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Abstract- This paper presents a comparative analysis
of a transfer field machine (TFM) and a poly-phase
induction machine (IM) with central focus on the
inductance matrix of both machines. The two
machines belong to two different classes of machine
and quite different in physical configuration. In this
analysis, the self-inductance matrix of the two
machines is derived and both shown to be
independent of the rotor angular position. However,
the mutual coupling inductance in both cases are
dependent on rotor angular position which varies
with time. For the transfer field machine, in addition
to rotor angle dependence, it also depends on the
difference between the direct- and quadrature-axes
reactances. In both machines, when state variables
namely voltage and flux linkage equations, are
transformed to arbitrary qdo reference frame, a new
set of voltage and flux linkage equations are obtained
with inductance values, no longer dependent on the
rotor angular position that varies with time; and this
of course is of great advantage in the analysis of both
machines.

Indexed  Terms-  Self-inductance, Mutual-
inductance, Inductance Matrix, Coupling, Angular
position, Comparative Analysis.

I INTRODUCTION

The theory of induction machine is old and well
known. An induction machine consists essentially of
two major parts, the stator and the rotor. When an a.c
voltage is impressed on the terminals of the stator
windings, a rotating magnetic field is set up. This
rotating magnetic field produces an electromotive
force (e.m.f) in the rotor by electromagnetic induction
(transformer action) which in turn, circulate current in
the rotor usually short-circuited.  This current
circulating in the short-circuited rotor, produces a
rotating magnetic field which now interact with the
rotating magnetic field already established in the
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stator. This interaction produces a torque which is
responsible for the rotation of the machine.

Induction machine is also known as the asynchronous
machine which derives from the fact that the rotor
magnetic field is always lagging the stator magnetic
field. The difference is called the slip, and it is a
fundamental characteristic in the operation of an
induction machine.  An induction machine when it
operates below synchronous speed, is a motor while it
is a generator when it operates above the synchronous
speed. In fact, induction machines are mostly used as
motors.

The induction motor is used in a wide variety of
applications as a means of converting electric power
to mechanical work. It is without doubt, the
workhorse of the electric power industry. Pump, steel
mill and hoist drives are but few applications of large
multiphase induction motors. On a smaller scale, the
single-phase servo motor is used extensively in
position-follow-up control systems and single — phase
induction motors are widely used in household
appliances as well as hand and bench tools [1].

The transfer-field machine (TFM) is structurally

basically a reluctance machine. It differs however

from the simple reluctance machine in two important

respects namely: -

(a) it has two sets of windings instead of one

(b) each winding has a synchronous reactance which
is independent of rotor position whereas the
winding reactance of a single reluctance machine
varies cyclically [2].

The TF machine configuration has two stator windings
in each machine element known as main and auxiliary
windings. The main windings are connected in series
while the auxiliary windings are connected in series
but transposed between the two machine sections.
There are no windings on the rotors of either of the
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composite machines. This machine induces negative
sequence emfs of frequency (2S — 1)w, in the auxiliary
windings which will in turn circulate a current
excluded from the supply.

The interaction of the main and auxiliary winding
magneto motive forces (mmfs), will produce an
interference wave with beat frequency, , which is
equal to the rotor frequency. Hence a reluctance
torque is developed in the rotor as a result of its
interaction with the interference wave and this causes
the rotor and hence the machine to rotate (turn).

And so, a transfer-field machine is an energy converter
and like the induction machine, is asynchronous and
self-starting. The transfer — field machine is very
useful in control systems, electrical gear, low speed
drives etc. Again, its auxiliary winding terminals
which will act as the rotor conductors in normal
induction machine is available without requiring slip
rings or current collection gears. It can also be used to
supply a d.c load through rectifiers, a function which
has not been performed satisfactorily by induction
motors because the output waveforms of induction
motors tend to be increasingly distorted as the load
current increases. Also, it is capable of survival in a
harsh environment [3].

1. PHYSICAL CONFIGURATION OF A
TRANSFER FIELD MACHINE (TFM)

The transfer field machine (TFM) comprises a two-
stack machine in which the rotor is made up of two
identical equal halves whose pole axes are ™/, radians
out of phase in space. They are housed in their
respective induction motor type stators. There are no
windings in the rotor. The stator has two physically
isolated but magnetically coupled identical windings
known as the main and auxiliary windings. The axes
of the main windings are the same in both halves of
the machine whereas the axes of the auxiliary
windings are transposed in passing from one half of
the machine to the other. Both sets of winding are
distributed in the stator slots and occupy the same slots
for perfect coupling and have the same number of
poles. The two sets of winding of the transfer field
machine are essentially similar and may be connected
in parallel which will of course double its output. The
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schematic diagram of a transfer field machine (TFM)
is as illustrated in figure 1.0

|
Machine 1 | Machine 2
_—dH = —m = = = |l = = -
|
I
|
|

Main
I Winding

Fig1.0: Connection diagram for a transfer field
machine (TFM)

I1l.  INDUCTANCE MATRIX OF A TRANSFER
FIELD MACHINE (TFM)

3.1 TFM Self - and Mutual — inductances

The rotor of a TFM is of salient poles without
conductors and as a result, its mmfs are always
directed along the d- and g- axes. Also, the direction
of the resultant mmf of the stator windings relative to
d- and g- axes will vary with the power factor. A
common approach to handling the magnetic effect of
the stators resultant mmf is to resolve it along the d -
and q - axes.

Let us consider the magnetic effect of a current
flowing in one phase and let this phase be denoted by

a”. Hence the resolved components of the a-phase
mmf, Fa, will produce the flux components;

¢d =ped Fasln Hl’

b, =pea Facos O @)
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along the d- and g-axes respectively.

Where; Pe = permeance.

The flux linkage of these resolved components with
the a-phase winding is;

A w=Ns(¢,sin6, + ¢ cos6,) )

Substituting equation (1) into equation (2), will yield;

A aa = Ns Fa(p.d6, + peCICOSZGT)
/1 a - NS Fa{ ped;‘peq _ ped;Peq Coszer} (3)

In a similar manner, the linkage of the flux
components, ¢d and ¢q by the b-phase winding that

_2r .
is ? ahead may be written as;

Apa =NsFafp,asing, sin(6, — 27/3) +
Dea €OSO, cos(zer _ 271/3)}
P d _
ﬂ’ba: Ns Fa{ e :peq _ p3d4pgq c0s2(6, _g) }
(4)

(

We can deduce based on the functional relationship of
A aa With the rotor angle, ¢9r , that the self-inductance

of the stator a-phase winding, excluding the leakage
inductance, has the form;

Laa=Lo—Lmscos2 6, (5)

Where;

_ Lmd+LmqandL :Lmd_ mq

0~ ms

The self-inductances of the b- and c- phases, Ly, and
Lecc, are similar to that of Laa but with 6’r replaced by

(6,-3)and (6, +7) respectively.

Similarly, it can be deduced from equation (4) that the
mutual inductance between the a-and b-phases of the
stator is of the form;
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Lar=Loa=—2 = LnsC0S2(6) — ) (6)
Again the mutual inductances Lpc and La can be
obtained by replacing t9r with (6, + g) and (6, + 2?")
respectively.

For this analysis, the upper case subscripts — A, B, C
will be associated with the parameters of the main
windings while the lower case subscripts — a,b,c will
be associated with the auxiliary windings.

For a three-phase machine like the TFM, the voltage
equation for the main (stator) winding is;

Vage = rABCiABC + P)“ABC
Vanc = I’abciabc + Pﬂ’abc (7
where;

. d

dt

A = flux linkage
I'aBC = diag ([I‘A I’B rC ])
rabc = dlag ([ra rb rc ])

The flux linkages in stator reference frame are
expressed as;

F} L Ly {} o
ﬁ’abc Lyx I—yy iabc

where;

Lxx = self-inductance for main windings of TFM

Lyy = self-inductance for auxiliary windings of TFM

Lxy = Lyx = mutual inductance between main and
auxiliary windings

The inductance matrices terms Lyx, Lxy, Lyx and Lyy are
obtained from inductance submatrices

L,,, L, L,;andL,, for machine 1 and machine 2.

Now for machine 1, the self-inductance submatrix for
the main winding is;
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m/cl __
Lll

L,+L, — L, cos26,

_%Lo -L,. c052(<9r - A)

1

~5 Lo~ L, cosz(@r +%) 1

m/ic2 _
Lll -

L, +L, +L, cos26,

1 T
Lo+l cosz(ar —%) Lo +L, +L, cosZ(Qr —3)

_—%L +1,, c0s2(f, +%) —%LO + L, c0s20),

0

The self-inductance matrix, Lxx, for the main
winding of TF machine is obtained by adding the
self-inductance submatrix, L1; of machine 1 and the

2L, +2L, L
— |_0

_% L, — L, 0032(6?r —%] —%Lo —L,. c032(¢9r + %)_
L, +L, — L, cosZ((@, —%))

—=L, - L, Cos26,
2

— 7o Lo+ Lo cosZ(Hr

2L +2L,

1 9)

—-—L,—-L,,cos26,
2

L + Ly — Lips COS2(6, +7/4)

For machine 2, the Self-inductance submatrix for the
main winding is;

%)

_%LO + L, cosZ(Hr +%)

1 (10)
3 L, + L, cos26,

Ly + Ly + Lo cosZ(Qr + %)

self-inductance submatrix, L1 of machine 2. And
this addition will yield;

_|_O
_|_0

XX
(11)
- L, -L, 2L, +2L, |
Where: L,g+L
L. = Leakage i i indi L= —— 12)
s = ge inductance of main (stator) winding 0 2
Substituting equation (12) into equation (11), gives;
_ L _
2Lls + Lmd + I-mq _% (Lmd + I—mq) _E(Lmd + I-mq)
1 1
L, = _E(Lmd + L) 2L, + Ly + Log —E(Lmd + L) )
(L, L) L L) 2L + Loy + Lo
2 2

From equation (11), it is very evident that the self-
inductance matrix, L,, , of the main winding, is the

sum of self and mutual inductances of machine 1 and
machine 2 respectively. The mutual inductance
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submatrix, le for machine 2. These mutual
inductance submatrices are;

L, +L, — L, cos26, — L L, (20, -a) ~ 2L, —L,cos(26, +a)
L= - YL~ L0820, —a) L, +L,—L,c0820, +a) -3L, L, cos26, (14)
- }/ L, —L,.cos(26, +a) —}/ L, —L,. cos26, L, + L, —L,.cos(26, —a)
L, +L, +L, cos26, — L, + L, (26, — ) YL, + Ly cos(20, + )
L%/ =| - YL, + L0020, —a) L, +L,+L,c0820, +a) —1JL, +L, o526, (15)
—% L, + L, cos(20, +a) —% L, + L, cos26, L +L, +L,.cos(26, —«)

Therefore, the mutual inductance between the main
and auxiliary winding, Ly, taken into account the
transposition of the auxiliary winding, is;

—2L,,.c0s26, —2L,.c08(20, —a)  —2L,,.cos(26, +a)
Ly =L/ +xp5%% = —-2L,.cos(26, —a) —2L,.cos(26, +a) 2L, c0s26,
—2L,.co8(26, +a) —2L,,C0s26, —2L,.co8(26, —a)

Taking out a common factor -2L,,; , the mutual
inductance, L, , becomes;

c0s26, cos(26, —a) cos(26, + a)
L, =—2L,,| cos(26, —a) cos(26, +a) c0s26.
cos(26, + ) co0s26, cos(26, — a)
L .—L L..—L
But L, :% Hence —2L,.=-— 2{%}= L — Lnaand
if this is substituted into the expression for ny, we
have that;
c0s26, cos(26, —a) cos(26. +a)
Ly = Ling— Lmna| €OS(20, —a) cos(26, + ) c0S26, .
cos(20, +a) co0s26, cos(26, —a) 19
Where; a = 2?” (1209 L,, =L, And for this reason, auxiliary winding
Now because the main and auxiliary windings in both parameters do not change values when they are
machine 1 and machine 2 are identical in nature, it is referred to the main winding [ 4].

clear to assume in this paper that L =Lyy and
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3.2 Transforming of TFM main winding (stator)
quantities to arbitrary gdo reference frame.

The rotor of the TF machine is salient pole without
winding conductors and as a result, its mmfs are
always directed along the d- and g-axes. The
consequence of this is that the qdo transformations can
only be applied to the stator quantities. The main
purpose of this transformation is to obtain constant
inductances whose values will not depend on the rotor
angular position that varies with time which is
evident from equation (16).

(1) TFM Voltage equations in qdo reference frame:
For a three-phase machine like the TFM, the voltage
equation for the main

(stator) winding is;

VABC = Fagc lasc + p/lAB(} (17)

Vabc = r-abc Iabc + pﬂ’abc

where;

P:%t

A = Flux linkage
ragc = diag ([rA I'g fc ])

rabc = diag ([ra rb rc ])
applying the Tqqo (6r) to equation (17), gives;

v ore =Too (6 raec TQéO (@) ovo *

Too (er )P TQ_éoﬂ*QDo : (18)
Where;
()
cosb, cus(ﬁ) 72{) cos[()r ...2?”] \
Tooo(6,)= 2| sing, sm(e 724’} s.n[gr Jl]
(19)
(i) 7 >
Toso(6,)= 00{6',7%”) sin[e,—%”) 1
00{5, +2?”J sin[&r +2?”] 17
J
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d
P
(iii) _dt

Substituting the above expressions into equation (18)
and solving, gives the voltage equations for the main
winding as;

Vo =l +@ /5 +pA,

Vp =l —@/, + pA, (20)

Vg =rig + pA,

While the voltage equations for the auxiliary windings
become;

V, =ri, (@, —2w)4, + pA,

V, =riy +(0, —20) A, + pA, - (1)
V,=ri, + pA,

(2) TFM Flux linkage equation in qdo reference:

The flux linkage equation (equation 8) is rewritten in
dgo frame as;

o 2 Al [KLaK)* KLy lig 1o 1o
[[% A A TR KL (K, [hq 1 1]

(22)

Where;
) c_os<9 C(.)S(H—a) c.os(.9+a) 23)
K, =3| sin@ sin(@—a)  sin(@+a)
1 1 1
2 2 2
cosé sin@ 1
(K) " =| cos(@—a) sin(@-a) 1| (24)
cos(@+a) sin(@+a) 1
cosp cos(fB — ) cos(B + )
K, :% sin g sin(gB—«a) sin(B + )
1 1 1
2 2 2
(25)
cospf sin g 1
(K,) " =|cos(B-a) sin(B-a) 1 (26)

cos(f+a) sin(B+a) 1

From equation (18) through equation (26);
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2
3

[ = Speed of rotation of arbitrary reference frame.

¢9r = Angular rotor position
T = Matrix transpose

Substituting equations (23 — 26) back into equation
(22), the flux linkage equations can now be expressed
as;

From equations (20), (21) and (28), it is very evident
that transformation of the voltage and flux linkage
equations of the TFM into arbitrary qdo reference
frame, has produced another set of voltage and flux
linkage equations with inductance values, no longer
dependent on the rotor angular position which varies
with time as seen in equation (16).

IV.  PHYSICAL CONFIGURATION OF AN
INDUCTION MACHINE (1M)

The induction motor comprises a stator and a rotor
mounted on bearings and separated from the stator by
air-gap. The stator consists of a magnetic core made
up of laminations carrying slot-embedded conductors
which constitute the stator windings. The rotor of
induction motor is cylindrical and carries either
conducting bars short-circuited at both ends by end
rings (squirrel cage rotor) or a polyphase winding
connected in a predetermined manner with terminals
brought out of slip rings for external connections and
short circuited. The winding arrangement of a typical

IRE 1702601

[0 ] 2L+ LygtLig 0 0
Ao 0 2L + L+ L

Aol | o 0 2L,
R B (R 0

Ay Lna —Lmg

Ao | 0

Ao =21 +Lyng +Lia Mo — (g = Ling 1)
2o =21 + L+ L o + (g = Ling N
Ao =2L,1,

o)
A =21 + Lyg + Lg Ny = (g = Lug g
g =21, + Lyg + Ly Mg + (g = Lo 1o
A,=2L1,

J

In its completeness, equation (27) canbe rewritten
as;

(Lng —Lung) 0 0 1,
0 Lo~ Ling 01,
0 0 01,
(28)
2L, + Ly +Log 0 0|1,
0 2L, + L+l O 1,
0 0 2L, |1, |

2-pole, 3-phase, star-connected, symmetrical
induction machine is as shown in figure 2.
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Fig.2: Two-pole, 3-phase, star-connected,

symmetrical induction machine.

V. INDUCTANCE MATRIX OF AN
INDUCTION MACHINE(IM)

5.1 IM Self - and Mutual - inductances.

The winding arrangement of a 2 — pole, 3-phase,
star-connected symmetrical induction machine is as
shown in figure (2). The stator windings are identical
with equivalent turns, Ns and resistance, rs. The rotor
windings which may be wound or forged as a squirrel
cage winding can also be approximated as identical
windings with equivalent turns, N, and resistance r..
The air gap of an induction machine is uniform and the
stator and rotor windings may be approximated as
having a sinusoidally distributed windings.

The stator inductance, Ls, is given as;

[ 1
| L+L,~Lyeosds,  — WL, -Ljcos2le ~7f) 2L, -Ljcosls +74)

1 1
L::.—?LJ—LSCDSZ‘H =) L+L,-Lyeos2le, —T4) —-1,-1;c0s2(8, +17)

[—%L_J—Lscnsl‘ﬁ' +74) —%LA —Lycos2(6, +) L, +L, ~Lgcos2(6, + 74
where;
Lasas=LLs+ LA -LB Cos 2gr (30)

Lbsbs=LLs+ LA -LB Cos2. (6 r-n/3) (31)
Lescs=LLs+ LA-LB Cos2. (6 _r+n/3)  (32)

Las bs = -%4LA — LB Cos2 (33)
Las cs =-%LA — LB Cos2. (34)
Lbs cs =- LA — LB Cos2. (35)

From equation (29), it is very evident that all stator
self-inductances are equal (that is;
Lasas = Lbsbs = Lcscs with; Lasas = LLs + Lms (36)

L. = stator leakage inductance
Lms = stator magnetizing inductance

The stator magnetizing inductance, Lms, corresponds
to La in equation (30) through equation (32) and is
mathematically expressed as;

Lng=.(3)? (37)
Where;

N; = stator equivalent turns

Lo = permeability of free space

r = stator resistance

L = stator winding length

g = length of uniform air gap

Like the stator self-inductances, the stator-to-stator
mutual inductances are also equal. This implies that;

Lasbs=Lascs=Lbscs=-/2Lms (38)
and this corresponds to -*/,L in equation (33) through

equation (35) with Lg = 0. consequently, equation (29)
is now rewritten as;

39
Li+ L L S (39)
2 2
L =|-=-Lms L, +L, ——L
1
—=Lms —E Lo L+ Lo

In a similar manner, the rotor inductance matrix is
obtained as;

LLr+Lmr 72 Lmr 7%Lmr
L = _L Lmr L, +Ln —%Lm,
1 1
_Ems _ELmr I-Lr +Lmr

(40)

Whereas in stator, the rotor self-inductances are equal,
that is;

Larar = Lbrbr = Lcrer = LLr + Lmr (41)

The rotor magnetizing inductance, L, is given as;

Ly = (Cry2 ol 42
Where; ) 9 (42)
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The rotor-to-rotor mutual inductances are equal and
expressed as;
Larbr = Larcr = Lbrer =-1/2 Lmr (43)

The mutual inductances between the stator and the

rotor windings are obtained as follows;

(i) The mutual inductances Lasar, Losor and Leser are
equal; and is given by the expression;

Lasar = Lbsbr = Lcscr = Lsrcosqr (44)
(if) The mutual inductances Lasbr, Lbser and Lesar are
equal; and is given by the expression;

Lasor = Lbscr = Lesar = LsrCOS (Hr + 2%) (49)

(iii) The mutual inductances Laser Lpsar and Lespr
are equal; and is given by the expression;

Lascr=Lbsar=Lcsbr=LsrCOS (Hr - 2%) (46)

Equation (44) through equation (46), gives one
expression for the mutual inductance between the
stator and the rotor windings of an induction machine
expressed as;

cosé, cos(@, +2?”) cos{gr —2?”) (47)

L, =L, CO{H, - 2?”] cosd, CO{H, + 2{)

cos(&, + 2—”) cos(zgr - 2—”) cosé,
3 3

The L on the right-hand side of equation (47)
represents the amplitude of the mutual inductances
between the stator and rotor windings and is given by
the expression;

Ly = (3) (D (48)

5.2 Transformation of IM state variables to arbitrary
qdo reference frame.

The voltage equations in machine variables for the
stator and the rotor of a star — connected symmetrical
IM shown in figure 2 are expressed as follows;

Vas = lasls TPAas

Vps=ipsls+PAps (49)

Ves =esls + Phes

Rotor voltage equations:
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ar = larft + Phar
Vor=iprlr+PAor (50)
or = lerft + Pher

In both equations, P = Y4, the S subscripts denotes
variables and parameters associated with the stator
circuits and the r subscripts denotes variables and
parameters associated with the rotor circuits. Both rs
and r are diagonal matrices each with equal non zero
elements [1].

For a magnetically linear system, the flux linkages can
be expressed as;

abc abc abc || ;abc
I:j:bci| ZI:L:ZC L;:)cj|[!sabci| wh.turn. (51)

r Lrs er Ir
For an idealized inductance machine, six first order
differential equations are used to describe the
machine, one differential equation for each machine
winding. The stator-to-rotor coupling terms are

functions of rotor position and hence when the rotor
rotates, the coupling terms vary with time [5].

In the analysis of 1M, it is also desirable to transform
the abc variables with the symmetrical rotor windings
to the arbitrary qdo reference frame [1].

And the transformation equation from the abc
quantities to the gdo reference frame is given by;

fCI fa
fy|= [quo(e) fy (52)
fO fC

Where the variable, f, can be the phase voltages,
currents or flux linkages of the machine.

cosé 00{9 —Z—EJ co{6+2—”]
3 3

[quo(H)]=§ siné@ sin[e—z?”) sin(9+2?;;j (53)

1 1 1
2 2 2

and inverse of equation (53) is;
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coséd sin@ 1

1 {sin[ -2 2 54
[quo}= Sln(é’—;] sm(@—;j 1| G4
co{9+2”J Sin(¢9+2”j 1

3 3 |

5.3 IM Voltage equations in gdo reference frame

From equation (49), the stator winding abc voltage
equations can be expressed as;

V abc abc abc + Pﬂabc (55)

.p=d
where; P = At

Applying the transformation, [qu (6’
(55), yields;
Vsqda = [Tudo(g)]r:bc[-rqdo(8)]71[isqdo]+ [quo(tg)]lj[Teldn(g)}1 [lgdo] (56)

)J to equation

Equation (56) can be simplified to;

0 1 0
V;‘d" = rsqd"isqdo + P/lg‘” +w -1 0 0 ,13‘**’
0 0 0
(57)
where;
! 0 d deo
qudo:rs 0 1 OP=—0=—
dt dt
0 1

In a similar manner, the rotor quantities must be
transformed into the same qdo frame. Now the
transformation angle for the rotor phase quantities is

(9—9 ) And so when the transformation,
(6’ o ) is applied to the rotor voltage equation

qdo
in the same manner as the stator, we have;
0 1 0
Va9 padojate  paate 4 (@ ) -1 1 0 |
0 0 0
(58)

54 IM Flux linkage equation in arbitrary qdo
reference frame
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From equation (51), the stator and rotor flux linkages
are given as;

b b b bc; ab
/'La c La c:al c Lzrc re_:l c (59)
/fLabc L?Sbc Sabc L?:)C rabc (60)

The stator flux linkages in arbitrary qdo reference
form are obtained by applying T,,,(6) to equation
(59) to give;

Aqdo [ qdo ][Labc abc + Labc abc]

=Toao Q)T (0)i3° +T,

qdo qdo (G)Lab&rq;lo (9) r @
(61)

Equation (61) simplifies to;

L+ 3 L 0 0

(62)

In a similar manner, if the transformation,

qdo(é’ 0, ) is applied to equation (60), the rotor

gdo flux linkage becomes;

Aqdo [T

qdo 0 gr)]LabCI: qdo(e 6 ] quo [quo 6 6r)]LabC|: qdo(e 6)] i?do
(63)

Equation (63) simplifies to;
3

Jo | |2
Ag¢e =10
ior 0

(64)

st 0 0 Llr +5 er
2

- 0 O -

lys [
3 ! 3 N
Py Lsr 0 los |+ 0 I-Ir +5 er 0 lor
2 . 2 .
0 ol 0 0 L, Lo

Merging equations (62) and (64), gives the stator and
rotor flux linkage equations in gdo reference frame as
depicted in equation (65).
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A | [Li+L, O 0 L, 0 0 g
s 0 L.+L, 0 0 L, 0 [ig
g 0 L, 0 0 o0 |[i,
217 L, 0 0 L+L, 0 0 [i}
A 0 L, 0 0 L+L, 0 [it
2L oo o ulg
(65)

In equation (65), the primed quantities are rotor values
referred to the stator side and are related thus;

N . N

1 S . _ S

Z’Qr :N_rﬂ'qr’ dr _N_rﬁ'dr (66)
N

il =i i =i

qr qr? dr dr
Ny Ny (67)

Also, from equation (65), Lm is the magnetizing

inductance on the stator side and has the expression;
3 3N, 3N

I—m =5 Lss = sr : er (68)
2 2N, " 2N,
CONCLUSION

From the comparative analysis carried out, it is very
evident that the self-inductance matrix of the two
machines, are completely independent of rotor angular
position. For the TFM, this is seen in equation (13)
while for the IM, it is seen in equations (39) and (40).
However, the mutual coupling inductance in both
cases, are dependent on rotor angular position. For the
TFM in addition to rotor angle dependence, it also
depends on the difference between the direct - and
quadrature - axes reactances. This is as depicted in
equation (16) for the TFM and for the IM, in equation
(47). The comparative analysis also showed that when
state variables namely voltage and flux linkage
equations in both machines are transformed to
arbitrary qdo reference frame, new set of voltage and
flux linkage equations are obtained and whose
inductance values no longer depended on the rotor
angular position that varies with time; and this of
course is a very big advantage in the analysis of both
machines. This is as shown in equations (20), (21) and
(28) for the TFM while for the IM, it is as shown in
equations (57), (58) and (65).
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