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Abstract- In this research, the analytical solutions of 

optimal control problems constrained by ordinary 

differential equations are examined. The analytical 

solutions are obtained by applying the first order 

optimality conditions on the Hamiltonian function 

and solving the resulting system of first order 

ordinary differential equations. This leads to the 

optimal state, control and adjoint variables and 

hence the optimal objective function value. Two 

examples of optimal control problems constrained by 

ordinary differential equations are considered. 

 

I. INTRODUCTION 

 

Optimal control problems are mathematical 

programming problems involving state and control 

variables. Optimal control theory is used to minimize 

an objective function by finding a control law for a 

dynamical system over a given period of time. It has 

numerous applications in both science, engineering, 

epidemiology etc. Optimal control is a mathematical 

optimization method for deriving control policies [16]. 

It is an extension of the calculus of variations. The 

method is mainly due to the work of Lev Pontryagin 

and Richard Bellman in the 1950s. 

 

In general, a quadratic constrained dynamic 

continuous optimization problem is defined as: 

Minimize 𝐽(𝑥(𝑡), 𝑢(𝑡)) = ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
𝑡𝑓

𝑡0
 

Subject to �̇�(𝑡) =

𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))                                         (1.1) 

𝑥𝑡0
= 𝑥0, 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 

where  𝑓:  ℜ × ℜ𝑛 × ℜ𝑚 → ℜ;  𝑔 ∶ ℜ × ℜ𝑛 × ℜ𝑚 →

ℜ𝑝 are given functions and m ≤ n and p ≤ n. The 

components of g are denoted by 𝑔1, 𝑔2 , . . . , 𝑔𝑝   

respectively. 

 

Mathematical control theory deals with the basic 

principles underlying the analysis and 

design of control systems stemming from some areas 

of applied Mathematics. To control any system means 

to influence its behaviour so as to achieve a desired 

goal. Mathematical techniques are built to implement 

this influence [3].  

 

Pontryagin’s maximum (or minimum) principle, also 

known as the necessary condition, is a condition that 

must be satisfied for a statement to be established. 

However, the condition does not validate the 

statement. For the validity of the statement to be 

established, the sufficient conditions must be satisfied 

in order to determine the nature of the turning point 

([6]). Pontryagin’s maximum (or minimum) principle 

was formulated in 1956 by the Russian mathematician 

Lev Pontryagin and his students as Pontryagin’s 

maximum principle and proved historically based on 

maximizing the Hamiltonian [4].  

 

Optimal Control involves determining control and 

state trajectories for a dynamic system over a period of 

time in order to minimize an objective function, cost 

functional or a performance index. The theory of 

optimal control is well developed for many decades 

([18]). It requires a performance index or cost 

functional 𝐽(𝑥(𝑡), 𝑢(𝑡)), a set of state variables 

(𝑡, 𝑥(𝑡) ∈ 𝑋), a set of control variables (𝑡, 𝑢(𝑡) ∈ 𝑈) 

in a time t, with 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓. To maximized a given 

objective functional, one must obtain the associated 

state variable 𝑥(𝑡) and a piecewise continuous control 

𝑥(𝑡).  

 

Many optimization techniques have been developed 

over the years for the solutions of optimization 

problems. In the early years of optimal control, the 

favoured approach for solving optimal control 

problems was that of indirect method. In an indirect 

method, the calculus of variations is employed to 

obtain the first-order optimality conditions ([9]). 
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Several well-defined new areas in optimization theory 

were reviewed in [12]. A number of numerical 

techniques have been developed over the years for 

optimal control problems that have analytical 

solutions and the ones that did not have analytical 

solutions by [1], [2], [5], [11], [13], 

[14], [15] and [16].  

 

[7] considered an optimal control problem involving 

equality and inequality state-control constraints with 

fixed initial and final endpoint state constraints. The 

control variables belong to the class of piecewise 

continuous functions while and state variables belong 

to the class of piecewise smooth functions 

respectively. The paper provided a direct derivation of 

second order necessary conditions, based on a 

variational approach where a certain quadratic form is 

non-negative. The inequality constraints are treated as 

equalities of the active constraints for this set, thus 

producing a restrictive set of optimality conditions. 

 

[10] obtained the analytic and numeric solutions of 

discretized constrained optimal control problems. The 

analytic and numeric solutions of general continuous 

linear quadratic optimal control problem were 

presented. The associated general Riccati differential 

equation was solved by numerical-analytical approach 

using variational iteration method. Numerical 

solutions of the constrained optimal control problem 

were obtained via quadratic programming of the 

discretized continuous optimal control problems by by 

shooting method and the conjugate gradient method 

(CGM). The results showed that both the analytical 

and numerical solutions agreed favourably. In the 

paper, the analytical solution and numerical solution 

by penalty function methods were presented and 

convergence analysis was conducted. 

 

II. MATERIALS AND METHODS  

 

The general form of optimal control problem 

constrained by   n equality constraints is given as 

Minimize I(x, u) = ∫ f(x, u, t)dt
T

0
 

Subject to ẋi(t) = hi(x, u, t), i =

1,2,.  .  . , n                                                    (2.1) 

 

where x ∈ ℜn,  u ∈ ℜm, f:  ℜ × ℜn × ℜm → ℜ and g ∶

ℜ × ℜn × ℜm → ℜp. 

2.1 Necessary Conditions for General Optimal 

Control Problem with Equality Constraints. 

 

The standard form of a general optimal control 

problem constrained by n equality constraints is given 

as: 

Minimize I(x, u) = ∫ f(x, u, t)dt
T

0
 

Subject to ẋi(t) = hi(x, u, t), i =

1,2,.  .  . , n                                                    (2.2) 

 

where x ∈ ℜn and  u ∈ ℜm. 

       I∗(x, u) = ∫ (f(x, u, t) + ∑ λi(hi(t, x, u) −n
i=1

T

0

ẋi(t)))dt                  (2.3) 

 

The necessary conditions required to solve (2.2) is 

derived from the Hamiltonian which is given as 

H(t, x, u, λ) = f(t, x, u) + ∑ λihi(t, x, u)n
i=1                               

(2.3) 

 

where λi are the adjoint variables and are dependent on 

t, x and u. 

The Euler-Lagrange equations for (2.4) are given as 

 

 (2.5) 

 

 (2.6) 

 

 (2.7) 

Applying equations (2.5), (2.6) and (2.7) on (2.4), we 

have 

(2.8) 

 

 

(2.9) 

                                        

(2.10) 

 

Hence,

  

λ̇i = −
∂H

∂xi
                     Adjoint Equation              (2.11) 

∂H

∂xi
 = 0                      Optimality Condition  (2.12)                                            

ẋ(t) = hi(x, u, t)        State Equation  (2.13) 
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Equations (2.11) and (2.13) are system of first order 

ordinary differential equations that can be solved 

simultaneously in order to get the values of the two 

constants by applying the boundary conditions. If only 

one boundary condition is given, then the free end 

condition is applied to get the second boundary 

condition. The free-end condition is given as 
∂H

∂xi
= 0 or λi(T) = 0 Transversality 

Condition (2.14) 

 

For the solution to be optimal, all the conditions given 

by equations (2.11), (2.12), (2.13) and (2.14) must be 

satisfied. If one or more of the conditions are not 

satisfied, then the solution is not optimal. 

 

2.2 Analytical Solution of Optimal Control Problems 

Constrained by two Equality Ordinary Differential 

Equations 

 

Minimize  I(x1, x2, u) = ∫ (px1
2(t) + qx2

2(t) +
T

0

wu2(t))dt (2.15) 

Subject to x1̇(t)= ax1(t) + bx2(t) + cu(t)                          

(2.16) 

 ẋ2(t)  =  dx1(t) +  ex2(t) +  fu(t)                  (2.17) 

 x1(0)  =  x10, x2(0)  =  x20, 0 ≤  t ≤  T 

 

where a, b, c, d, e, f are real constants and p, q, w >  0. 

 

Theorem 0.2.1. Given the optimal u∗ (t) and the 

solutions x1
∗ and x2

∗  of the state system (2.16) and 

(2.17) that minimizes I(x1, x2, u) over U (where U is 

the permissible set of controls), then there exists 

adjoint variables µ1(t) and µ2(t) satisfying 

μ̇1(t) =  −2px1(t) −  aµ1(t) −  dµ2(t), t ∈

 [0, T] (2.18) 

μ̇2(t) =  −2qx2(t) −  bµ1(t) −  eµ2(t), t ∈

 [0, T] (2.19) 

and with the transversality conditions 

µ1(T) =  0, µ2(T)  =  0 (2.20) 

u∗(t) =   
−cμ1(t)−fμ2(t)

2w
 (2.21) 

 

Proof. With appropriate conditions on the end points, 

adjoint variables µ1(t) and µ2(t) can be introduced by 

forming the required augumented functional from 

(2.15)-(2.17). 

 

The Hamiltonian function is given as 

H(x1, x2, u, µ1, µ2) = px1
2(t) +  qx2

2(t) +  wu2(t) +

 µ1(ax1(t) +  bx2(t) +  cu(t)) 

                                           +µ2(dx1(t)  +  ex2(t) +

 fu(t))                                                (2.22) 

 

From the knowledge of calculus of variation, it seems 

plausible that the optimal solutions for our initial 

optimal control problem ought to be the Euler-

Lagrangian equations for H regarded as function of 

five variables (x1, x2, u, µ1 , µ2). Thus, the E-L system 

can be written as 

 

 (2.23) 

 

 (2.24) 

 

 (2.25) 

 

 (2.26) 

 

 (2.27) 

 

Equations (2.23)-(2.27) together with (2.21) now give 

the following system of first order ordinary differential 

equations: 

ẋ1(t) = ax1(t) + bx2(t) − c(
cμ1(t)+fμ2(t)

2w
)  (2.28) 

ẋ2(t) = dx1(t) + ex2(t) − f(
cμ1(t)+fμ2(t)

2w
)  (2.29) 

μ̇1(t) =  −2px1(t) −  aµ1(t) −  dµ2(t)  (2.30) 

μ̇2(t) =  −2qx2(t) −  bµ1(t) −  eµ2(t)  (2.31) 

 

The optimality system of equations (2.28)-(2.31) 

represent a linear 4-point boundary value differential 

equations, which are the necessary conditions for an 

optimal control u∗(t). The general solution is given by 

 

 (2.32) 

where 



© JUN 2020 | IRE Journals | Volume 3 Issue 12 | ISSN: 2456-8880 

IRE 1702348          ICONIC RESEARCH AND ENGINEERING JOURNALS 40 

 

 (2.33) 

 

Since we know x1(0) and x2(0), the task is to choose 

µ1(T) and µ2(T) so that the transversality condition is 

satisfied. The characteristics equation of M is given by 

λ4 − (
c2p + f 2q + w(a2 + e2 + 2bd)

w
) λ2

+ (w(a2e2 + bd(bd − 2ae))) + 

                       
f2(a2q+b2p)+c2(d2q+e2p)−2cf(adq+bep)

w
=

0                                  (2.34) 

 

and its eigenvalues are 

 

 
where 

A= a4w2 + 4a2bdw2 + 2a2c2pw − 2a2e2w2 − 2a2f2qw + 

8abdew2 + 8acdfqw (2.39) 

B = 4bc2dpw − 4b2f2pw + 8bcefpw + 4bde2w2 + 

4bdf2qw + c4p2 − 4c2d2qw (2.40) 

              C = 2c2f2pq − 2c2e2pw + e4w2 + 2e2f2qw + f4q2

                                                                (2.41)  

These eigenvalues are used to obtain the eigenvectors 

 and . Thus, the general solution of 

equation (2.32) is 

 

(2.42) 

 

where c1, c2, c3  and c4  are the constants of integration. 

Thus, c1 , c2, c3 and c4  can be determined by 

substituting the initial and terminal conditions into 

equation (2.42). 

 

 

III. RESULTS 

 

Example 1. 

Minimize I(x1, x2, u) = ∫ (x1
2(t) + x2

2(t) +
1

0

0.005u2(t))dt         (3.1) 

subject to ẋ1(t) = x2(t)  (3.2) 

ẋ2(t) = −x2(t) + u(t)                                         (3.3)                                                                                         

with initial conditions      x1(0) = 0, x2(0) = −1                                                    

(3.4)                      

 

Solution 1. The Hamiltonian function, H, is given by 

 
From the knowledge of calculus of variations, it seems 

plausible that the optimal solutions for our initial 

optimal control problem ought to be the Euler-

Lagrange equations for H regarded as a function of 

five variables (x1, x2, u, µ1 , µ2). Thus, the E-L system 

can be written as 

 
 

Equations (3.6)-(3.10) together with (3.2) and (3.3) 

now give the following system of first order ordinary 

differential equations; 

ẋ1(t) = x2(t)                                                           (3.11)  

 ẋ2(t) = −x2(t) − 100μ2(t)                                 (3.12) 

u(t) = −100μ2(t)                                                (3.13) 

 μ̇1(t) = 2x1(t)                                                      (3.14) 

μ̇2(t) = −2x2(t) − μ1(t) + μ2(t)                        (3.15) 

 

The optimality system of equations (3.11)-(3.12) and 

(3.14)-(3.15) represent a linear 4-point boundary value 

differential equations, which are the necessary 

conditions for an optimal control u∗(t) with an 

algebraic equation (3.13). These equations can be 

written in matrix form as 

 

 (3.16) 
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The general solution is 

 

 (3.17) 

where 

 

 (3.18) 

Since we know x1(0) and x2(0), the task is to choose 

µ1(1) and µ2(1) using the free-end condition so that 

the transversality condition is satisfied. The 

characteristics equation of M is given by λ4 − 201λ2 + 

200 = 0 and its eigenvalues are 

and . 

The corresponding eigenvectors are obtained and 

substituted into the general solution to obtain 

 

where c1, c2, c3 and c4 are constants of integration. 

Thus, c1, c2, c3 and c4 can be determined by substituting 

the initial and terminal conditions x1(0) = 0 and x2(0) 

= −1, 

µ1(1) = 0 and µ2(1)  = 0 into equation (3.19). 

Hence, , 

 and . 

Therefore, the particular solution becomes 

 

The analytical objective function value is 0.1732. 

 

Example 2 

Minimize I(x1, x2, u) = ∫ (0.5x1
2(t) + 2x2

2(t) +
1

0

u2(t))dt                 (3.21) 

Subject to ẋ1(t) = x1  +  2u(t)  (3.22) 

ẋ2 (t) =    x2(t)  (3.23) 

 

with initial conditions  x1(0)  =  1, x2(0)  =  1                                  

(3.24) 

Solution 2. The Hamiltonian function function, H, is 

given by 

 

From the knowledge of calculus of variation, it seems 

plausible that the optimal solutions for our initial 

optimal control problem ought to be the Euler-

Lagrange equations for H regarded as a function of 

five variables (x1,x2,u,µ1,µ2). Thus, the E-L system can 

be written as 
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Equations (3.26)-(3.30) together with (3.2) and (3.3) 

now give the following system of first order ordinary 

differential equations 

ẋ1(t) = x1(t) − 2µ1(t) (3.31) 

ẋ2(t) = x2(t) (3.32) 

u(t) = −µ2 (3.33) 

μ̇1(t) = −x1(t) −  µ1(t) (3.34) 

μ̇2(t) = −4x2(t) −  2µ2(t) (3.35) 

 

The optimality system of equations (3.31)-(3.32) and 

(3.34)-(3.35) represent a linear 4-point boundary value 

differential algebraic equations, which are the 

necessary conditions for an optimal control u∗(t). 

These equations can be written in matrix form as 

 

(3.36) 

The general solution is 

 

 (3.37) 

where 

 

 (3.38) 

 

Since we know x1(0) and x2(0), the task is to choose 

µ1(1) and µ2(1) using the free-end condition so that 

the transversality condition is satisfied. The 

characteristics equation of 

M is given by λ4 + λ3 − 5λ2 − 3λ + 6 = 0 and its 

eigenvalues are λ1 =
1351

780
, λ2 = −

1351

780
, λ3  =  −2 and 

λ4  =  1. The corresponding eigenvectors are obtained 

and substituted into the general solution to obtain 

 

where c1, c2, c3  and c4  are constants of integration. 

Thus, c1, c2, c3 and c4 can be determined by 

substituting the initial and terminal conditions  

x1(0)  =  1 and x2(0) =  1, 

µ1(1)  =  0 and µ2(1)  =  0 into equation (3.39). 

Hence, and   

. 

Therefore, the particular solution becomes 

 The analytical solution is 0.5745. 
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CONCLUSION 

 

The analytical solutions of continuous quadratic 

optimal control problems constrained by ordinary 

differential equations have been presented. The 

proposed analytical method gives the exact solution of 

this class of optimal control problems. It is therefore 

recommended that the method will be extended to 

solve real life problems. 
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