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Abstract- Waveform design is critical to the 

realization of a Multiple Input Multiple Output 

(MIMO) radar system. If the waveforms being 

transmitted are perfectly orthogonal, the virtual 

array consists of more elements than the transmit 

array and this provides additional degrees of freedom 

which improves performance. The correlation 

properties of the wavforms transmitted determine the 

characteristics of the system. In this paper, a binary 

orthogonal waveform with low autocorrelation and 

cross correlation properties is designed. 

Orthogonality in transmitted waveforms is required 

in MIMO radar systems to enable the use of match 

filtering at the outputs to separate the different 

transmit paths. Exploiting the orthogonality of the 

walsh hadamard matrix based on non-identical 

walsh functions, the simulated annealing statistical 

optimization tool is used to obtain the orthogonal 

signal set with the desired low correlation properties. 

 

Indexed Terms- Autocorrelation, Multiple Input 

Multiple Output (MIMO) radar, Match filtering, 

simulated annealing, Virtual array. 

 

I. INTRODUCTION 

 

Waveform diversity is one of the benefits derived from 

MIMO radar systems. Multiple diverse waveforms can 

be transmitted simultaneously for the purpose of 

improving detection, target classification and 

parameter identifiability. Waveform design methods 

can be categorized into the covariance matrix 

approach, ambiguity function approach, mutual 

information, and the method of directly designing the 

time series transmitted from each transmitter. In the 

covariance matrix method, the covariance matrix is 

designed to either focus the beam to transmit power to 

a desired range of angles or to control the spatial power 

[1]. Mutual information approach relies on prior 

knowledge of the target to choose waveforms which 

optimize the mutual information between the received 

signals and the target impulse response [2]. Another 

method is the application of numerical optimization 

techniques to obtain orthogonal waveforms. For rather 

systems that use match filtering to extract the target 

signal, the response at the match filter output 

determines the resolution [3]. This response is 

characterized by the ambiguity function when doppler 

effects are also considered. The focus of this paper is 

on the design details of the time series for orthogonal 

binary signals transmitted from each transmitter. For 

small Doppler shifts, the Doppler effect on the time 

series is negligible, and the response at the output of 

the match filter becomes the autocorrelation function. 

Therefore the time series can be designed for a good 

autocorrelation and cross correlation characteristics. 

In radar systems, pulse compression is used to achieve 

the benefits of a short pulse by squeezing a long 

duration pulse into a short pulse and at the same time 

retaining the energy of the long pulse. A short pulse 

requires a large bandwidth and hence can be 

interference to other users of the band. The shorter the 

pulse the more information it contains and hence more 

demands on processing. If the transmitter peak power 

is low, the shorter the pulse the less energy is 

transmitted. This makes short pulse radars range 

limited.  With pulse compression, waveforms can be 

designed to have both long duration and small 

duration. A small duration waveform is produced 

when a long duration binary phase coded waveform is 

applied to a match filter, and hence obtain good 

detection performance and accurate range 

measurements [4]. Two important modulations used 

for pulse compression are linear frequency modulation 

(LFM) and phase code modulation. Waveforms based 

on other modulation methods include frequency 

hopping and polyphase coding. The compressed pulse 

consists of a desired response and undesired side 

responses called sidelobes. These sidelobes must be 

suppressed, so that they are not mistaken as weak 

targets. Binary sequences with low autocorrelation 

sidelobe levels and low crosscorrelation peaks have 
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been investigated in [5] In this work, Deng used the 

statistical simulated annealing algorithm to obtain an 

optimal set of binary sequences that satisfies the 

desired correlation properties for the radar system.  

 

In MIMO radar systems, that transmit orthogonal 

waveforms simultaneously from several antennas and 

uses match filtering to extract the target echoes, a 

narrow impulse like autocorrelation function with low 

sidelobes which reduces interference from other 

targets is desired.  This also ensures a high target 

resolution, high range resolution and a high SNR. A 

low crosscorrelation between the transmitted signals 

enables independent target information from different 

angles, thus improving the detection of targets with 

weaker echoes.[6] High cross correlation sidelobes 

(High spatial sidelobes) causes interference between 

signals from different directions, thereby 

compromising angle estimation accuracy. The use of 

match filtering at the receiver outputs further ensures 

low crosscorrelation as well as high SNRs [7] The 

MIMO radar waveform design problem becomes that 

of designing orthogonal matrices of arbitrary number 

of rows and columns with good correlation properties. 

The walsh functions are used to provide the required 

orthogonality between the signals and the simulated 

annealing algorithm is used for its effectiveness in 

discrete and combinatorial optimization problems, to 

obtain the optimal set of orthogonal signals with the 

desired autocorrelation and cross correlation 

properties. 

 

II. FORMULATION OF THE SIGNAL 

CORRELATION PROBLEM 

 

Consider a MIMO radar system consisting of M-

elements at the transmit array. The transmitted 

waveforms are orthogonal to each other. At the 

receiver, let there be Mr receive antennas and let the 

sampling rate at the receiver be equal to that of the 

transmitter. Assume that each waveform employ N 

subpulses represented by a complex number sequence, 

The mth transmitted constant-modulus signal is of the 

form: 

 

  ( )
, 1,2, , 1,2,mj n

ms n n N m Me


    (1) 

 

Where m  is the phase of subpulse n of signal m in the 

signal set,  For Binary sequences, the phase for a 

subpulse alternates between 0 and  represented as -

1 and +1 respectively in the sequence (Sun et al., 2010) 

The signal set can be represented as follows: 
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The rows of 
M NS   are the binary modulating 

code sequences which can be either +1 or -1, and are 

the transmitted signals or waveforms. The subpulse 

train will have a much smaller peak power than a 

single subpulse, at the same total transmitted energy. 

Also, using constant modulus signals ensures the radar 

system can use non linear amplifiers, as most MIMO 

radar systems tend to operate in the saturation region 

in order to increase range resolution performance. The 

received data matrix for a particular range bin of 

interest is denoted as [8]. 
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Where P0 represents the number of scatterers in the 

range bin of interest at lag k = 0. For simplicity, we 

consider a jammer free model, thus W is an 

independent and identically distributed (i.i.d.) noise 

matrix, and 2I
RMH

W  

 

E is the interference term which represents impinging 

signals from Pk scatterers within 

 , 1,1 ,K K   from neighboring range bins 

surrounding the range bin of interest. E should be 

weakened by the filtering process at the receiver, and 

consequently suppress the range sidelobes. βp,k are the 

complex amplitudes. and r ta a  are the  receive and 

transmit steering vectors respectively. kJ is a N x N 

range shifting matrix that takes into account the 
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different propagation times of the signals reflected by 

neighboring scatterers. The  
th

,i i k element is one 

and the others are zeros. 
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k, which is the lag in the auto correlation and cross 

correlation function is considered here as the 

difference in additional sampling intervals between 

the current range bin and the interfering range bin. 

Pulse compression leads to 
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Let’s define the M x M waveform correlation matrix 

as 
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is the waveform correlation function between 

. In the case where E is due to the presence 

of clutter, the matched filter (MF) maximizes the 

signal-to-noise ratio (SNR), but it does not maximize 

the signal-to-clutter ratio (SCR) [9].  The SCR for 

MIMO radar is defined as 
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From Error! Reference source not found. and 

Error! Reference source not found., it can be seen 

that the compression results and SCRs rely on the 

waveform cross-correlation functions. Match filtering 

relies on the assumption that the second and third 

terms in Error! Reference source not found. are 

uncorrelated with S and can effectively attenuate the 

second (out-of- range) term in 

Error! Reference source not found. under this 

condition. If sidelobes are high a weak scatterer in the 

range bin of interest will be overshadowed by 

reflection from a strong scatterer in another bin. It is 

impossible to achieve strict orthogonality among the 

transmitted waveforms for all time delays. Therefore 

waveforms with low autocorrelation sidelobe peaks 

and low cross correlation peaks are desired. A joint 

waveform design problem is formulated in [5] as 
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Where 0  is a weighting coefficient between 

autocorrelation function and cross correlation 

function.  We wish to minimize this cost function 

subject to 
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And 
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III. BINARY ORTHOGONAL SET FROM 

WALSH-HADAMARD MATRIX 

 

Walsh functions can be used to create digital 

waveforms for even and odd values analogous to sines 

and cosines used in fourier series. They can be 

considered as a digital fourier series. The walsh 

functions consists of trains of square pulses (with 

allowed states being +1and -1). 2
n

 walsh functions of 
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order n are represented by the rows of the Hadamard 

matrix when arranged in sequency order. In sequency 

order each row has one or more (+1 -1) transitions than 

the preceding row. The first Hadamard matrix is 

defined as 1 1H  and subsequent Hadamard matrices, 

denoted by 2 pH  are determined from 

 

2 ,
p p

p c
p p

p
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Where c
pH is the complement of pH . The value of 

8H  can be seen to be 
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The rows of 8H are defined by the walsh codes (0)W

through (7)W . As can be seen from the matrix, (0)W

is simply a direct current (d.c) level and is usually 

ignored in most practical applications. Walsh 

functions with non identical sequences are orthogonal. 

2 2 2
T

p p pH H I . All the rows of the walsh matrix 

cannot meet the required design criterion of low 

autocorrelation sidelobe peaks and low cross 

correlation peaks. The solution is to choose an optimal 

set based on the optimization 

criterionError! Reference source not found.. The 

waveform design problem becomes that of designing 

the orthogonal matrix subject to constraints 

Error! Reference source not found. and 

Error! Reference source not found..  For given 

values of M and N the minimization of 

Error! Reference source not found. results in an M 

x N matrix that is automatically constrained by 

Error! Reference source not found. and 

Error! Reference source not found.. However, the 

Walsh matrix is a square matrix of dimensions (N x N) 

where N is a power of 2. Selecting M rows from N 

rows means the matrix is no more square and STS  = I 

and SST = I are not equivalent. But since N M , the 

rows are still orthonormal, SST = I, which is the 

requirement for orthogonality in MIMO radar. 

 

IV. DESIGN OF SIGNAL SET USING 

SIMULATED ANNEALING ALGORITHM 

 

Annealing in thermodynamics is the process of heating 

metals to a high temperature followed by controlled 

cooling so that the particles rearrange themselves 

towards lower energies to form a crystalline structure 

[10] extended the original metropolis scheme to large 

scale combinatorial optimization problems. The 

current state of the thermodynamic system is 

analogous to the current solution to the combinatorial 

problem, while the energy equation is analogous to the 

objective function. The ground state, (Temperature, T 

= 0 ) is analogous to the  global minimum, which 

corresponds to the optimized sequence set or signal 

matrix with the lowest autocorrelation sidelobe peaks 

and cross correlation peaks. The algorithm begins by 

setting T to a high value and then decremented at each 

step following an annealing schedule that ends at T = 

0. At each step the current configuration is perturbed 

and the change in energy dE is computed. If the change 

in energy is negative, the new configuration is 

accepted. If the change in energy is positive it is 

accepted with a probability given by the Boltzmann 

constant, exp( )dE
T .  This prevents the algorithm 

from being stuck at a local minimum that is worse than 

the global minimum as the case with the traditional 

greedy algorithms. The optimization problem is to 

estimate the best M rows from the (N x N ) Walsh-

Hadamard matrix, 2 pH to form the matrix S. 

 

The algorithm steps can be summarized as follows: 

 Set the initial temperature, T to a high value or 

infinity 

 Perturb the N x N  matrix  2 pH  by randomly 

swapping columns and randomly selecting M rows 

to form the matrix S current of dimensions M x N. 

 Compute the corresponding cost function Ecurrent  

from (10) 

 Randomly swap columns and select M rows to 

form the next matrix Snew 

 Compute the corresponding cost function value 

Enew 



© FEB 2020 | IRE Journals | Volume 3 Issue 8 | ISSN: 2456-8880 

IRE 1701952          ICONIC RESEARCH AND ENGINEERING JOURNALS 136 

 If Enew ≤ Ecurrent , then Scurrent = Snew 

 If Enew ＞ECurrent, then Scurrent = Snew  only if

 exp Current NewE E

T
rand




 

 Annealing schedule; Reduce the temperature 

1 (0 1)i iT T      where  is constant 

chosen in this design to be 1 

 Repeat steps 3 to step 8  i times until cost function 

reaches a global minimum and T=0 

 

V. SIMULATION RESULTS 

 

In this simulation, we vary the number of transmit 

signals M and the sequence length N and obtained the 

cross correlation and Auto correlation of the optimized 

set as shown in Figs.1 and 2. Secondly, for an 

optimized set of dimensions M x N, we chose M=4 

which represents the number of transmitted signals 

and N = 256 the signal length, a maximum 

autocorrelation sidelobe peak of 0.1397 or -17.09 dB 

and maximum crosscorrelation peak of 0.1521.or -

16.36dB were obtained. These values are normalized 

with respect to the signal length N. and the design 

results are single realizations obtained using a dual 

core Intel processor. From Fig.1 and Fig.2, it is 

observed that lower correlation values are obtained as 

the sequence length increases. A lower maximum 

autocorrelation sidelobe peak means increased 

detection capability and a reduced maximum cross 

correlation peak means interference is reduced. 

 

 
Fig.1 Normalized Cross correlation Peaks 

 

 
Fig. 2 Normalized Auto correlation Sidelobe Peaks 

The results show that the algorithm is more effective 

for larger code lengths. Fig 3 shows the 

autocorrelation functions of each transmitted signal in 

the main diagonal of the figure and the 

crosscorrelation between signals in the off diagonal of 

the figure. This illustration of the covariance matrix of 

the waveforms indicates that if used in a MIMO radar 

system, target echoes can be clearly visible and 

interference can be quite negligible. The value 1   

is chosen in the cost function 

Error! Reference source not found. for all 

optimizations. Fig.4 shows the Magnitude squared 

plot for the designed binary codes while Fig.5 shows 

the Magnitude squared plot for a polyphase sequence 

from the designed polyphase code set in [11] for 

length, N =40 , size, M = 4 and distinct number of 

phases, L = 4. The synthesized results show almost 

equal performance with known polyphase sequences 

[12] as shown in the Magnitude squared plots of Fig. 

4 and Fig.5. as well as Table I. 

 

 
Fig.3 Illustration of the covariance Matrix of a 

MIMO radar waveform set for M = 4 Orthogonal 

codes of length N = 256 
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Fig.4 Magnitude squared plot of the Auto correlation 

of designed Binary codes 

 
Fig.5 Magnitude squared plots for a sequence length 

N = 40, and distinct number of phases, L = 4 from a 

polyphase sequence set in [11]. 

 

Table I Comparison between Polyphase Sequence 

Values [12] and obtained results 

 Max(ASP)  Max(CP) 

Polyphase values 

for M = 4, N = 128 
0.0954  0.1182 

Obtained Binary 

values for M = 4, N 

= 128 

0.1255  0.1656 

 

VI. CONCLUSIONS 

 

In this paper, we presented a waveform optimization 

method for multiple-input multiple-output (MIMO) 

radar systems for good autocorrelation and 

crosscorrelation properties based on the direct 

design of the set of orthogonal transmitted time 

series. Exploiting the orthogonality of non-identical 

walsh functions, which have been used successfully 

in spread spectrum communication, the Walsh-

Hadamard matrix is used as the orthogonal binary 

signal set followed by the simulated annealing 

statistical optimization tool to provide  an optimal 

orthogonal binary signal set with the desired 

correlation properties.  We have investigated the 

effectiveness of the simulated annealing algorithm 

for waveform optimization of an orthogonal set of 

binary waveforms for MIMO radar from the Walsh- 

Hadamard matrix. As the code length increases both 

the average auto correlation peaks and average cross 

correlation peak decreases. This equals the results of 

known polyphase sequence designs. 
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