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Abstract- The ultimate parameter, upon which every 

rotating electric machine is scaled is its performance 

characteristics, which includes; the output torque, 

output power, angular speed, power factor and 

efficiency. Obviously, the output characteristics of all 

conventional transfer field effect machines are much 

inferior to that of conventional induction machines 

of comparable sizes and ratings. This is a 

consequence of their low direct axis reactance to 

quadrature axis reactance ratio, coupled with the 

excessive leakage reactance from the quadrature 

axis reactance. This is because they possess projected 

rotor pole structures. An analysis of the afore-

mentioned, using dynamic/steady state models is the 

subject matter of this work. This is achieved by 

transformation of the machine’s parametric 

equations in a-b-c reference frame to arbitrary q-d-o 

reference frame, from which its equivalent 

circuit/matlab simulation/plots were obtained. 

 

Indexed Terms- Transfer field motor, reference 

frame, dynamic/steady-state model, equivalent 

circuit. 

 

I. INTRODUCTION 

 

In its broad definition, a reluctance motor is electric 

machine in which torque is produced by the tendency 

of a movable part to move into a position where the 

inductance of an energized phase winding is a 

maximum. In its familiar form, it is a three-phase 

machine with salient (projected) pole rotor structure 

having a squirrel cage which is included only for the 

purpose of enabling it to start as an asynchronous 

machine and then pull into synchronous at fuel speed 

(Ijeomah, C. N. et al, 1996). Structurally, the transfer 

field motor is basically a reluctance machine. It differs 

from the simple reluctance machine in two important 

aspects viz; 

i) it has two set of windings instead of one, as 

obtainable in simple reluctance machine 

ii) each winding has a synchronous reactance which 

is independent of rotor position, unlike the winding 

reactance of simple reluctance machine that varies 

cyclically (L.A. Agu, 1984). The transfer field 

reluctance machines occupy a very lowly position 

in the family of rotating electric machinery 

because of its low output characteristics in 

comparison with an induction machine of the same 

dimension. Despite these setbacks, transfer field 

effect motors are almost the inevitable choice in 

electric clocks, textile drives, grinding machines 

for perishables etc. 

 

II. MACHINE DESCRIPTION/PHYSICAL 

CONFIGURATION 

 

The transfer field reluctance machine (TFM) as shown 

in Plate 1 with connection diagram as in figure 1, 

comprises a two stack machine in which the rotor is 

made up of two identical equal halves whose pole axes 

are 𝜋 2⁄  radians out of phase in space. They are housed 

in their respective induction motor type stators. There 

are no windings in the rotor. The stator has two 

physically isolated but magnetically coupled identical 

windings known as the main and auxiliary windings. 

The axes of the main windings are the same in both 

halves of the machine, whereas the axes of the 

auxiliary windings are transposed in passing from one 

half of the machine to the other. Both sets of windings 

are distributed in the stator slots and occupy the same 

slots for perfect coupling and have the same number 

of poles. The two sets of windings of the transfer field 

machine are essentially similar and may be connected 

in parallel which of course double its output. 
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The stator and rotor of the machine are wound for the 

same pole number and both are star connected as in fig 

1. 

 
Plate 1 – Pictorial view of a transfer field reluctance 

machine. Courtesy of machine laboratory, University 

of Nigeria Nsukka 

 

 
Fig 1 Connection diagram for a transfer field motor 

(Eleanya M.N 2015) 

 

III. THE MACHINE MODEL 

 

The per-phase coupled coil representation of the 

Transfer Field Machine is shown in fig 2 below 

 

 
Fig 2: Per phase coupled coil representation of a T.F. 

Motor 

 

Each machine half is similar in features to the 

conventional synchronous machine. The major 

unorthodox characteristics of the machine are;  

i) the stator and rotor are arranged in two identical 

halves; and hence the machine may be treated as 

two separate reluctance machines whose stator 

windings are connected in series. 

ii) there are no windings in the rotor 

iii) the pole axes of the two pole half are mutually in 

space quadrature there is second set of poly-phase 

stator windings (auxiliary windings) whose 

conductor side are shifted electrical by 1800 (anti-

series), by passing through one section of the 

machine to another. The main and the auxiliary 

windings are identical in all respects and occupy 

the same electrical position in the stator slot, thus 

ensuring a perfect coupling between the windings. 

 

IV. PRINCIPLE OF OPERATION AND 

ANALYSIS 

 

The analysis of the three-phase transfer-field machine 

derived from the studies on coupled machines (Anih 

L.U. et al 2001). 

 

In its operation, when the main windings of machine 

A is connected to an a.c supply voltage, V, with the 

auxiliary windings open circuited, it draw a 

magnetizing current Io at the supply frequency ωo.  

 

This magnetizing current produces an magnetomotive 

force  (mmf) distribution on both units of the machine 
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(A and B) which may be expressed as (Anih L.U. et al 

2008);  

Magnetizing (mmf) mo = Mo cos (x – ωo t)   (1) 

Where; m0 = Instantaneous value of the magnetizing 

mmf 

    Mo = Peak amplitude of the instantaneous 

magnetizing mmf  

x = Angular distance measured from the reference 

axis, which is taken as the center line of the stator poles  

t = Time in seconds  

ω0 = Supply angular frequency.  

 

The air-gap permeance of the rotor in one unit 

machine, say unit A, may be expressed as;  

PA = Po + PV Cos 2 (x-ωt)    (2) 

 

Where;  

PA = Rotor permeance distribution for unit area of air-

gap of machine A half. 

Pv = the amplitude of the variable part of the 

permeance distribution.  

ω = the speed of rotor of unit machine  

 

Similarly, the air-gap rotor permeance distribution in 

unit B machine, whose pole axis is in space quadrature 

with unit A machine may be expressed as;  

PB = Po + Pv Cos 2 (x –ωt – 900) 

     = Po - Pv Cos 2 (x –ωt)   (3) 

 

The flux density produced by this mmf at the instant 

when its axis coincides with the pole axis of the rotor 

of machine A is given by;  

BAO = mo PA 

= M0 cos (x-ωot) [Po + PV Cos 2 (x-ωt)] 

= Mo Po Cos (x-ωot) + Mo PV Cos (x-ωot) Cos 2 (x-ωt) 

= Mo Po Cos (x-ωot) + 0.5 Mo PV Cos [x – (2ω - ωo)t] 

+ 0.5 Mo PV Cos  (3x- ωt – ωt) + third harmonics       

(4)   

Similarly, the corresponding flux density distribution 

produced in machine B is expressed as;  

BBO = Mo Po Cos (x-ωot) – 0.5 Mo Po Cos [x + (ωo - 

2ω)t] + third space harmonics          

(5) 

 

It should be noted at this juncture that the first 

components of equations (4 and 5) will induce emfs E1 

in the main windings which is additive and tend to 

oppose the voltage supply. The e.mf’s they induce in 

the auxiliary windings cancel out. These e.m.fs are 

equal in magnitude and in time phase.  

 

The second components of equations (4 and 5), will 

induce voltages E2, in the main windings which are 

equal and opposite and in consequence, cancel each 

other (anti-phase). However, in he auxiliary winding, 

these induced voltages, E2 will add up because of the 

transposition of the auxiliary windings.  See fig 3 for 

illustration. 

 

 
Fig 3: Induced voltage, E1, E2 in the main and 

auxiliary winding 

 

The direction of emf E1 induced in the main winding 

conductor in both halves of the machine A, B such as 

𝑎1  and 𝑎́1 by this flux is as shown in fig 3 in full lines. 

These emfs E1 are both equal in magnitude and in time 

phase in both sections of the machine and will oppose 

the supply voltage V in both sections 

 

 
Fig 4a: Section A part of the machine showing the 

induced e.m.f s in the stator windings 
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Fig 4b: Section B part of the machine showing the 

induced e.m.f s in the stator windings (Source-

Anih/Agu 2008) 

 

The emfs induced by the third space harmonics cancel 

out if the windings are star connected. If however, the 

windings are desired to be connected in delta, the 

winding pitch must be chosen such that the emf 

induced by harmonics of flux is eliminated. 

 

The average value of the second components of the 

flux in equation (4 and 5); 

 

ie ± 0.5 Mo Po Cos [x + (ωo - 2ω)t] = 0  

 

More-still, the average of this flux as seen by the 

auxiliary windings, whose conductors are transposed 

between the two machine halves is expressed as; 

BAO – BBO = 0.5 Mo PV Cos [x+ (ωo - 2ω)t]   (6) 

 

This flux density distribution rotates in the negative 

clockwise direction for ω < 
𝜔𝑜

2
 

 

The direction of emf E2 induced in the auxiliary 

windings by this flux will be in anti-phase in both 

halves of the machine (see fig 3), because of the 

transposition of the auxiliary windings as shown in the 

dotted circles in fig 4b It therefore follows that in 

section A half, E2 will be diametrically opposed to E1 

and in section B half E2 will be in phase with E1 (see 

fig.3) 

 

 

 

 

 

V. THE DYNAMIC MODEL OF 3-PHASE 

TRANSFER FIELD MOTOR  

 

For the stator windings of the three-phase TF machine, 

the mathematical model of the voltage equation is 

given by; 

 VA = rA iA + PλA  (7) 

 VB =   rB iB + PλB  (8) 

 VC =   rC iC + PλC  (9) 

Where  VA = VR (Red) 

   VB = VY (yellow) 

 

VC = VB (Blue) are the three phase balance voltage 

which rotate at the supply frequency (ω) at the main 

winding.  

 

For the rotor, the flux linkages rotate at the speed of 

the rotor (ωr). 

 

Therefore  for the auxiliary winding of the machine, 

we have;  

Va = ra ia + ρλa    (10) 

Vb = rb ib +  ρλb    (11) 

Vc = rc ic +  ρλc    (12) 

 

Equations (7-12) can be written in a compact form as; 

VABC = rABC iABC + ρλABC   (13) 

Vabc = rabc iabc + ρλ abc   (14) 

where; 

ρ = d/dt (derivative term, as usual) 

(VABC)T = [VA, VB,   VC]   (15) 

 (Vabc)
T = [Va, Vb,   Vc]   (16) 

rABC = diag ([rA rB rC])   (17) 

rabc = diag ([ra rb rc])   (18) 

 

In the above two equations (15) and (16), “ABC” 

subscript denotes variables and parameters associated 

with the main winding and the subscript “abc” denotes 

variables and parameters associated with the auxiliary 

winding. Both rABC and rabc are diagonal matrices each 

with equal non zero element. For a magnetically linear 

system, the flux linkages may be expressed as (Anih 

L.U, Obe E.S.  2009); 

[
𝜆𝐴𝐵𝐶

𝜆𝑎𝑏𝑐
] = [

𝐿𝐺𝐺      𝐿𝐺 𝐻  

𝐿𝐻𝐺     𝐿𝐻𝐻
]  [

𝑖𝐴𝐵𝐶

𝑖𝑎𝑏𝑐
] wb turn        (19) 

 

Where, 
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  (20) 

 

The super-script t of equation (20) denotes the 

transpose of the array. 

 

The inductance matrices term LGG , LGH, and LHH are 

obtained from inductance sub-matrices L11, L12, L21 

and L22 for machines A and B, defined as; 

 

 

 

Where; 

 

L = the augmented matrix, for the inductance matrix 

for machine A and B 

 

L11 and L22 are “self” inductances of main and 

auxiliary windings respectively.  

 

L12 and L21 are the “mutual” inductances between the 

main and auxiliary windings. 

 

LGG is obtained by adding L11 for machine A and L11 

for machine B. 

 

 

This will yield;

 

 

LGH is obtained by adding L12 for machine A to L12 for machine B to give
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Where α = 
2𝜋

3
 

By applying the same method, LHG and LHH are 

obtained. So far the main and auxiliary windings in 

both machine halves are identical, LGG is observed to 

be equal to LHH. So also LGH and LHG. Owing to this 

observation of equality, auxiliary winding parameters 

do not change values when they are referred to the 

main winding.  Equations (22) and (23) resemble the 

inductance expressions for a wound rotor induction 

machine, even though the individual machine making 

up the composite machine possesses salient pole rotors 

with no conductors. 

 

VI. MACHINE MODEL IN ARBITRARY Q-D-

O REFERENCE FRAME 

 

In order to remove the rotor position dependence on 

the inductance seen in equation (23), the voltage 

equations (13) and (14) need to be transferred to q-d-o 

reference frame. The technique is to transform all the 

state variables to an arbitrary reference frame. 

Equation (19) is then rewritten in q-d-o frame as; 

 

 

 

β = speed of rotation of the arbitrary reference frame.  

As β = 2θr = θ, as in equation (23) the time varying 

inductance frame, the voltage equation will be totally 

eliminated.  

Hence, the voltage equations (13) and (14) will after 

the transformation yield; 

VQ = ωλD + ρλQ + rIQ    (26) 

VD = ωλQ + ρλD + rID    (27) 

VO = ρλO + rIO     (28) 

 

Doing like-wise for the rotor quantities (auxiliary 

windings) yield;  

Vq = (ω-2ωr) λd + ρλq + rIq    (29) 

Vd = (ω-2ωr) λq + ρλd + rId    (30) 

Vo = (ω-2ωr) ρλo + rIo    (31) 

 

Also, the flux linkages of equation (23) are expressed 

as; 

λQ = (2L1 + Lmq +Lmd)IQ – (Lmd - Lmq)Iq 

     = 2 L1 IQ + Lmq IQ + Lmd IQ - Lmd Iq+ Lmq Iq 

     = 2 L1 IQ + Lmq IQ + Lmd IQ+ Lmd IQ- Lmd IQ- Lmd Iq+ 

Lmq Iq 

       = 2 L1 IQ + 2Lmd IQ + Lmq IQ- Lmd IQ- Lmd Iq+ Lmq Iq 

       = 2(L1 + Lmd) IQ + [IQ (Lmq+Lmd) + Iq (Lmq - Lmd)] 

       = 2 (L1 + Lmd) IQ+ (IQ+Lq) (Lmq - Lmd) 

 λQ = 2(L1 + Lmd) IQ+ (IQ+Iq) (Lmq - Lmd)  (32) 

 

Similarly  

λD = (2L1+ Lmq + Lmd) ID + (Lmd - Lmq) Id  

 λD = 2(L1+ Lmq) ID + (ID - Id) (Lmd - Lmq)  (33) 

λO = 2L1 IO     (34) 

 

Also 

λq = (2L1+ Lmq+ Lmd) Iq - (Lmd - Lmq) IQ  

  = 2(L1+ Lmd) Iq + (Lmq - Lmd) (IQ+Iq)   (35) 

λd = (2L1+ Lmq+ Lmd) Id + (Lmd - Lmq) ID 

  = 2(L1+ Lmq) Id + (Lmd - Lmq) (ID+Id)   (36) 

λO = 2L1IO     (37) 

 

As before, equations (32– 34) represent the flux 

linkages of the main winding circuit while equations 
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(35 – 37) represent the flux linkages of the auxiliary 

winding, and r in equations (26 – 31) is the sum of the 

resistances of the main or auxiliary windings in both 

machine halves. 

 

Hence, equation (32) can be put into equation (26), and 

equations (36) into equation (29) to yield; 

 

VQ = ωλD + ρ [2(L1+ Lmd) IQ +  (Lmq - Lmd) (IQ+Iq)] + 

rIQ 

= ωλD + jω [2(L1+ Lmd)] IQ +  jω (Lmq - Lmd) (IQ+Iq) + 

rIQ    (38) 

 Vq = (ω-2ωr) λd + [2(L1 + Lmd) Iq] + (Lmq - Lmd) 

(IQ+Iq)] + rIq 

 Vq = (ω-2ωr) λd + jω [2(L1+ Lmq)] Iq  +jω (Lmq - Lmd) 

(IQ+Iq) + rIq  (39) 

 

Equation (38) and (39) result the T equivalent circuit 

shown below in figure 5. 

 

 
Fig 5: Arbitrary reference frame equivalent circuit for 

a 3-phase symmetrical transfer field machine in the 

q-variable. 

 

Applying the same method to equation (33) and (27) 

and then equations (35) and (30) we have;  

 

VD = - ωλQ + ρ [2(L1+ Lmq) + (Lmd - Lmq) (ID+Id)] + rID

  

= - ωλQ + jω2 (L1+ Lmq) ID + jω (Lmd- Lmq) (ID+Id) + 

rID    (40) 

Vd = - (ω - 2ωr) λq +  [2(L1+ Lmq) Iq + (Lmd - Lmq) 

(ID+Id)] + rId   

     = - (ω - 2ωr) λq + jω2 (L1+ Lmq) Iq + jω (Lmd - Lmq) 

(ID+Id)] + rId   (41) 

 

Equations (40) and (41) result the Tequivalent circuit 

shown below in figure 6 

 

 
Fig 6: Arbitrary reference frame equivalent circuit for 

a 3-phase symmetrical transfer field machine in the 

d-variables 

 

More still, from equation (28) and (34), (31) and (37) 

we have; 

Vo = ρλo + rIo 

     = ρ(2L1  Io) + rIo    (42) 

Vor = ρλo+ rIo 

= ρ(2L1 Io) + rIo     (43) 

 

Equations (42) and (43) result the T equivalent circuit 

shown in fig 7 

 

 
Fig.7: Arbitrary reference frame equivalent circuit for 

a 3 – phase symmetrical transfer field machine in the 

O-variable 

 

VII. q-d-o Torque Equation 

 

The expression for electromagnetic torque is obtained 

from energy considerations and derived to be (Anih 

L.U, Obe E.S 2009); 

 

Te = 
𝑃𝑛

2
 [𝐾𝐺 (

𝐼𝐴

𝐼𝐵

𝐼𝐶

)]

𝑇

 [
𝜕

𝜕𝜃
 [𝐿𝐺𝐻]] [𝐾𝐺 (

𝐼𝑎

𝐼𝑏

𝐼𝑐

)]  (44) 

 

Equation (44) can be shown to yield; 

 

Te = 
3

4
 Pn (Lmd – Lmq) (IQ Id – Iq ID)   (45) 

 

Equation (45) shows that currents in both the main and 

auxiliary windings contribute positively to torque 

production, therefore, there is no copper penalty 

limitation of space for auxiliary winding conductor is 

utilized. 
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The electromechanical (rotor) dynamic equation for 

the machine is expressed as; 

J
𝑑𝜔𝑚

𝑑𝑡
  =  Te - TL   (46) 

Where;  

Pn = Number of poles 

TL = motor shaft load torque in N-m 

Te = Electromagnetic torque in N-m 

J = Moment of inertia of motor in kg – m2 

ωm = Mechanical rotor speed in rads-1 

 

VIII. Steady-state analysis of 3-phase transfer field 

machine model in arbitrary q-d-o reference 

frame 

 

The steady state equivalent circuit of a three-phase 

transfer field machine may be derived from the d-q-o 

equivalent circuit. This can be achieved with the 

understanding that all the derivative terms of equation 

(26) through equation (32) are set to zero, and the 

following relations exist between the q-axis and d-axis 

variables.  

 

FD = jFQ (Main winding circuit) 

Fd = - jFQ (Auxiliary winding circuit) 

VQ = VA, IQ = IA, Vq = Va, Iq = Ia  

 

As the machine is half speed type with synchronous 

speed ω1 = 
𝜔

2
; the per slip 𝑠́ is given by;  

𝑠́ = 
𝜔́−𝜔𝑟

𝜔́
    (47) 

= 
𝑂.5𝜔−𝜔𝑟  

𝑂.5𝜔
 

= 
𝜔−2𝜔𝑟  

𝜔
 

 𝑠́ω = ω-2ωr    (48) 

But for the normal induction machine counterpart;  

s = 
𝜔−𝜔𝑟  

𝜔
 

 ωr =  ω-sω    (49) 

Putting equation (49) into equation (48), yields;  

𝑠́ = 2s – 1    (50) 

It can be recalled from equations (26-32) that; 

VQ  = ωλD + ρλQ + rIQ 

= ωλD + (0)λQ + rIQ 

= ωλD + rIQ 

 VQ  = ωλD+ rIQ 

= jω [2 (L1+ Lmq) ID + (Lmd - Lmq) (ID+Id)] + rIQ  

= j[2 (x1+ xmq) ID + (xmq - xmd) (ID+Id)] + rIQ  

 VA = [j2(x1+ xmq)+r] IA +  j (xmd - xmq) (IA+Ia)      

(51) 

Similarly  

Vq = (ω-2ωr) λd +  λd + rIq   

     = (ω-2ωr) λd + (0)λq + rIq 

     = (ω-2ωr) λd + rIq 

= 𝑠́ω λd+ rIq 

= 𝑗𝑠́ω [2(L1+ Lmq)) Id + (Lmd - Lmq) (ID+Id)] + rIq 

= j𝑠́ [2(x1+ xmq)) Id + (xmd - xmq) (ID+Id) + rIq 

Dividing both sides by 𝑠́, we have; 

 
𝑉𝑞

𝑠́
 = j [2(x1+ xmq)) Id + (xmd - xmq) (ID+Id) + 

𝑟𝐼𝑞

𝑠́
   

 
𝑉𝑎

𝑠́
 = [j2(x1+ xmq)Ia] + j(xmd - xmq) (IA+Ia) +

𝑟𝐼𝑎

𝑠́
   

= [2j(x1+ xmq) + 
𝑟

𝑠́
 ]Ia + j(xmd - xmq) (IA+Ia)] 

Referring to equation (50);  

 
𝑉𝑎

2𝑆−1
  = [j2(x1+ xmq) + 

𝑟

2𝑠−1
] Ia + j [(xmd - xmq) (IA+Ia)]   

(52) 

 

Equations (51) and (52) result a per phase T – 

equivalent circuit as shown in figure 8. 

 

 
Fig 8: Per phase steady state T – equivalent circuit of 

a 3-phase transfer field machine, using the q-variable. 

 

The rotor (auxiliary) is usually short circuited and 

hence from figure 8,  
𝑉𝑎

2𝑆−1
 = 0 

Also, 
𝑟

2𝑆−1
 = r + 

2𝑟(1−𝑠)

2𝑆−1
    (53) 

 

Hence, figure 8 can be redrawn for better as in figure 

9 to suit equation (53) as below. 

 

 
Fig 9. Per phase steady state T - equivalent circuit of 

a 3-phase transfer field   motor. 
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N-B - Figure 9 can also be obtained using the d-

variable of equation (27) and (30). 

 

IX. Power across air – gap, Torque and power 

output in 3-phase Transfer field Machine 

 

With reference to the equivalent circuit of figure (9), 

the power crossing the terminals (ab) in the circuit is 

the electrical power input per phase minus the stator 

losses (stator copper and iron losses) and hence, is the 

power that is transferred from the stator (main 

windings) to the rotor (auxiliary windings) through the 

air-gap magnetic field. This is known as the power 

across the air gap. Its 3-phase value is symbolized as 

PG. 

From figure 9, 

PG  = 3(Ia)
2  

𝑟

2𝑆−1
   (54) 

The Auxiliary winding copper loss Pc(aux) = 3(𝐼𝑎)    𝑟
2  

   (55) 

 From equations (54) and (55); 

PG =   
𝑃𝑐 (𝑎𝑢𝑥)

2𝑆−1
     

     

 Pc (aux) = (2S-1)PG        (56) 

If equation (55) is subtracted from equation (54), we 

have;  

PG – Pc (aux) = Pm (Mechanical output (gross) power) 

 Pm = [ 3(Ia)
2 

𝑟

2𝑆−1
] - [ 3(Ia)

2r] 

    = 6(Ia)
2     𝑟(1−𝑠)

2𝑆−1
 

 Pm = 2PG (1-s)           (57) 

 

From the equations established so far, it is evident that 

high slip (s) operation of the transfer field machine 

would be highly inefficient, hence, transfer field motor 

just as the induction motor counterpart are therefore 

designed to operate at low slip at full load. 

 

X. The steady-state output characteristic of a 3-

phase transfer field reluctance motor 

 

The steady-state output characteristic of a 3-phase 

transfer field reluctance machine can be studied for 

clarity if the per phase steady-state equivalent circuit 

of figure (9) is modified as shown fig 10 below; taking 

x1 + xmq = xq 

 

 

 

 

Fig 10a/b: Modified per phase steady-state T- 

equivalent circuit of a 3-phase transfer field motor. 

 

From figure 10, the VTH   (voltage across a-b) is given 

by; 

VTH =[
𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)

𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)+ (𝑟+𝑗2𝑋𝑞)
] VA     volts  

        =[
𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)

𝑟+𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞)
] VA      volts       (58) 

If r<< j (xmd-xmq+  2xq), then equation (58) becomes; 

VTH =[
𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)

𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞)
] VA         volts       (59) 

VTH =[
(𝑋𝑚𝑑−𝑋𝑚𝑞)

 (𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞)
] VA        volts  

Also ZTH = 
𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)(𝑟+𝑗 2𝑋𝑞)

𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)+ (𝑟+𝑗2𝑋𝑞)
 

 = 
𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)(𝑟+𝑗2𝑋𝑞)

𝑟+𝑗(𝑋𝑚𝑑−𝑋𝑚𝑞 +2𝑋𝑞)
         (60) 

 

If r<< j (rmd-xmq) +  2xq), then equation (58) become; 

ZTH = 
𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞)(𝑟+𝑗2𝑋𝑞)

𝑗 (𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞)
 

 = 
 (𝑋𝑚𝑑−𝑋𝑚𝑞)(𝑟+𝑗2𝑋𝑞)

 (𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞)
 

          = 
𝑟 (𝑋𝑚𝑑−𝑋𝑚𝑞)+ 𝑗2𝑋𝑞 (𝑋𝑚𝑑−𝑋𝑚𝑞)

(𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞 ) 
 

= 
𝑟 (𝑋𝑚𝑑−𝑋𝑚𝑞) 

 (𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞)     +    
 𝑗(2𝑋𝑞(𝑋𝑚𝑑−𝑋𝑚𝑞)

   (𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞)    (61) 

But ZTH = RTH (Real Component) + XTH (Imaginary 

component) 

Hence, RTH =  
𝑟 (𝑋𝑚𝑑−𝑋𝑚𝑞)

 𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞
  (62) 

             XTH  = 
𝑗[(2𝑋𝑞(𝑋𝑚𝑑−𝑋𝑚𝑞)]

 𝑋𝑚𝑑−𝑋𝑚𝑞+2𝑋𝑞
                (63) 
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The circuit of figure (10b), then reduces to that of 

figure 11, in which it is convenient to take VTH as the 

reference voltage 

 

 

Fig 11: Thevenin equivalent of 3 – phase transfer 

field motor circuit model 

 

From figure 11, 

Ia = 
𝑉𝑇𝐻

(𝑅𝑇𝐻+
 𝑟

2𝑠−1
)+ 𝑗(𝑋𝑇𝐻+2𝑥𝑞)

 Amperes    (64) 

 (Ia)
2 = 

(𝑉𝑇𝐻)2

(𝑅𝑇𝐻+
𝑟

2𝑠−1
)

2
+ (𝑋𝑇𝐻+2𝑥𝑞)2

 Amperes    (65) 

The expression for the steady state electromagnetic 

torque is given by; 

Te = 
𝑃𝑚

𝜔𝑟
 = (

6(𝐼𝑎)2𝑟

𝜔𝑟
) (

1−𝑠

2𝑠−1
) 

= (
6(𝐼𝑎)2𝑟

𝜔 (1−𝑠)
) (

1−𝑠

2𝑠−1
) =  

6(𝐼𝑎)2𝑟

𝜔(2𝑠−1)
       N-m    (66) 

Hence, putting equation (65) into equation (66) yields;  

Te =(
6

𝜔
) 

(𝑉𝑇𝐻)2

(𝑅𝑇𝐻+
𝑟

25−1
)

2
+ (𝑋𝑇𝐻+2𝑥𝑞)2

 (
𝑟

2𝑠−1
) N-m     (67) 

 

XI. TORQUE/SLIP CHARACTERISTICS OF 3-

PHASE TRANSFER FIELD MOTOR 

 

The torque/slip characteristic of the motor is analysed 

using equation 67 for the Matlab plot, as shown in 

figure 12. 

 

XII. EFFICIENCY/SLIP CHARACTERISTICS 

OF 3-PHASE TRANSFER FIELD MOTOR  

 

The efficiency/slip relationship for 3-phase transferred 

field machine can be investigated using the per phase 

steady-state equivalent circuit of a 3-phase transfer 

field motor of fig 10(b).  

From fig 10(b); 

The input impedance looking through the input 

terminals is; 

Z = r + j2xq + [
𝑗(𝑋𝑚𝑑− 𝑋𝑚𝑞)(𝑗2𝑥𝑞+ 

𝑟

25−1
)

𝑟

25−1
+ 𝑗(2𝑥𝑞+(𝑋𝑚𝑑− 𝑋𝑚𝑞))

]    (68) 

Also, the current in the main winding (IA) is given by; 

IA = 
𝑉𝐴

𝑍
           (69) 

The current in the auxiliary winding is given by; 

Ia  =  [
𝑗(𝑋𝑚𝑑− 𝑋𝑚𝑞)

𝑟

25−1
+ 𝑗(2𝑥𝑞+(𝑋𝑚𝑑− 𝑋𝑚𝑞))

]IA       (70) 

The copper losses in the main and auxiliary windings 

= 3r(IA + Ia)
2                  (71) 

Input power = Output power + the copper losses, 

excluding windage and friction losses.  

From equation 57, 

The machine input power = 6r (
1−𝑠

2𝑠−1
) (Ia)

2
 + 3r(IA + Ia)

2   

= 3r [2(
1−𝑠

2𝑠−1
) (𝐼𝑎)2 + (𝐼𝐴 + 𝐼𝑎)2 ]          (72) 

Hence, the machine Efficiency ɛ = 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
 = 

2(
1−𝑠

2𝑠−1
) (𝐼𝑎)2

2(
1−𝑠

2𝑠−1
) (𝐼𝑎)2+(𝐼𝐴+𝐼𝑎)2

      (73) 

The efficiency/slip characteristics of 3-phase transfer 

field motor is analysed using equation 73 for the 

Matlab plot as shown in figure 13 

 

Table 1:  The Machine Parameters 

S/No Parameter  Value 

1 Lmd 133.3mH 

2 Lmq 25.6mH  

3 LLs = Lia = Ler 0.6mH 

4 rm = ra  3.0Ω 

5 J 1.98x10-3kgm3 

6 V 220V 

7 F 50HZ 

8 P 2 

 

The Matlab plots for the torque developed against slips 

are shown in figure 4.1a and 4.1b 
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Fig 12 A plot of torque developed against ranges of slip(s) for 3-phase transfer field motor

 

Fig 13: Efficiency/Slip characteristics of 3-phase transferred field motor 

 

XIII. Power factor/slip characteristics of 3-phase 

transferred field reluctance motor 

 

The Matlab plots of the power factor (cos 𝜃)/slip 

relationships for 3-phase transferred field motors is 

obtained using equations 75. The plot is depicted in 

figure 14. 
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Fig. 14: Power factor/slip characteristics of 3-phase transfer field motor. 

 

XIV. Induced current/slip characteristics of 3-phase 

transfer field motor 

 

The Matlab plots of the induced current (Ia and I23)/slip 

relationship for the motor is obtained using equations 

64. The matlab plot is shown in figure 15. 

 

Figure 15: A plot of auxiliary current against slip for 3-phase transfer field motor with no cage winding. 

 

XV. Dynamic-state simulations of 3-phase transfer 

field motor 

Using equation 26 through equation 46 and values for 

circuit parameters of table 1, the dynamic simulation 
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plots of 3-phase transfer field motor are shown in 

figure 16 and figure 17. 

 

Fig. 16: The Electromagnetic Torque against time of three-phase transfer field motor.

 

Fig 17: Auxiliary winding (rotor) speed (ωr) against time of three-phase transfer field motor. 
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ANALYSIS OF RESULTS

 

i. For Steady-state operation, from the steady-state 

electromagnetic torque versus slip characteristics 

of figure 12 at slip of 0.5, the injected voltage at 

the auxiliary and winding is zero. Hence, 

necessitating a zero torque. The starting torques of 

the steady-state electromagnetic torque of the 

machine is 0.16N-m while the maximum 0.80N-m. 

 

At stand still condition of the machine, the power 

factor is seen to be 0.09 as in fig.14. These are 

indeed poor, compared to output characteristics of 

induction motor of comparable size and rating. 

Also, at synchronous speed (s = 0.5), current 

decayed to zero, but at zero speed (Nr = 0, S = 1), 

starting current is a maximum at 5.3A as in figure 

(15). 

 

ii. For the dynamic operation of the motor, the rotor speed 

run-up plot against time is shown in figure 17. There was 

a little transient at different stages while rotor speed builds 

up before an application of load at 7 seconds. After 

another little transient, the rotor speed now settles at a 

steady-state at about 1415N-m. Also, the plot of 

Electromagnetic torque against time for the motor, with 

oscillation noticed at different stages is shown in figure 16. 

A close observation shows that on no-load, value for 

electromagnetic torque is zero. One application of load 

torque at 6.8second to the motor, it oscillates and settled at 

a steady-state of 2.25N-m 
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