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Abstract-  

Purpose 

The study attempts to develop a methodology for 

modelling the operating and maintenance costs of an 

existing sustainable facility using Markov chain and 

to determine the most appropriate probability 

distribution that conform with these costs. 

 

Design/methodology/approach 

The paper adopts the probabilistic Markov chain 

model to show the trend of building costs 

fluctuations. It also obtains the pattern of 

fluctuations of operating and maintenance costs to 

determine whether these costs follow a Markov chain 

model.  

 

Findings 

The key findings of the statistical analysis 

indicated there is an existence of a Markov chain in 

the observed building costs from January 2011 to 

January 2020. It also revealed that the building costs 

series can best be modelled using the Weibull 

distribution.  

 

Research limitations/implications 

This paper does not cover more than one existing 

case study as access to historical costs is a major 

concern. 

 

Practical implications 

This research will be of interest to industry 

practitioners and academic researchers with an 

interest in building modelling. The study can be 

used to improve the confidence in life cycle costing 

(LCC) modelling. 

 

Originality/value 

This paper contributes with new outlooks aimed at 

stochastic modelling of sustainable facilities.  

 

Indexed Terms- Costs, Facilities, Life cycle 

costing, Markov, Modelling, and Sustainable. 

 

I. INTRODUCTION 

 

Life cycle costing is defined as the costs associated 

with acquiring, using, caring for and disposing of 

physical assets. One can draw from this definition that 

LCC quantifies and forecasts choices which can be 

used to determine the ideal choice of assets (Haugbolle 

& Raffnsoe, 2019; Zhou et al., 2019). 

 

Yet, there are immense doubts about the accuracy of 

LCC estimates as they are deemed to be imprecise, 

inexact, uncertain and vague (Kirkham et al. 2004; 

Farahani et al., 2019). The above submission 

unmistakeably shows a variance in prevailing cost 

estimation techniques and underlines the necessity for 

re-assessment and potential re-evaluation of LCC 

methodologies (Oduyemi, 2015; Konstantinidou et al., 

2019). 

 

Consequently, the challenge among practitioners is to 

develop a framework for LCC that is not only 

universal, but more importantly dynamic as clients 

now want buildings that demonstrate value for money 

over the long term and are not interested simply in the 

design solution which is the least expensive. 

 

This study adopts the probabilistic Markov chain 

model to show the trend of building maintenance and 

operating costs fluctuations. This is achieved by 

obtaining the pattern of fluctuations and determining 

whether the building maintenance and operating costs 

follow a Markov chain. It also models these costs by 

the limit probability of a Markov chain and determines 

which among the named distributions (Lognormal, 

Weibull and Gumbel Max) conform with and model 

the costs with the distribution. 
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II. MARKOV CHAIN 

 

Markov chains are a fundamental class of stochastic 

processes. The success of Markov chains is mainly due 

to their simplicity of use, the large number of available 

theoretical results and the quality of algorithms 

developed for the numerical evaluation of various 

metrics associated with them (Li & Rosenthal, 2019; 

Betancourt, 2019). 

 

The Markov property means that if the state of the 

process is known at a given time, predicting its future 

about this point does not require any information about 

its past. This property allows for a considerable 

reduction of parameters necessary to represent the 

evolution of a system modelled by such a process 

(Zhang & Li, 2019). It is simple enough for the 

modelling of systems to be natural and intuitive but 

also very rich in that it allows general probability 

distributions in a very precise manner. 

 

Several researchers in the construction industry have 

addressed potential applications of Markov Chains. 

Zhang et al (2018) presented a deterioration prediction 

method for maintenance planning in offshore 

engineering using the Markov. Sobanjo (2009) 

presented an investigation of the Markov property 

underlying the stochastic deterioration models for 

highway bridges, including transition probabilities 

between the condition states while Bocchini et al 

(2013) presented an efficient, accurate, and simple 

Markov chain model for the life-cycle analysis of 

individual bridges and bridge groups. Although a 

substantial amount of research presently exists in the 

use of Markov chains, none explicitly show the trend 

of building costs fluctuations or obtain the pattern of 

fluctuations of operating and maintenance costs of 

sustainable buildings. 

 

III. RESEARCH METHODOLOGY 

 

To develop a Markov model, historical cost data was 

gathered from the International Facilities Management 

(IFMA) Database The case study is a two-storey office 

block in Houston, Texas built in August 2010 and has 

an excellent LEED rating.  

 

The following four steps discussed below are used in 

this paper to develop the Markov conceptual 

framework. 

i. Identification of project objectives, and project 

constraints. 

ii. Determine the length of the study period. 

iii. Cost breakdown structure. 

iv. Modelling using Markovian Chain (Variable 

selection, Training and Validation). 

 

i. Identification of project objectives and project 

constraints.  

The LCC analysis is used in this paper to develop 

a methodology for modelling the operating and 

maintenance costs of an existing sustainable 

facility using Markov chain and to determine the 

most appropriate probability distribution that 

conform with these costs. 

ii. Determine the length of the study period.  

The study period commenced at time zero which 

was previously defined.  

iii. Cost breakdown structure  

For each LCC project, cost centre was identified, 

and information gathered from historic data and 

building surveys of IFMA and subsequently a cost 

breakdown structure (CBS) is developed for the 

building. For this case study, the operating and 

maintenance costs were summed over the stated 

years as seen in table one. 

 

Table 1: Historical cost breakdown structure of the operating and maintenance costs of case study

 

 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Jan 5815 7562 10807 10409 9937 10571 6251 4594 4989 4665 

Feb 6915 7473 10585 9073 9974 10837 6131 4769 4617  

Mar 6467 7458 10792 9675 10526 10523 5434 4413 3651  

Apr 7163 7583 10049 10527 10816 10005 4569 4487 4428  

May 6835 7612 10082 10628 10876 9585 4628 4504 4273  

Jun 7408 8172 9985 10341 10543 8608 4696 4929 5276  
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Jul 7755 8453 10541 10117 10263 7699 4311 4526 4276  

Aug 7488 9001 10423 10119 10548 6070 3657 5262 4271  

Sep 7712 9269 10707 10510 10210 4711 2978 5359 4312  

Oct 7476 9791 11269 10764 10483 5479 3103 5435 4587  

Nov 7930 10865 11779 10252 10404 5283 3734 5090 4386  

Dec 8418 11624 11367 9885 10487 5754 4075 5216 4184  

iv. Modelling using Markov Chain (Variable 

selection, Training and Validation) 

The historical maintenance and operational cost data 

were modelled using Markov chain. The variables 

were tested using the goodness of fit of probability 

chains and the limit of the transition probability 

matrix. 

 

IV. ANALYSIS AND DISCUSSION OF 

RESULTS 

 

4.1 THE BUILDING COSTS SERIES 

Table 1 showed the monthly building maintenance and 

operating costs from January 2011 to January 2020. 

The costs series feature chaotic characteristics during 

the 109 months. Figure 1 shows a moving process of 

the costs with its main distinguishing features 

including the occurrence of cost prices extraordinary 

soaring or steeply falling. 

 

 
Figure 1. Trend of building costs from January 2011 

to January 2020 

 

4.2 THE BUILDING COSTS TRANSITION 

STATES 

From the trend of the costs, the stage transition states 

can be clearly distinguished. They can be classified as 

five states: low state, middle - low state, middle state, 

middle - high state and high state. These states 

constitute the following full space for stochastic events 

of building costs: 

(0, 4000)        [4000, 6000)        [6000, 8000)        [8000, 

10000)        [10000, 12000) 

 

The average building cost is US$ 7874. So [6000, 

8000) is treated as a middle state of fluctuating costs, 

the [4000, 6000) interval as a middle - low state, and 

the [8000, 10000) interval as a middle - high state. The 

three states can be broadly termed as the middle state. 

By contrast, the (0, 4000) interval is treated as a low 

state of costs and the [10000, 12000) interval as a high 

state. Assuming A represents the (0, 4000) interval of 

low-state costs, B the [4000, 6000) interval, C the 

[6000, 8000) interval, D the [8000, 10000) interval, 

and E the [10000, 12000) interval.  There are 109 

states and 108 state transitions which constitute a 

building cost transition process. 

 

4.2.1 STATE TRANSITION FREQUENCY OF 

BUILDING COSTS 

Table 2 shows the state transition frequency matrix of 

building costs five state transition chains. 

 

Table 2: State Transition Frequency of Building Costs 

from January 2011 to January 2020 

 A B C D E 𝑛𝑖. 

A 3 1 0 0 0 4 

B 1 25 2 0 0 28 

C 0 2 15 2 0 19 

D 0 0 2 8 4 14 

E 0 0 0 4 32 36 

𝑛.𝑗 4 28 19 14 36 𝑛=101 

 

4.2.2 TESTS FOR THE EXISTENCE OF A 

MARKOV CHAIN 

The five-state transition chain has a 𝜒2 distribution if 

it follows a Markov chain. To test this, the formula 

below is applied.  

𝜒2 = ∑ ∑
(𝑛𝑖𝑗 − 𝑛𝑖.𝑛.𝑗/𝑛)

2

(𝑛𝑖.𝑛.𝑗/𝑛)

𝑚

𝑗=1

𝑚

𝑖=1

 

Where 𝑛𝑖. (i = 1, 2, …, m) and 𝑛.𝑗 (j = 1, 2, …, m) are 

the frequency of state i and state j respectively. This 

has 𝜒2 distribution with (𝑚 − 1)2 degrees of 

freedom, where 𝑚 refers to the number of states. The 

test results are reported in Table 3. 
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Table 3: 𝜒2 Testing Results of Building Cost 

Transition Chain 

 

(𝑛𝑖𝑗 − 𝑛𝑖.𝑛.𝑗/𝑛)
2

(𝑛𝑖.𝑛.𝑗/𝑛)
 

j = 1 

(A) 

j = 2 

(B) 

j = 3 

(C) 

j = 4 

(D) 

j = 5 

(E) 

i = 1 (A) 50.9

709 

0.01

07 

0.75

25 

0.55

45 

1.425

7 

i = 2 (B) 0.01

07 

38.2

79 

2.02

67 

3.88

12 

9.980

2 

i = 3 (C) 0.75

25 

2.02

67 

36.5

244 

0.15

25 

6.772

3 

i = 4 (D) 0.55

45 

3.88

12 

0.15

25 

18.9

202 

0.196

4 

i = 5 (E) 1.42

57 

9.98

02 

6.77

23 

0.19

64 

28.63

42 

∑

𝑚

𝑖=1

 
53.7

123 

54.1

778 

46.2

284 

23.7

048 

47.00

88 

 

∑ ∑

𝑚

𝑗=1

𝑚

𝑖=1

 
    224.8

321 

 

With m = 5, so the degrees of freedom (𝑚 − 1)2 = 

(5 − 1)2 = 16. Using a 5% significance level (that is, 

𝛼 = 0.05) and referring to the 𝜒2 tables with 16 

degrees of freedom, 𝜒2
(16,   𝛼=0.05) = 26.296.  

 

The observed value of the sample statistics 𝜒2 is 

224.8321, much higher than𝜒2
(16,   𝛼=0.05) = 26.296.  

 

Thus, the null hypothesis is rejected, and the states are 

independent. As a result, it confirms that a state 

transition chain of building costs January 2011 to 

January 2020 follows a Markov Chain. 

 

4.3 LIMIT PROBABILITY OF A MARKOV 

CHAIN FOR CHANGING TRENDS OF 

BUILDING COSTS 

Let P represent the first – stage transition matrix. 

Having each element 𝑛𝑖𝑗 of respective row from Table 

3 divided by the sum of its row(𝑛𝑖.), the first – stage 

transition matrix P is stated below: 

 

 
 

Secondly, the derivation of the second – stage 

transition matrix, …, and the convergence state 

transition matrix is as follows: 

 

 

 

 
 

The row – vector, which has been converged to the 

same value is the Markov chain’s limit of building 

costs series denoted by 𝐿 

 

With the initial state probability vector, 𝑋(0) =

[0 1 0 0 0] 

 

 

X(∞)

= [0.0396 0.2772 0.1881 0.1386 0.3564] 

𝑋(∞) is the limiting state probability vector 

 

It implies that the building costs series have become 

stabilized after a continuous transition process. This 

convergence process is the changing trend of building 

costs, and the row – vector as the limit probability is 

the ultimate state of building costs series as seen in 

table four. 
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Table 4: Limit Probability Value of Markov Chain 

 A B C D E 

Limit 

Probability 

Value of 

Markov Chain 

0.03

96 

0.27

72 

0.18

81 

0.1386 0.3564 

 

This limit probability vector indicates the ultimate 

probability (or proportion) of five states in the building 

costs series. The probability of low level state 

A(0,4000) is 0.0396, meaning that the proportion in 

the series is 3.96%; the probability of  middle – low 

level state B[4000,6000) is 0.2772, the proportion is 

27.72%, the probability of  middle level state 

C[6000,8000) is 0.1881, the proportion is 18.81%, the 

probability of  middle – high level state 

D[8000,10000) is 0.1386, the proportion is 13.86%, 

the probability of high level state E[10000,12000) is 

0.3564, the proportion is 35.64% respectively as seen 

in figure two. 

 

 
Figure 2: The Limit Probability of Monthly Building 

Costs 

 

4.4 THE PROBABILITY DISTRIBUTION OF 

THE CHANGING TRENDS OF BUILDING 

COSTS 

The limit probability of building costs state transition 

chain as a Markov Chain is the ultimate state of 

building costs series. It approximates the changing 

trends of building costs in the medium and long-terms, 

but not in the short-term. An actual distribution of 

building costs series reflects the short-term changing 

trends of building costs. 

 

This study considered three named distribution, 

Lognormal, Gumbel Max and Weibull distribution by 

carrying out some statistical tests among the 

competing models to determine which distribution 

best fits the building costs data. 

 

 

4.4.1 PARAMETER ESTIMATES OF THE 

DISTRIBUTIONS 

To determine the probability distribution which the 

data follows, maximum likelihood estimates of each of 

the parameters of the distributions are obtained as it is 

summarized in table five below. 

 

Table 5: Parameter estimates for the Distribution 

DISTRIBUTIONS ESTIMATED 

PARAMETERS 

LOGNORMAL 

LN(μ,  σ2) 

μ̂ = 8.9097505 

 σ̂ = 0.3649262 

GUMBEL MAX 

GB(μ, σ) 

μ̂ =  6571.838 

σ̂ = 2393.921 

WEIBULL 

WE(γ, k) 

γ̂ = 8782.601809 

                k̂ =

 3.588844  

 

4.4.2 LOG – LIKELIHOOD RATIO VALUES OF 

THE DISTRIBUTIONS 

The log-likelihood theory provides rigorous and 

omnibus inference methods if the model is given, that 

is, after the parameters of a distribution have been 

obtained. The log-likelihoods form the basis of the 

selection of the distribution that fits the data. The 

distribution with the maximum log – likelihood value 

is considered the most suitable. The log – likelihood 

and log – likelihood ratio values are provided in tables 

6 and 7. 

 

Table 6: Log – likelihood values of the Distributions 

DISTRIBUTI

ONS 

LOGNOR

MAL 

𝐿𝑁(𝜇,  𝜎2) 

GUMB

EL 

MAX 

𝐺𝐵(𝜇, 𝜎) 

WEIBU

LL 

𝑊𝐸(𝛾, 𝑘) 

LOG- 

LIKELIHOO

D 

-950.7042 -

951.10

71 

-

942.963

4 

 

The log – likelihood ratio value is obtained by 

obtaining the difference between likelihood values of 

competing distributions 
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Table 7: Log – likelihood ratio values of the 

Distributions 

Competing 

Distribution 

Decisio

n 

Inference 

𝐿𝑁(𝜇,  𝜎2) and 

𝐺𝐵(𝜇, 𝜎) 

0.4029 

> 0 

LOGNORMA

L 

𝑊𝐸(𝛾, 𝑘) and

 𝐺𝐵(𝜇, 𝜎) 

8.1437 

> 0 

WEIBULL 

𝑊𝐸(𝛾, 𝑘) and 

𝐿𝑁(𝜇,  𝜎2) 

7.7408 

> 0 

WEIBULL 

 

The Weibull distribution emerges the most suitable 

distribution for the data since it has the highest log – 

likelihood value. 

 

4.4.3 GOODNESS OF FITS TEST 

The idea behind the goodness of fit tests is to measure 

the "distance" between the data and the distribution 

being tested and compare the distance to some 

threshold value. Since the goodness of fit test statistics 

indicate the distance between the data and the fitted 

distributions, it is obvious that the distribution with the 

lowest statistic value is the best fitting model. 

 

Table 8: Goodness of fit test 

 LOGNORM

AL 

GUMB

EL 

MAX 

WEIBU

LL 

Kolmogor

ov-

Smirnov 

0.1819568 0.17931

20 

0.175322

2 

Anderson-     

Darling 

4.4835393 4.27100

97 

4.269254

3  

Cramer-

von Mises 

0.7405879 0.68041

94 

0.675340

4 

 

The Weibull distribution is shown to have the best fit 

of the three distributions. The Kolmogorov – Smirnov, 

Anderson - Darling statistics and Cramer-von Mises 

have the least figure under the Weibull distribution. 

These results show that in comparison to Lognormal 

and Gumbel Max distribution, the Weibull distribution 

is a more acceptable fit for the building costs. 

 

4.4.4 COMPARISON OF MODEL 

This section compares the appropriateness of the 

distribution models. Specification measures such as 

Akaike Information Criteria (AIC) and Bayes 

Information Criteria (BIC) were employed. It was 

observed that the AIC and BIC for the Weibull 

distribution is smaller than those of the gamma, 

Lognormal and Gumbel Max distribution. Thus, the 

Weibull distribution is a better fit for the building 

costs. 

 

Table 9: Comparison of the results of the models 

 LOGNORMAL GUMBEL 

MAX 

WEIBULL 

AIC 1905.408 1906.214 1889.927 

BIC 1910.658 1911.464 1895.177 

 

From Table 6 to 9, it can be deduced that the building 

costs series conform to a Weibull distribution.  

The function of the Weibull distribution is as follows: 

𝑓(𝑥, 𝛾, 𝑘) =
𝑘

𝛾
(

𝑥

𝛾
)

𝑘−1

𝑒
−(

𝑥

𝛾
)

𝑘

, 𝑥 > 0, where 𝑘 > 0 is 

the shape parameter and 𝛾 > 0 is the scale parameter. 

The estimated parameters are:  𝑘 = 3.588 and 

𝛾 = 8782.602 

Substituting 𝑘 = 3.588 and 𝛾 = 8782.602 in the 

Weibull distribution,  

𝑓(𝑥) =
3.588

8782.602
(

𝑥

8782.602
)

3.588−1

𝑒−(
𝑥

8782.602
)

3.588

 

= 0.00041 (
𝑥

8782.602
)

2.588

𝑒−(
𝑥

8782.602
)

3.588

 

Hence, the fitted probability density function (pdf) is 

given as: 

𝑓(𝑥) = 0.00041 (
𝑥

8782.602
)

2.588

𝑒−(
𝑥

8782.602
)

3.588

  

 

V. CONCLUSION 

 

The value of LCC is its ability to provide more 

comprehensive and accurate cost predictions as there 

is an increasing realisation of the importance of 

considering operation and maintenance costs as 

opposed to capital costs throughout the life of an asset. 

 

The results obtained from this exercise provide the 

researcher with a great deal of information about 

modelling inputs into life cycle costing exercises. The 

conceptual framework is generic and can thus be 

applied to any sustainable building, at any level from 

sub-elemental to the whole cost scenario.  

 

This study is different from previous ones in terms of 

the input parameters used and a different case study. 
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This paper further demonstrates that the development 

of a stochastic model using Markov chain 

methodology is feasible. There is a however the need 

to evaluate Markov chains with more projects for 

future developments. 
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