gauging stations may well be utilized by style engineers to soundly and feasibly design hydrologic comes.

REFRENCES

- Agarwal, M.C., Katiyar, V.S. and Babu, R... Likelihood analysis of annual most daily downfall of U.P. Himalaya. Indian journal of conservation, 16(1): 35-43, 1995.
- [2] Al-suhili, R.H., and Khanbilvardi, R... Frequency Analysis of the Monthly downfall information at Sulaimania Region, Iraq. Yank Journal of Engineering analysis (AJER), 03(05): 12-222, 2014.
- [3] Amin, T.A., Rizwan, M. and Alazba, A.A. A bestfit likelihood distribution for the estimation of downfall in northern regions of Islamic Republic of Pakistan. Open natural science, 11:432-440, 2016.
- [4] Arvind, G., Kumar, A.P., Girishkarthi, S. and Suribabu, C.R. applied math Analysis of thirty Years downfall Data: A Case Study. IOP Conf. Series: Earth and bionomics, 80(2017):01-09, 2017.
- [5] Bhakar, S. R., Bansal, A.K., Chhajed N. and Purohit, R. C.Frequency Analysis of Consecutive Days most downfall at Banswara, Rajasthan,

India. ARPN Journal of Engineering and Applied Sciences, 31(3): 64-67, 2006.

- [6] Bhavyashree, S. and Bhattacharya, B.
 Fitting likelihood Distributions
 for downfall Analysis of Mysore, India.
 International Journal of Current biology and
 Applied Sciences, 7(3): 1498-1506, 2018.
- [7] Dirk, R. Frequency Analysis of downfall information. Note Submitted To Department of Earth And surroundings Science, Katholieke Universiteit, Belgium, 2013.
- [8] Esberto, M.D.P.. likelihood Distribution Fitting of downfall Patterns in Philippine Regions for Effective Risk Management. surroundings and Ecology analysis, 6(3): 178-86, 2018.
- [9] Ghnshyamdas. geophysics and conservation Engineering:Including Watershed Management, letter Learning personal restricted.9 9-123p, 2014.
- [10] Ghosh, S., Roy, M. K., and Biswas, S. C. Determination of the simplest match likelihood distribution for monthly downfall information in Bangladesh. yan k Journal of arithmetic and Statistics, 6(4):170–174, 2016.
- [11] Kalita, A., Bormudoi, A. and Saikia,
 M.D. likelihood Distribution of downfall and
 Discharge of Kulsi geographical region.
 International Journal of Engineering and
 Advanced Technology (IJEAT), 6(4): 31-37, 2017.
- [12] Kumar, A. likelihood Analysis for Prediction of Annual most Daily downfall for Pantnagar. Indian Journal of conservation, 27(2):171-173, 1999.
- [13] Kumar, D. and Kumar, S. downfall Distribution Pattern victimisation Frequency Analysis. Journal of Agricultural Engineering, 26(1):33-38, 1999.
- [14] Kumar, R. and Bhardwaj, A. likelihood analysis of come back amount of daily most downfall in annual information set of Ludhiana, Punjab. Indian Journal of Agricultural analysis, 49(2):160-164, 2015.
- [15] Latitude and line of longitude of Udaipur. (https://www.google.co.in/maps/place/Udaipur,+ Rajasthan/@24.5873424,73.6407606,23152m/dat a=!3m1!1e3!4m2!3m1!1s0x3967e56550a14411:0 xdbd8c28455b868b0!6m1!1e1).

- [16] Nemichandrappa M., Balakrishnan and Senthilvel. likelihood and Confidence Limit Analysis Of downfall In Raichur Region. Karnataka .journal of Agriculture Science, twenty three (5):(737-741), 2010.
- [17] Sharma, M.A. and Singh, J. Use of likelihood Distribution in downfall Analysis. ny Science Journal 3(9): 40-49, 2010.
- [18] Singh, O.P., Singh, S.S. And Kumar,
 S. downfall Profile For Udaipur
 District, meteoric Centre, Jaipur, IMD
 Department national capital, 2013.
- [19] Sreedhar, B.R. Fitting of likelihood Distribution for Analyzing the downfall information within the State of state, India. International Journal of Applied Engineering analysis, 14(3): 835-839, 2018.
- [20] Upadhaya, A. and Singh, S.R. Estimation of consecutive day's most downfall by varied ways and their comparison. Indian Jornal of conservation, 26(3):193-200, 1998.rainfall of U.P. Himalaya. Indian journal of Soil Conservation, 16(1): 35-43, 1995.