Symmetric 1- Designs from Maximal Subgroup of Degree 1771 Related to Mathieu Group M_{24}

LUCY CHIKAMAI
Mathematics department, Kibabii University, Bungoma, Kenya

Abstract

We construct symmetric 1-designs from the primitive permutation representations of degree 1771. We note that the binary row span of the incidence matrices of each design D_{k} yield the code denoted C_{k}. We examine the properties of some of the codes C_{k} where computations are possible. 2010 Mathematics Subject Classification: 94B 05C

Indexed Terms- Linear codes, Designs, Mathieu Group M24, Maximal sub-group.

I. INTRODUCTION

Suppose G is the Mathieu group M_{24}. The group G acts on the sextet to generates the point stabilizer $2^{6} .3 . S_{6}$. The group G acts on this point stabilizer to form orbits. The orbits of this point stabilizers are 1,30, 280 and
448. For a primitive group G acting on a Ω, it follows from theorem 3.4.1 and 3.4.2 that if we form orbits of the point stabilizer and take their images under the action of the full group represents the blocks of a symmetric 1 - design.

II. SYMMETRIC 1- DESIGN

In this section we examine all designs invariant under G. Table 1 shows Designs from primitive groups of degree 1771 .t Column one represents the 1-design D_{k} of orbit length k , column two gives the orbit length, column three shows the parameters of the 1-designs D_{k} and column four gives the automorphism group of the design.

Table 1: Designs from Primitive Group of Degree 1771

Design	orbit length	parameters	Automorphism Group
D90	30	$1-(1771,90,90)$	M_{24}
D240	280	$1-(1771,240,240)$	M_{24}
D1440	1440	$1-(1771,1440,1440)$	A 24
D91	31	$1-(1771,91,91)$	M_{24}
D241	241	$1-(1771,241,241)$	M_{24}
D1441	1441	$1-(1771,1441,1441)$	M_{24}
D330	330	$1-(1771,330,330)$	M_{24}
D1530	1530	$1-(1771,1530,1530)$	M_{24}
D1680	1680	$1-(1771,1680,1680)$	M_{24}
D331	331	$1-(1771,331,331)$	M_{24}
D1531	1531	$1-(1771,1531,1531)$	M_{24}
D1681	1681	$1-(1771,1681,1681)$	M_{24}
D1770	1770	$1-(1771,1770,1770)$	M_{24}

- Proposition 2.1. Let G be the Mathieu simple group M_{24}, and Ω the primitive G-set of size 1771 defined by the action on the cosets of M_{22} :2. Let β
$=\left\{M^{g}: g \in G\right\}$ and $D_{k}=(\Omega, \beta)$. Then the Aut $\left(D_{k}\right)$ is isomorphic to M_{24}
- Proof The only composition factor of $\operatorname{Aut}\left(\mathrm{D}_{k}\right)$ is M_{24}. This implies that $\operatorname{Aut}\left(\mathrm{D}_{k}\right)$ is isomorphic M_{24}

III. SOME LINEAR BINARY CODES

We note that the binary row span of the incidence matrices of each design D_{k} yield the code denoted C_{k}. We examine the properties of some of the codes C_{k} where computations are possible.

- Proposition 3.1. Let G be the primitive group of degree 1771 of M_{24} and C a linear code admitting G as an automorphism group. Then the following holds:
i. C_{448} is a, self- orthogonal and doubly even projective [1771, 22,264] binary code. The dual code $\mathrm{C}^{{ }_{448}}$ is a [1771, 737, 3] binary code of weight 3.
ii. C_{311} is a projective [1771, 23,264] binary code with 1288 words of weight 264 . $\mathrm{C}^{\perp} 311$ of C_{311} is a [1771, 736, 4] binary code.
- Proof
i. The weight distribution of this code is $\mathrm{C}_{448}=1+$ $1288 x^{264}+26565 x^{320}+276828 x^{352}+510048 x^{360}+$ $680064 \mathrm{x}^{376}+1772771 \mathrm{x}^{384}+807576 \mathrm{x}^{392}+$ $97152 x^{408}+21252 x^{416}+759 x^{448}$. From the weight distribution of C_{448}, we observe that codewords have weights divisible by $4 . \mathrm{C}_{448}$ is doubly even. Hence C_{448} is self-orthogonal. The minimum weight of $\mathrm{C}^{\perp} 448$ code is 3 . Hence C_{448} is projective.
ii. The weight distribution of this code is $\mathrm{C}_{311}=1+$ $1288 x^{264}+759 x^{311}+26565 x^{350}+\ldots$ The minimum weight of $\mathrm{C}^{\perp} 311$ code is 4 . Hence C_{311} is projective.

CONCLUSION

Let G be the primitive group of degree 1771 of M_{24} and C a linear code and D a primitive design admitting G as an automorphism group. Then the following holds:
a) There exists a self-orthogonal doubly even projective code.
b) There exist a set of Primitive Symmetric 1Designs related to M_{24}.
c) $\operatorname{Aut}\left(\left(D_{k}\right)^{\sim}=M_{24}\right.$

REFERENCES

[1] M. Grassl(2006), Searching for Linear Codes with Large Minimum Distance,Discovering

Mathematics with Magma (Wieb Bosma and John Cannon, eds.), Springer, New York.
[2] R.P.Hansen (2011), Construction and Simplicity of the Large Mathieu Group,,Masters Theses 4053.
[3] J. D. Key and J. Moori (2002), Designs, codes and graphs from the Janko groups J1 and J2, J. Combin. Math. and Combin. Comput. 40, 143159.
[4] J. Moori and G.F. Randriafanomezantsoa (2014), Designs and codes from certain finite groups.Transactions on CombinatoricsISSN (print): 2251-8657, ISSN (on-line): 22518665Vol. 3 No. 1 (2014), pp. 15-28. University of Isfahan
[5] B. G. Rodrigues (2003), Codes of Designs and Graphs from Finite Simple Groups, Ph.D. thesis, University of Natal, Pietermaritzburg,

