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Abstract- Volatility is a measure of how unsure we 

are about the future of asset price; hence its 

estimation is very important for implementation, 

valuation and derivative pricing of assets. Volatility 

forecast is crucial as it affects investment choice and 

is the key input to valuation of corporate and public 

liabilities. It gives the idea about the stability of stock 

prices. Relatively high volatility implies that the stock 

price varies continuously within relatively large 

interval. Volatility is the standard deviation of the 

continuously compounded rate of return of the stock, 

per year. Volatility forecast is also the most important 

parameter affecting prices of market-listed options of 

which trading volume increased in the last decade. 

Volatility of an asset as used by Black-Scholes model 

is assumed to be constant throughout the duration of 

the derivative. This study involves European logistic-

type option pricing with jump diffusion. Using the 

knowledge of logistic Brownian motion with the aid 

of Dupire approach we develop a logistic Brownian 

motion with jump diffusion model for price process. 

 

Indexed Terms- Black-Scholes formula, Jump 

diffusion, Logistic Brownian motion, Volatility, 

Wiener process. 

 

I. INTRODUCTION 

 

Stock prices may change due to the general economic 

factors such as demand and supply, government 

changing interest rates policy, change in inflation 

rates, the corporate tax rate increase, changes in 

economic outlook and capitalization rates. These bring 

about small or marginal movements in stock's price 

hence modeled by a Geometric Brownian motion. On 

the other hand, the stock's price may fluctuate due to 

announcement of some important information causing 

over-reaction or under-reaction of the asset prices due 

to good and/or bad news. These include; a formidable 

competitor entering the market, research and 

development expert leaving the industry, the company 

losing a big contract, a company making a 

breakthrough in its manufacturing process and an 

outbreak of infectious disease like the novel Covid-19. 

This information may emanate from the firm or 

industry. Such information that arrives at discrete 

points in time can only be modeled by a jump process. 

Thus, modeling stock prices is about modeling new 

information about the stocks. In the process of 

modeling stock prices it should be noted that stock 

price dynamics are reflected by movement of their 

values in uncertain way. According to Market 

Efficient Hypothesis (MEH), the past history of stock 

is assumed to be fully reflected in the present prices.  

 

Traders often pay much attention to recent trends in 

returns. They believe that if a stock showed high 

returns recently, after some positive information about 

a company appeared, it is very likely to continue 

providing high returns. As a result, the market in 

general overreacts after announcement of good news 

Cutler [1991]. But traders that pay attention to 

fundamental values of a stock find stocks that are 

overpriced this way and sell them, thus dropping the 

price. This brings about mean reversion patterns. The 

larger magnitudes of prices fluctuations due to market 

overreaction causes misallocation of funds (the 

companies that have better investment opportunities 

may face lower share price and will collect less money 

from stock market than those with worse investment 

opportunities). Thus, it is a reason for inefficiencies in 

a stock market Engel [1991]. 

 

Geometric Brownian Motion has been an ongoing 

study in financial literature Black-Scholes [1973] and 

Merton [1975]. Its extension has been studied by many 

researchers and one of its kind is European-Logistic 

type option pricing model also known as Logistic 

Geometric Brownian motion Onyango [2003], 

Nyakinda [2011] and Oduor [2012] and among others. 

The use of jump diffusion process has been used in 

Geometric Brownian motion Apaka [2015] and 
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Bayraktar [2010] among others but not in European-

Logistic type option pricing model. 

 

II. PRELIMINARIES 

 

In this section, we discuss some fundamental concepts 

that will be of importance to our study: 

 

2.1 Stochastic process 

Any variable whose value changes over time in 

uncertain way is said to follow a stochastic process. 

Hence it obeys laws of probability. Mathematically, a 

stochastic process 𝑋 = [𝑋(𝑡); 𝑡 ∈ (0, 𝛼)] is a 

collection of random variables such that for each t in 

the index set (0, α), X(t) is a random variable where 

X(t) is the state of the process at time t. A discrete time 

stochastic is the one where the value of the variable 

can only change at a certain fixed point in time. On the 

other hand, continuous time stochastic, change can 

take any value within a certain range.  In mathematical 

modeling stochastic process contains two parts. The 

first part is deterministic. This is the expected term 

which the dominant action of the system is modeled. 

The second part is the stochastic which represents the 

randomness along the dominant curve. Stochastic 

processes play a vital role in the mathematical 

treatment of financial instruments such as equities, 

commodities and derivatives contracts based on these 

Omollo [2010]. These processes can be used to model 

price not only traded products subject to random 

movements of markets, but also fixed-income 

products such as bonds, options and futures. The 

Brownian motion of market prices, also known in 

financial mathematics as the Wiener-Bachelier 

process can be traced back to the start of 20-th Century 

when a French mathematician, Bachelier [1964] 

presented his PhD thesis in which he analysed stock 

market fluctuations. 

 

2.2 Markov Process 

This is a particular type of Stochastic process where 

only the present value of the variable is relevant for 

predicting the future. It is believed that the current 

price already contains what is relevant from the past. 

It implies that the probability distribution of the price 

at any particular future time is not dependent on the 

particular path followed by the price in the past Hull 

[2005]. Stock prices are assumed to follow Markov 

process.  Thus, the stock price fluctuations have the 

same probability distribution and independent of each 

other. This is in accordance to the random walk theory 

which states that the past movement or direction of the 

price of stock or overall market cannot be used to 

predict its future movement. 

 

2.3 Wiener process or Brownian motion 

It is a particular type of Markov Stochastic process 

with a mean change of zero and a variance of 1.0 per 

year. It follows a stochastic process where µ is the 

mean of the probability distribution and σ is the 

standard deviation. That is W(t) ∼ N (µ, σ) then for 

Wiener Process W(t) ∼ N (0,1) which means W(t) is a 

normal distribution with µ = 0 and σ = 1.  If a variable 

Z follows a Wiener process then it has the following 

properties; 

 

i. The change  ∆𝑍 for any two different short time 

intervals of time ∆𝑍 = 𝜖√∆𝑡, where 𝜀 has a 

standardized normal distribution; 𝜙(0,1). 

ii. The values of ∆𝑍 for any two different short time 

intervals of time  ∆𝑡, are independent that is 

𝑉𝑎𝑟(Δ𝑍𝑖, Δ𝑍𝑗) = 0 𝑖 ≠ 𝑗  it follows that from the 

first property that itself has a normal distribution 

with mean of ∆𝑍 = 0 and standard deviation of 

∆𝑍 = √∆𝑡  and variance ∆𝑍 = ∆𝑡  that is ∆𝑍 →

𝑁(0, √∆𝑡)  the second property implies that 𝑍 

follows a Markov process. 

 

2.4 Generalised Wiener process 

The basic Wiener process 𝑑𝑍 that has been developed 

so far has a drift rate of zero and a variance rate of 1.0. 

Here the drift rate of zero means that the expected 

value of 𝑍 at any future time is equal to its current 

value. The variance rate of 1.0 means that the variance 

of the change in 𝑍 in time interval of length T equals 

T. A generalised Wiener process for a variable X can 

be defined in terms of 𝑑𝑍 as 

 𝑑𝑋 = 𝑎𝑑𝑡 + 𝑏𝑑𝑍    (1) 

where mean rate 𝑎  and variance rate 𝑏 are constants, 

𝑎𝑑𝑡 is the expectation of 𝑑𝑋 and 𝑏𝑑𝑍  is the addition 

of noise to the path followed by 𝑋, while 𝑏 is the 

diffusivity. In a small interval ∆𝑡, the change in the 

value of 𝑋, ∆𝑋 is of the form 

∆𝑋 = 𝑎∆𝑡 + 𝑏𝜖∆𝑡    (2) 
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Whereas already defined above 𝜖 is a random variable 

drawing from standardized normal distribution thus 

the distribution of ∆𝑋 is Mean =𝐸(∆𝑋) = 𝑎∆𝑡, 

variance (∆𝑋) = 𝑏2∆𝑡 thus, standard deviation of ∆X 

= b ∆t. Hence ∆𝑋~𝑁(𝑎∆𝑡, 𝑏√∆𝑡).  Similar argument 

to those given for a Wiener process show that the 

change in the value of X in any time interval T is 

normally distributed with mean of change in X = aT 

Standard deviation of change in X = bT, Variance of 

change in X = b2T Hence 𝑑𝑋~𝑁(𝑎𝑇, 𝑏𝑇) 

 

2.5 It𝑜̂‘s Process 

Brownian motion is continuous everywhere but 

integrable nowhere. For this reason, ordinary rules of 

calculus cannot be performed on the stochastic 

component. To overcome this problem Kinyoshi It𝑜̂ 

[1951] went on to develop stochastic calculus. This 

has become an essential tool that is used in Brownian 

to successfully model stock prices.  It𝑜̂‘s Process is the 

generalised 

 

Wiener process in which the parameters a and b are 

functions of the value of the underlying variable X and 

time t. An It𝑜̂‘s process can be written 

mathematicacally as; 

𝑑𝑋 = 𝑎(𝑋, 𝑡)𝑑𝑡 + 𝑏(𝑋, 𝑡)𝑑𝑍    (3) 

 

Both the expected drift rate and variance rate of an 

It𝑜̂′s process is liable to change over time. In a small 

time, interval between 𝑡 and 𝑡 + ∆𝑡, the changes from 

𝑋 to 𝑋 + ∆𝑋, is expressed as 

∆𝑋 = 𝑎(𝑋, 𝑡)∆𝑡 + 𝑏(𝑋, 𝑡)𝜖√∆𝑡     (4) 

 

This relationship involves a small approximation. It 

assumes that the drift and variance rate of 𝑋 remain 

constant, equal to 𝑎(𝑋, 𝑡)∆𝑡 and 𝑏2(𝑋, 𝑡)∆𝑡 

respectively during the interval between 𝑡 and 𝑡 + ∆𝑡 

hence ∆𝑋~𝑁(𝑎(𝑋, 𝑡)∆𝑡, 𝑏(𝑋, 𝑡)√∆𝑡). 

 

2.6 It𝑜̂‘s Lemma and its derivation 

This is the formula used for solving stochastic 

differential equations. Suppose that the value of a 

variable X follows It𝑜̂′s Process  

𝑑𝑋 = 𝑎(𝑋, 𝑡)𝑑𝑡 + 𝑏(𝑋, 𝑡)𝑑𝑍,    (5) 

where 𝑑𝑍 is a wiener process and 𝑎 and 𝑏 are functions 

of X and t. The variable X has a drift rate of a and a 

variance of b2. It𝑜̂′s Lemma shows that a function 

𝐺(𝑋, 𝑡) twice differentiable in 𝑋 and once in 𝑡, is also 

an It𝑜̂′s process given by 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑋
𝑎 +

𝜕𝐺

𝜕𝑡
+

1

2

𝜕2𝐺

𝜕𝑋2 𝑏2) 𝑑𝑡 +
𝜕𝐺

𝜕𝑋
𝑏𝑑𝑍,   (6) 

 

Where the 𝑑𝑍 is the same Wiener process, thus 𝐺 also 

follows an It𝑜̂′s Process with a drift rate of  
𝜕𝐺

𝜕𝑋
𝑎 +

𝜕𝐺

𝜕𝑡
+

1

2

𝜕2𝐺

𝜕𝑋2 𝑏2  and a variance rate of (
𝜕𝐺

𝜕𝑋
)

2

𝑏2.  

Equation (6) is the It𝑜̂′s lemma. 

 

2.7 Local volatility equation of dupire 

The local volatility model was introduced by Dupire 

and Derman [1994]. This has become one of the most 

extensively used models in pricing of derivatives 

across asset classes. The Dupire equation enables us to 

determine the volatility function in a local volatility 

model from quoted call and put options in the market.  

 

For a given current stock price 𝑆(0)  and a given 

expiration period T, the collection 𝐶(𝑆(0), 𝐾, 𝑇); 𝐾 ∈

(0, ∞) of discounted option prices of different strikes 

yields the risk-neutral function 𝜙 of the final spot price  

𝑆(𝑇) 

The price dynamics in the local volatility model under 

the risk neutral measure are given by;  

 𝑑𝑆(𝑡) = (𝑟(𝑡) − 𝑞(𝑡)𝑆(𝑡))𝑑𝑡 + 𝜎(𝑆, 𝑡)𝑆(𝑡)𝑑𝑍(𝑡),  

    (7) 

Where 𝑟(𝑡) is the risk-free interest rate, 𝑞(𝑡) is a 

continuous dividend yield at time 𝑡, 𝜎(𝑆, 𝑡) 

is the volatility and 𝑍(𝑡) is the Wienner process. 

Then 

𝐶(𝑆(0), 𝐾, 𝑇) = ∫ 𝜙(𝑆(𝑇), 𝑇; 𝑆(0))(𝑆(𝑇) −
∞

𝐾

𝐾)𝑑𝑆(𝑇)    (8) 

Where 𝜙(𝑆(𝑇), 𝑇; 𝑆(0)) is the probability density of 

the final spot price at time T.  This pseudo probability 

density function evolves according to Fokker-Plank 

equation 

𝜕𝜙

𝜕𝑇
= −𝑆

𝜕(𝑆(𝑇)𝜙)

𝜕𝑇
+

1

2

𝜕2(𝜎2(𝑆(𝑇))2𝜙)

𝜕𝑆(𝑇)2   (9) 

Differentiating equation (8) twice with respect to K 

gives  

𝜕2𝐶

𝜕𝐾2 = 𝜙(𝑆(𝑇), 𝑇; 𝑆(0))    (10) 
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Differentiating equation (8) twice with respect to T we 

obtain; 

𝜕𝐶

𝜕𝑇
= ∫ [

1

2

𝜕2

𝜕𝑆(𝑇)2
(𝜎2𝑆(𝑇)2𝜙) −

𝜕(𝜇𝑆(𝑇)𝜙)

𝜕𝑇
]

∞

𝐾
(𝑆(𝑇) −

𝐾)𝑑𝑆(𝑇)     (11) 

  

Integrating (11) by parts twice gives      

𝜕𝐶

𝜕𝑇
=

1

2

𝜎2𝐾2𝜕2𝐶

𝜕𝐾2 + 𝜇(𝑇)𝐶 − 𝐾
𝜕𝐶

𝜕𝐾
     (12) 

Equation (12) is called the Dupire local volatility 

equation 

 

III. MAIN RESULTS 

 

We begin with deriving logistic Brownian motion also 

known as Non-linear Brownian Motion. 

 

3.1 Logistic Brownian Motion- (Non-Linear 

Brownian Motion) 

Most of the modern models have been modified to 

represent a non-linear variation of the famous Black-

Scholes equation. Non-linear Black-Scholes equation 

tends to provide a better tool for predicting price 

changes by taking into account more realistic 

assumptions than that of the original Black-Scholes. 

This equation takes care of the transaction costs, 

illiquid markets, risks from unprotected portfolio and 

large investors preferences. These assumptions have a 

great impact on the stock price, the option price, 

volatility and the asset's growth rate Nyakinda [2018]. 

We obtain Logistic Brownian motion by introducing 

excess demand functions in the framework of the 

Walrasian (Walrasian-Samuelson) price adjustment 

mechanism Onyango [2003]. The asset price changes 

are directly driven by excess demand for a security. 

This is the core principle of Standard Walrasian 

model. To simplify the work, we do not allow cross-

security effects that might be experienced when the 

market is multi-security market for which price of one 

security reacts to the excess demand of another. The 

dynamic adjustment rule in such simplified markets 

may be expressed in continuous-time Walrasian-

Samuelson form by a rate of return; 
1

𝑆(𝑡)

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑘𝐸𝐷(𝑆(𝑡)),    (13)  

where the parameters 𝑡 represents continuous time, 

and 𝑘 > 0 is a positive market adjustment coefficient 

(known as speed of market adjustment).  𝑘𝐸𝐷(𝑆(𝑡)) 

is excess demand taken as continuous function of price 

𝑆(𝑡).  In terms of supply and demand functions 𝑄𝑆𝑆(𝑡)  

and 𝑄𝐷𝑆(𝑡), the excess demand is given by 

𝐸𝐷(𝑆(𝑡)) = 𝑄𝐷𝑆(𝑡)-𝑄𝑆𝑆(𝑡)   (14)  

Applying the Walrasian-Samuelson model a logistic 

Brownian motion model or logistic stochastic 

differential equation is obtained which is; 

𝑑𝑆(𝑡)

𝑆(𝑡)(𝑆∗−𝑆(𝑡))
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍     (15) 

Or 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)(𝑆∗ − 𝑆(𝑡))𝑑𝑡 + 𝜎𝑆(𝑡)(𝑆∗ − 𝑆(𝑡))𝑑𝑍 

,     (16) 

Where 𝑆(𝑡) is the price of the underlying asset at any 

time  𝑡, 𝑆∗ is the market equilibrium, 𝜇 is the rate of 

increase of the asset price 𝜎 is the volatility of the 

underlying asset and 𝑑𝑍 is the Wienner process.   

Using It𝑜̂′s Lemma we can solve for 𝑆(𝑡) as 

𝑆(𝑡) =
𝑆∗𝑆(0)

𝑆(0)+(𝑆∗−𝑆(0))exp (−(𝜇𝑆∗(𝑡−𝑡0)+𝜎𝑆∗𝑍(𝑡)
    (17) 

This price dynamic is referred to us as logistic 

Brownian motion of stock price 𝑆(𝑡). Oduor [2012] 

 

3.2 Estimation of Volatility using European 

Logistic-type Brownian Motion with jump 

diffusions 

Walrasian price-adjustment model built a non-linear 

Brownian motion by introducing excess demand. A 

deterministic logistic equation is obtained by applying 

excess demand in the framework of Walrasian-

Samuelson price adjustment mechanisms.  Using the 

approach of Dupire we derive a diffusion process 

when the price follows non-linear Brownian motion. 

Suppose that the price of the asset evolves according 

to the logistic jump diffusion equation 

𝑑𝑆(𝑡) = (𝜇 − 𝜆𝑘)𝑆(𝑡)((𝑆∗ − 𝑆(𝑡))𝑑𝑡 +

𝜎𝑆(𝑡)((𝑆∗ − 𝑆(𝑡))𝑑𝑍 + 𝑆(𝑡)(𝑆∗ − 𝑆(𝑡)(𝑞 − 1)𝑑𝑁

 (18) 
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Where 𝜇 is the growth rate, 𝜎 is the volatility,𝜆 is the 

rate at which the jumps happen, 𝑘 is the average jump 

size measured as a proportional increase in asset price 

𝑆∗ is the equilibrium price which is greater than asset 

price 𝑆(𝑡), 𝑞 is the absolute price jump size and 𝑁 is 

the Poisson process generating jumps.  The aim is to 

show that there is a unique volatility function 𝜎(𝑆, 𝑡) 

such that the observed option price is consistent with 

equation (18). 

If we apply the black-Scholes Merton PDE for any 

claim of asset value 𝑓(𝑆, 𝑡), we have 

𝜕𝑓

𝜕𝑡
+

𝜙2𝑠2

2

𝜕2𝑓

𝜕𝑠2 + 𝜆𝐸[𝑓(𝑞𝑠, 𝑡) − 𝑓(𝑠, 𝑡)] −
𝜕𝑓

𝜕𝑠
𝑆𝜙𝐸(𝑞 −

1) + 𝑟𝜙𝑠
𝜕𝑓

𝜕𝑠
− 𝑟𝑓 = 0   (19) 

Where 𝑟(𝑡) is the risk-free interest rate in the market 

since we are dealing with price derivatives?  

If we consider a European call option the process or 

finding a fair option value of 𝑓(𝑆, 𝑡), will depend on 

asset price 𝑆(𝑡) and time   𝑡. Therefore, the function 

𝑓(𝑆, 𝑡) can be written for the value of the contract with 

boundary condition 

𝑓(𝑆, 𝑡) = max (𝑆∗ − 𝑆(𝑡), 0)   (20) 

At a time 𝑡 before expiry date the price of the call 

option will be a function of 𝑆(𝑡), 𝑡, 𝑇,and 𝑆∗ that is  

𝑓((𝑆(𝑡)𝑡, 𝑇, 𝑆∗) .  when we fix the expiry rate T and 

the equilibrium 𝑆∗ we have  

𝑓(𝑆, 𝑡) = ∫ max(𝑆∗ − 𝑆(𝑡)𝜙𝑑𝑆(𝑇)
∞

𝑆
  (21) 

Differentiating (21) twice with respect to S we get 

𝜙 = 𝑆 =
𝜕2𝑓(𝑆,𝑡)

𝜕𝐾2      (22) 

Applying the Fokker-Plank equation and using 

Kolmogorov’s foward equation on (18) we obtain 

𝜕𝜙

𝜕𝑇
−

1

2

𝜕2𝑓(𝑆,𝑡)

𝜕𝑆(𝑇)2 𝜎2𝑠2𝜑2𝜙 + 𝜆𝐸[𝑓(𝑞𝑠, 𝑡) − 𝑓(𝑠, 𝑡)]𝜙 −

𝜕𝑓

𝜕𝑠
𝑆𝜑𝜙𝐸(𝑞 − 1) +

𝜕𝑓(𝑆,𝑡)

𝜕𝑆(𝑇)
𝑟𝜑𝑆𝜙 = 0, 

where 𝜑 = (𝑆∗ − 𝑆(𝑡)                    (23) 

Using the approach of Dupire [1994] taking f as a 

function of strike price in equation (23), 

with differentiation taken with respect to drift and 

volatility function evaluated at S (because the density 

function in equation (22) is expressed in terms of S. 

Equation (23) can be re-written as; 

𝜕𝜙(𝑆)

𝜕𝑇
−

1

2

𝜕2𝑓(𝑆,𝑡)

𝜕𝑆(𝑇)2
[𝜎2𝑆2𝜑2𝜙 + 𝑆(𝑡)𝜑𝜙(𝑞 − 1)] +

𝜕𝑓(𝑆,𝑡)

𝜕𝑆
(𝜇 − 𝜆𝑘)𝑆(𝑡)𝜑𝜙 = 0  (24) 

Using equation (22) and substituting 𝜙(𝑆) in the first 

term of equation (24) we have; 

𝜕

𝜕𝑇
[𝐶(𝑡, 𝑇)−1 𝜕2𝑓

𝜕𝑆2] −
1

2

𝜕2𝑓(𝑆,𝑡)

𝜕𝑆(𝑇)2
[𝜎2𝑆2𝜑2𝜙 +

𝑆(𝑡)𝜑𝜙(𝑞 − 1)] +
𝜕𝑓(𝑆,𝑡)

𝜕𝑆
(𝜇 − 𝜆𝑘)𝑆(𝑡)𝜑𝜙 = 0   (25) 

Using chain rule to differentiate the first term of (25) 

with respect to 𝑇 and then expand we get; 

𝐶(𝑡, 𝑇)−1 𝜕

𝜕𝑇
(

𝜕2𝑓

𝜕𝑆2) + 𝑟(𝑇)𝐶(𝑡, 𝑇)−1 𝜕2𝑓

𝜕𝑆2 −

1

2

𝜕2𝑓(𝑆,𝑡)

𝜕𝑆(𝑇)2
[𝜎2𝑆2𝜑2𝜙 + 𝑆(𝑡)𝜑𝜙(𝑞 − 1)] +

𝜕𝑓(𝑆,𝑡)

𝜕𝑆
(𝜇 −

𝜆𝑘)𝑆(𝑡)𝜑𝜙 = 0     (26) 

Substituting for 𝜙, multiplying by 𝐶(𝑡, 𝑇) then 

integrating once with respect to 𝑆 we have; 

𝜕

𝜕𝑇
(

𝜕𝑓

𝜕𝑆
) + 𝑟(𝑇)

𝜕𝑓

𝜕𝑆
−

1

2

𝜕𝑓(𝑆,𝑡)

𝜕𝑆
[𝜎2𝑆2𝜑2 + 𝑆(𝑡)𝜑𝜙(𝑞 −

1)]
𝜕2𝑓

𝜕𝑆2 + (𝜇 − 𝜆𝑘)𝑆(𝑡)𝜑
𝜕𝑓

𝜕𝑆
= 𝛼(𝑇), 

Where 𝛼(𝑇) is the constant of integration.  (27) 

Integrating again w.r.t 𝑆 we get; 

𝜕𝑓

𝜕𝑇
+ 𝑟(𝑇)𝑓 −

1

2
[𝜎2𝑆2𝜑2 + 𝑆(𝑡)𝜑(𝑞 − 1)]

𝜕2𝑓

𝜕𝑆2 +

(𝜇 − 𝜆𝑘)𝑆(𝑡)𝜑
𝜕𝑓

𝜕𝑆
= 𝛼(𝑇)𝑆 + 𝛽(𝑇), (28) 

Where 𝛽(𝑇) is the costant of integration relating to the 

second integration.  As per Dupire’s      approach, it is 

assumed that all the terms on the left-hand side of 

equation (28) decay when 𝑆 tends to +∞ so that 

𝛼(𝑇) = 𝛽(𝑇) = 0 hence equation (28) becomes 

𝜕𝑓

𝜕𝑇
+ 𝑟(𝑇)𝑓 + (𝜇 − 𝜆𝑘)𝑆(𝑡)𝜑

𝜕𝑓

𝜕𝑆
−

1

2
[𝜎2𝑆2𝜑2 +

𝑆(𝑡)𝜑(𝑞 − 1)]
𝜕2𝑓

𝜕𝑆2 = 0   (29) 

Finally solving for volatility model  𝜎, we have; 
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𝜎 = √2 {
𝜕𝑓

𝜕𝑇
+𝑟(𝑇)𝑓+(𝜇−𝜆𝑘)𝑆(𝑡)𝜑

𝜕𝑓

𝜕𝑆
−

1

2
[𝑆(𝑡)𝜑(𝑞−1)]

𝜕2𝑓

𝜕𝑆2

𝑆2𝜑2𝜕2𝑓

𝜕𝑆2

}  (30) 

 

CONCLUSION 

 

In this paper we have developed a volatility model 

using European logistic-type Brownian motion when 

asset price has discontinuity. It is hoped that the results 

obtained are useful to long term investors before 

making decisions on profitability of trading strategies. 
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