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Abstract- This paper presents a comparative analysis 

of a transfer field machine (TFM) and a poly-phase 

induction machine (IM) with central focus on the 

inductance matrix of both machines. The two 

machines belong to two different classes of machine 

and quite different in physical configuration. In this 

analysis, the self-inductance matrix of the two 

machines is derived and both shown to be 

independent of the rotor angular position. However, 

the mutual coupling inductance in both cases are 

dependent on rotor angular position which varies 

with time. For the transfer field machine, in addition 

to rotor angle dependence, it also depends on the 

difference between the direct- and quadrature-axes 

reactances. In both machines, when state variables 

namely voltage and flux linkage equations, are 

transformed to arbitrary qdo reference frame, a new 

set of voltage and flux linkage equations are obtained 

with inductance values, no longer dependent on the 

rotor angular position that varies with time; and this 

of course is of great advantage in the analysis of both 

machines.  

 

Indexed Terms- Self-inductance, Mutual-

inductance, Inductance Matrix, Coupling, Angular 

position, Comparative Analysis. 

 

I. INTRODUCTION 

 

The theory of induction machine is old and well 

known.  An induction machine consists essentially of 

two major parts, the stator and the rotor.  When an a.c 

voltage is impressed on the terminals of the stator 

windings, a rotating magnetic field is set up.   This 

rotating magnetic field produces an electromotive 

force (e.m.f) in the rotor by electromagnetic induction 

(transformer action) which in turn, circulate current in 

the rotor usually short-circuited.  This current 

circulating in the short-circuited rotor, produces a 

rotating magnetic field which now interact with the 

rotating magnetic field already established in the 

stator.  This interaction produces a torque which is 

responsible for the rotation of the machine. 

 

Induction machine is also known as the asynchronous 

machine which derives from the fact that the rotor 

magnetic field is always lagging the stator magnetic 

field.  The difference is called the slip, and it is a 

fundamental characteristic in the operation of an 

induction machine.    An induction machine when it 

operates below synchronous speed, is a motor while it 

is a generator when it operates above the synchronous 

speed.  In fact, induction machines are mostly used as 

motors. 

 

The induction motor is used in a wide variety of 

applications as a means of converting electric power 

to mechanical work.  It   is without doubt, the 

workhorse of the electric power industry.  Pump, steel 

mill and hoist drives are but few applications of large 

multiphase induction motors.  On a smaller scale, the 

single-phase servo motor is used extensively in 

position-follow-up control systems and single – phase 

induction motors are widely used in household 

appliances as well as hand and bench tools [1].  

 

The transfer-field machine (TFM) is structurally 

basically a reluctance machine.  It differs however 

from the simple reluctance machine in two important 

respects namely: -  

(a) it has two sets of windings instead of one 

(b) each winding has a synchronous reactance which 

is independent of rotor position whereas the 

winding reactance of a single reluctance machine 

varies cyclically [2]. 

 

The TF machine configuration has two stator windings 

in each machine element known as main and auxiliary 

windings.  The main windings are connected in series 

while the auxiliary windings are connected in series 

but transposed between the two machine sections.  

There are no windings on the rotors of either of the 
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composite machines.  This machine induces negative 

sequence emfs of frequency (2S – 1)𝜔𝑜 in the auxiliary 

windings which will in turn circulate a current 

excluded from the supply. 

 

The interaction of the main and auxiliary winding 

magneto motive forces (mmfs), will produce an 

interference wave with beat frequency, ω, which is 

equal to the rotor frequency.  Hence a reluctance 

torque is developed in the rotor as a result of its 

interaction with the interference wave and this causes 

the rotor and hence the machine to rotate (turn). 

 

And so, a transfer-field machine is an energy converter 

and like the induction machine, is asynchronous and 

self-starting. The transfer – field machine is very 

useful in control systems, electrical gear, low speed 

drives etc.  Again, its auxiliary winding terminals 

which will act as the rotor conductors in normal 

induction machine is available without requiring slip 

rings or current collection gears.  It can also be used to 

supply a d.c load through rectifiers, a function which 

has not been performed satisfactorily by induction 

motors because the output waveforms of induction 

motors tend to be increasingly distorted as the load 

current increases.  Also, it is capable of survival in a 

harsh environment [3]. 

 

II. PHYSICAL CONFIGURATION OF A 

TRANSFER FIELD MACHINE (TFM) 

 

The transfer field machine (TFM) comprises a two-

stack machine in which the rotor is made up of two 

identical equal halves whose pole axes are /2 radians 

out of phase in space.  They are housed in their 

respective induction motor type stators.  There are no 

windings in the rotor.  The stator has two physically 

isolated but magnetically coupled identical windings 

known as the main and auxiliary windings.  The axes 

of the main windings are the same in both halves of 

the machine whereas the axes of the auxiliary 

windings are transposed in passing from one half of 

the machine to the other.  Both sets of winding are 

distributed in the stator slots and occupy the same slots 

for perfect coupling and have the same number of 

poles.  The two sets of winding of the transfer field 

machine are essentially similar and may be connected 

in parallel which will of course double its output. The 

schematic diagram of a transfer field machine (TFM) 

is as illustrated   in figure 1.0 

 

 
Fig1.0: Connection diagram for a transfer field 

machine (TFM) 

 

III. INDUCTANCE MATRIX OF A TRANSFER 

FIELD MACHINE (TFM) 

 

3.1 TFM Self - and Mutual – inductances 

 

The rotor of a TFM is of salient poles without 

conductors and as a result, its mmfs are always 

directed along the d- and q- axes.  Also, the direction 

of the resultant mmf of the stator windings relative to 

d- and q- axes will vary with the power factor.  A 

common approach to handling the magnetic effect of 

the stators resultant mmf is to   resolve it along the d - 

and q - axes. 

 

Let us consider the magnetic effect of a current 

flowing in one phase and let this phase be denoted by 

“a”.  Hence the resolved components of the a-phase 

mmf, Fa, will produce the flux components; 

 

d  = 𝑝𝑒𝑑  Fa sin  r  

 

q  = 𝑝𝑒𝑞  Fa cos  r                    (1) 
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along    the d- and q-axes   respectively.   

 

Where; Pe = permeance. 

 

The flux linkage of these resolved components with 

the a-phase winding is; 

 aa=𝑁𝑠( 
𝑑

𝑠𝑖𝑛𝑟 +  
𝑞

𝑐𝑜𝑠𝑟)   (2) 

 

Substituting   equation (1) into equation (2), will yield; 

 

 aa = Ns Fa(𝑝𝑒𝑑𝜃𝑟 +  𝑝𝑒𝑞𝑐𝑜𝑠2𝜃𝑟) 

 aa = Ns Fa{ 
𝑝𝑒𝑑+𝑝𝑒𝑞

2
−

𝑝𝑒𝑑−𝑝𝑒𝑞

2
 𝑐𝑜𝑠2𝜃𝑟}  (3) 

 

In a similar manner, the linkage of the flux 

components, d and 
q  by the b-phase winding that 

is 
3

2
 ahead may be written as; 

ba =NsFa{𝑝𝑒𝑑𝑠𝑖𝑛𝜃𝑟 sin(𝜃𝑟 − 2𝜋
3⁄ ) +

𝑝𝑒𝑞  𝑐𝑜𝑠𝜃𝑟 𝑐𝑜𝑠(2𝜃𝑟 − 2𝜋
3⁄ )} 

 ba = Ns Fa{
𝑝

𝑒
𝑑 + 𝑝𝑒𝑞

4
−  

𝑝𝑒𝑑−𝑝𝑒𝑞

4
 𝑐𝑜𝑠2(𝜃𝑟 −

𝜋

3
)

(

} 

(4) 

 

We can deduce based on the functional relationship of 

 aa with the rotor angle, r , that the self-inductance 

of the stator a-phase winding, excluding the leakage 

inductance, has the form; 

Laa=Lo–Lmscos2 r     
(5) 

 

Where; 

Lo= 
22

mqmd

ms

mqmd LL
Land

LL −
=

+
 

 

The self-inductances of the b- and c- phases, Lbb and 

Lcc, are similar to that of Laa but with r  replaced by 

( r -
𝜋

3
 ) and ( r + 

𝜋

3
) respectively. 

 

Similarly, it can be deduced from equation (4) that the 

mutual inductance between the a-and b-phases of the 

stator is of the form; 

Lab=Lba=
−𝐿𝑜

2
− 𝐿𝑚𝑠𝑐𝑜𝑠2(𝜃𝑟 −

𝜋

3
)   (6) 

Again the mutual inductances Lbc and Lac can be 

obtained by replacing r  with (𝜃𝑟 +
𝜋

3
) and  (𝜃𝑟 +

2𝜋

3
)   

respectively. 

 

For this analysis, the upper case subscripts – A, B, C 

will be associated with the parameters of the main 

windings while the lower case subscripts – a,b,c will 

be associated with the auxiliary windings. 

 

For a three-phase machine like the TFM, the voltage 

equation for the main (stator) winding is; 

 

VABC  = ABCABCABC Pir +   

Vabc  = abcabcabc Pir +    (7) 

 

where; 

P = 
dt

d
 

  = flux linkage 

rABC = diag  ( )CBA rrr  

rabc = diag  ( )cba rrr  

 

The flux linkages in stator reference frame are 

expressed as; 





















=








abc

ABC

yyyx

xyxx

abc

ABC

i

i

LL

LL




   (8) 

 

where; 

Lxx = self-inductance for main windings of TFM 

Lyy = self-inductance for auxiliary windings of TFM 

Lxy = Lyx = mutual inductance between main and 

auxiliary windings 

 

The inductance matrices terms Lxx, Lxy, Lyx and Lyy are 

obtained from inductance submatrices 

22211211 ,, LandLLL  for machine 1 and machine 2.   

 

Now for machine 1, the self-inductance submatrix for 

the main winding is; 
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 (9)

 For machine 2, the Self-inductance submatrix for the 

main winding is; 
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  (10)

The   self-inductance matrix, Lxx, for the main 

winding of TF machine is obtained by adding the 

self-inductance submatrix, L11 of machine 1 and the 

self-inductance submatrix, L11 of machine 2.  And 

this addition will yield; 

 




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=
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(11)

Where: 

=lsL Leakage inductance of   main (stator) winding  
=oL

2

mqmd LL +
    (12) 

Substituting equation (12) into equation (11), gives; 
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 (13)

From equation (11), it is very evident that the self-

inductance matrix, xxL ,  of the main winding, is the 

sum of self and mutual inductances of machine 1 and 

machine 2 respectively. The mutual inductance 

between the main and auxiliary winding, 
xyL , is 

obtained by adding the mutual inductance submatrix,

12L for machine 1 to the mutual inductance 
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submatrix, 12L for machine 2. These mutual 

inductance submatrices are; 

( ) ( )
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Therefore, the mutual inductance between the main 

and auxiliary winding, Lxy, taken into account the 

transposition of the auxiliary winding, is; 
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Taking out a common factor -2𝐿𝑚𝑠 , the mutual 

inductance, 𝐿𝑥𝑦  , becomes; 
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if this is substituted into the expression for
xyL , we 

have that; 
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  (16)

Where; α =  
2𝜋

3
  (1200)  

Now because the main and auxiliary windings in both 

machine 1 and machine 2 are identical in nature, it is 

clear to assume in this   paper that 
yyxx LL =

  
and  

yxxy LL = . And for this reason, auxiliary winding 

parameters do not   change values when they are 

referred to the main winding [ 4]. 
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3.2 Transforming of TFM main winding (stator) 

quantities to arbitrary qdo reference frame. 

 

The rotor of the TF machine is salient pole without 

winding conductors and as a result, its mmfs are 

always directed along the d- and q-axes.  The 

consequence of this is that the qdo transformations can 

only be applied to the stator quantities.  The main 

purpose of this transformation is to obtain constant 

inductances whose values will not depend on the rotor 

angular position    that   varies   with   time   which   is    

evident from equation (16). 

 

(1) TFM Voltage equations in qdo reference frame: 

For a three-phase machine like the TFM, the voltage 

equation for the main  

 (stator) winding is; 

abcabcabcabc
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   (17) 

 

where; 

dt
dP =  

λ = Flux linkage 

rABC = diag  ( )CBA rrr  

rabc = diag  ( )cba rrr  

applying the Tqdo (r) to equation (17), gives; 
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(iii) 
dt

d
P=  

Substituting the above expressions into equation (18) 

and solving, gives the voltage equations for the main 

winding as; 
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While the voltage equations for the auxiliary windings 

become; 
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(2) TFM Flux linkage equation in qdo reference: 

The flux linkage equation (equation 8) is rewritten in 

dqo frame as; 
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(25) 

( ) ( ) ( )
( ) ( ) 
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
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−
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1sincos
1


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
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  (26) 

From equation (18) through equation (26);  
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3

2
 =  

= Speed of rotation of arbitrary reference frame. 

=r Angular rotor position 

T = Matrix transpose 

 

Substituting equations (23 – 26) back into equation 

(22), the flux linkage equations can now be expressed 

as; 

 

 

 

 

 

( ) ( ) qmqmdQmdmqlQ ILlILLL −−++= 2  

( ) ( ) dmqmdDmdmqlD ILlILLL −+++= 2  

OIO IL2=                                                            

(.27) 

( ) ( )
( ) ( )

oio

Dmqmddmdmqld

Qmqmdqmdmqlq

IL

ILlILLL

ILlILLL

2

2

2

=

−+++=

−−++=







 

 

 

 

In   its   completeness, equation (27)   can be   rewritten 

as; 
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


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(28)

 

From equations (20), (21) and (28), it is very evident 

that transformation of the voltage and flux linkage 

equations of the TFM into arbitrary qdo reference 

frame, has produced another set of voltage and flux 

linkage equations with inductance values, no longer 

dependent on the rotor angular position which varies 

with time as seen in equation (16). 

 

IV. PHYSICAL CONFIGURATION OF AN 

INDUCTION MACHINE (IM) 

 

The induction motor comprises a stator and a rotor 

mounted on bearings and separated from the stator by 

air-gap. The stator consists of a magnetic core made 

up of laminations carrying slot-embedded conductors 

which constitute the stator windings. The rotor of 

induction motor is cylindrical and carries either 

conducting bars short-circuited at both ends by end 

rings (squirrel cage rotor) or a polyphase winding 

connected in a predetermined manner with terminals 

brought out of slip rings for external connections and 

short circuited. The winding arrangement of a typical 

2-pole, 3-phase, star-connected, symmetrical 

induction machine is as shown in figure 2. 
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Fig.2: Two-pole, 3-phase, star-connected, 

symmetrical induction machine. 

 

V. INDUCTANCE MATRIX OF AN 

INDUCTION MACHINE(IM) 

 

5.1 IM Self - and Mutual - inductances. 

The winding arrangement of   a    2 – pole, 3-phase, 

star-connected symmetrical induction machine is as 

shown in figure (2).  The stator windings are identical 

with equivalent turns, Ns and resistance, rs.  The rotor 

windings which may be wound or forged as a squirrel 

cage winding can also be approximated as identical 

windings with equivalent turns, Nr and resistance rr.  

The air gap of an induction machine is uniform and the 

stator and rotor windings may be approximated as 

having   a   sinusoidally distributed windings. 

 

The stator inductance, Ls, is given as; 

 

 
 

where; 

Las as = LLs + LA – LB Cos 2qr   (30)  

Lbs bs = LLs + LA – LB Cos2. (θ_r-π/3)  (31)  

Lcs cs = LLs + LA – LB Cos2. (θ_r+π/3)  (32)  

Las bs = -½LA – LB Cos2   (33)  

Las cs = -½LA – LB Cos2.   (34)  

Lbs cs =- ½LA – LB Cos2.   (35) 

 

From equation (29), it is very evident that all stator 

self-inductances are equal (that is;  

Lasas = Lbsbs = Lcscs with; Lasas = LLs + Lms (36) 

 

Where; 

LLs = stator leakage inductance 

Lms = stator magnetizing inductance 

 

The stator magnetizing inductance, Lms, corresponds 

to LA in equation (30) through equation (32) and is 

mathematically expressed as; 

 

𝐿𝑚𝑠=.(
𝑁𝑠

2
)2 𝜋𝜇𝑜𝑟𝑙

𝑔
     (37) 

 

Where; 

Ns = stator equivalent turns 

o = permeability of free space 

r = stator resistance 

L = stator winding length 

g = length of uniform   air gap 

 

Like the stator self-inductances, the stator-to-stator 

mutual inductances are also equal.  This implies that; 

 

Lasbs=Lascs=Lbscs=-1/2Lms    (38) 

 

and this corresponds to -1/2LA in equation (33) through 

equation (35) with LB = o.  consequently, equation (29)   

is    now    rewritten   as; 

 


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1  (39) 

In a similar manner, the rotor inductance matrix is 

obtained as; 

 


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(40) 

 

Whereas in stator, the rotor self-inductances are equal, 

that is; 

Larar = Lbrbr = Lcrcr = LLr + Lmr   (41) 

 

The rotor magnetizing inductance, Lmr, is given as; 

𝐿𝑚𝑟 =  (
𝑁𝑟

2
)2 𝜋𝜇𝑜𝑟𝑙

𝑔
    (42) 
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The rotor-to-rotor mutual inductances are equal and 

expressed as; 

Larbr = Larcr = Lbrcr = -1/2 Lmr   (43) 

 

The mutual inductances between the stator and the 

rotor windings are obtained as follows; 

(i) The mutual inductances Lasar, Lbsbr and Lcscr are 

equal; and is given by the expression; 

 

Lasar = Lbsbr = Lcscr = Lsrcosqr   (44) 

(ii) The mutual inductances Lasbr, Lbscr and Lcsar are 

equal; and is given by the expression;  

Lasbr = Lbscr = Lcsar = Lsrcos ( )
3

2 +r
  (45) 

(iii) The mutual inductances Lascr Lbsar and Lcsbr 

are equal; and is given by the expression; 

Lascr=Lbsar=Lcsbr=Lsrcos ( )
3

2 −r   (46) 

 

Equation (44) through equation (46), gives one 

expression for the mutual inductance between the 

stator and the rotor windings of an induction machine 

expressed as; 
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 (47) 

The Lsr on the right-hand side of equation (47) 

represents the amplitude of the mutual inductances 

between the stator and rotor windings and is given by 

the expression; 

 

𝐿𝑠𝑟 = (
𝑁𝑠

2
) ( 

𝑁𝑟

2
)

𝜋𝜇𝑜𝑟𝑙

𝑔
    (48) 

 

5.2 Transformation of IM state variables to arbitrary 

qdo reference frame. 

 

The voltage equations in machine variables for the 

stator and the rotor of a star – connected   symmetrical 

IM shown in figure 2 are expressed as follows; 

Vas = iasrs +Pλas 

Vbs=ibsrs+Pλbs     (49) 

Vcs =icsrs + Pλcs 

 

Rotor voltage equations: 
 

Var = iarrr + Pλar 

Vbr=ibrrr+Pλbr     (50) 

Vcr = icrrr + Pλcr 

 

In both equations, P = d/dt, the S subscripts denotes 

variables and parameters associated with the stator 

circuits and the r subscripts denotes variables and 

parameters associated with the rotor circuits.  Both rs 

and rr are diagonal matrices each with equal non zero 

elements [1]. 

 

For a magnetically linear system, the flux linkages can 

be expressed as; 
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r
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s
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i

LL

LL




wb.turn. (51) 

 

For an idealized inductance machine, six first order 

differential equations are used to describe the 

machine, one differential equation for each machine 

winding.  The stator-to-rotor coupling terms are 

functions of rotor position and hence when the rotor 

rotates, the coupling terms vary with time [5]. 

 

In the analysis of IM, it is also desirable to transform 

the abc variables with the symmetrical rotor windings 

to the arbitrary qdo reference frame [1]. 

 

And the transformation equation from the abc 

quantities to the qdo reference frame is given by; 

( ) 

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q
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T

f

f
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Where the variable, f, can be the phase voltages, 

currents or flux linkages of the machine. 
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 (53) 

 

and    inverse of equation (53) is; 
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 
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5.3 IM Voltage equations in qdo reference frame 

 

From equation (49), the stator   winding   abc voltage 

equations can be expressed as;  
abc

s

abc

s

abc

s

abc

s PirV +=     (55) 

where; P = 
dt

d  

Applying the transformation, ( ) qdoT , to equation 

(55), yields; 
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Equation (56) can be simplified to; 
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where; 
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In a similar manner, the rotor quantities must be 

transformed into the same qdo frame.  Now the 

transformation angle for the rotor phase quantities is 

( )r − .  And so when the transformation, 

( )rqdoT  − , is applied to the rotor voltage equation 

in the same manner as the stator, we have; 
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(58) 

 

5.4 IM Flux linkage equation in arbitrary qdo 

reference frame 

From equation (51), the stator and rotor flux linkages 

are given as; 
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The stator flux linkages in arbitrary   qdo reference 

form are obtained by applying ( )qdoT  to equation 

(59) to give; 
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(61) 

 

Equation (61) simplifies to; 
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(62) 

 

In a similar manner, if the transformation, 

( )rqdoT  −  is applied to equation (60), the rotor 

qdo flux linkage becomes;  
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(63) 

 

Equation (63) simplifies to; 









































+

+

+









































=

















or

dr

qr

lr

rrlr

rrlr

os

ds

qs

sr

sr

or

dr

qr

i

i

i

L

LL

LL

i

i

i

L

L

00

0
2

3
0

00
2

3

000

0
2

3
0

00
2

3





     

(64) 

 

Merging equations (62) and (64), gives the stator and 

rotor flux linkage equations in qdo reference frame as 

depicted in equation (65).  
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(65) 

 

In equation (65), the primed quantities are rotor values 

referred to the stator side and are related thus; 
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Also, from equation (65), mL is the magnetizing 

inductance on the stator side and has the expression; 
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CONCLUSION 

 

From the comparative analysis carried out, it is very 

evident that the self-inductance matrix of the two 

machines, are completely independent of rotor angular 

position. For the TFM, this is seen in equation (13) 

while for the IM, it is seen in equations (39) and (40). 

However, the mutual coupling inductance in both 

cases, are dependent on rotor angular position. For the 

TFM in addition to rotor angle dependence, it also 

depends on the difference between the direct - and 

quadrature - axes reactances. This is as depicted in 

equation (16) for the TFM and for the IM, in equation 

(47). The comparative analysis also showed that when 

state variables namely voltage and flux linkage 

equations in both machines are transformed to 

arbitrary qdo reference frame, new set of voltage and 

flux linkage equations are obtained and whose 

inductance values no longer depended on the rotor 

angular position that varies with time; and this of 

course is a very big advantage in the analysis of both 

machines. This is as shown in equations (20), (21) and 

(28) for the TFM while for the IM, it is as shown in 

equations (57), (58) and (65). 
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