Theft Detection System

SANJANA KUTE¹, RUTHVIK PIMPALKAR², VAIBHAV MORE³, M.R. GORBAL⁴

^{1, 2, 3, 4} Department of Information Technology, Shivajirao S. Jondhale College of Engineering, Dombivali

Abstract- The advent of Internet of Things is the network of physical objects or "things" embedded with electronics, software, sensors and network activity that enables objects to collect and exchange data. The IOT allows objects to be sensed and controlled remotely across existing network infrastructures, creating opportunities formore direct integration between physical world and computerbased systems resulting in improved efficiency, accuracy and economic benefit. IOT with Raspberry pi has been implemented for Home security through embedded system and an interface has given to all cell phones which belong to members of home. Theft detection is a tracking technology used to identify and authenticate tags that are applied. This project has IRsensor that senses the culprit and camera clicks the picture, so that an image along with an alert message is sent to server from which the owner get notified through SMS message. In this system, the doors are automatically locked and alerts the surrounding by blowing an alarm as soon as the motion of the intruder is detected. The camera records the video and uploads it on the cloud server. The camera in this system also works in dark environments.

Indexed Terms- Raspberry Pi, IR sensor, Pi camera, Cloud, SMS message.

I. INTRODUCTION

Now-a-days, Security has become the most challenging task. Everyone wants safety but in present scenario, nothing is safe not even in their own houses. Home is a place where we keep our assets and our capital. But we can never be sure about the securityof that asset behind us and the possibilities of intrusion are increasing day by day. Wegenerally lock houses when going out of the house. But just locking the home is not enough, there must be a system which safety our home, belongings and income from theft is the necessary requirements for home security system and keep track of the activities and report to the owner

accordingly and works according to the response of the owner.

II. PROBLEM DEFINITION

Security and safety has always become a basic necessity for urban population. To Monitor and to detect we use CCTV camera. It reserves too much space for continues recording and also require manpower to detect the unauthorized Activity. To overcome, we came across with Raspberry PI using IOT. Compare to Existing System Raspberry Pi is much cheaper with better resolution and low power consumption features.

III. LITERATURE SURVEY

Title	IOT Based Theft				
	Detection using				
	RaspberryPi				
Authors	Anjum Umera, Babu B				
Year of Publishing	2017				
Summary	In this system, author as				
	use a camera along with				
	raspberry pi along with a				
	circuit with LCD				
	display, IR for night				
	vision and USB drive				
	for storage. As soon as				
	camera motion is				
	detected in camera, the				
	system uses image				
	processing to detect an				
	exact area of motion				
	occurrence and				
	highlights it				
	accordingly.				
	The system now				
	transmits the images of				
	the occurrence over IOT				
	to be viewed by the user				
	online. Also, it stores the				
	footage in a USB drive				

	for further reference.			
	Conclusion from this			
	paper, it has			
	demonstrated how to get			
	a fully functional			
	embedded product			
	developed from scratch.			
	This system is suitable for small personal area			
	surveillance. i.e.			
	personal office cabin,			
	bank locker room,			
	parking entrance.			

Title	Theft Prevention				
	System using Raspberry				
	Pi& PIR Sensor				
Authors	Neha Barve,				
	Shivani				
	Deshpande,				
	Sadhana				
	Godbole, Sakshi Galim				
Year of Publishing	2017				
Summary	In this system, author as				
	used raspberry pi as a				
	central unit and PIR for				
	motion sensing, After				
	motion sensing relays				
	are triggered by				
	RaspberryPi. Relays are				
	responsible for turning				
	lights ON/OFF. System				
	provides a facility of				
	notification to the user				
	through GSM. After				
	activation of system,				
	PIR sensor is the only				
	component which is				
	active all the time. It				
	senses radiations				
	continuously and sends				
	signal to Raspberry Pi.				
	Signal is in binary				
	format, i.e. 0 and 1 for				
	motion detection it will				
	send binary value 1; else				
	it will keep on sending				
	value 0 to Raspberry Pi.				

After receiving value 1			
from PIR sensor,			
Raspberry Pi triggers			
the furtherfunctioning.			
Raspberry Pi is			
responsible for			
activating relay module.			
Relay module is used to			
turn high voltage			
devices ON or OFF.			
Raspberry Pi allowsuser			
to turn ON/OFF these			
devices from remote			
location through web			
page. At the same time,			
Raspberry Pi also			
activates buzzer to start			
ringing. When lights are			
turned ON by relay, Pi			
Cam captures image of			
intruder. Captured			
image is stored on SD			
 card.			

Title	IOT Based Theft				
	Detection Using				
	RaspberryPi				
Authors	Dev Ganesh, Karthick,				
	Jagadish				
Year of Publishing	2018				
Summary	In this framework, we				
	utilize a camera				
	alongside raspberry pi				
	alongside a circuit with				
	LCD show IR for night				
	vision. and USB drive				
	for storage. When				
	camera movement is				
	recognized in camera,				
	the framework utilizes				
	picture handling to				
	distinguish a correct				
	territory of movement				
	event and features it in				
	like manner.				
	The system now send				
	notifications to the user				
	when motion is detected				

Also,	it	stores	the
footage	in	a USB	drive
for furt	her	referenc	e.

	I			
Title	IOT Based Anti-Thef			
	Detection and Alerting			
	System Using			
	Raspberry Pi			
Authors	D. Pooja Sri N. Gayathri			
	K. Heshma			
Year of Publishing	2020			
Summary	This system monitors			
·	the entire floor for			
	movement. One single			
	step anywhere on the			
	floor is tracked and user			
	is alarmed through mail			
	over IOT. In this			
	system, secure flooring			
	tile connected with IOT,			
	when the system is to be			
	turned on, then whoever			
	comes inside the houseit			
	passes the information			
	over IOT. Whenever the			
	thief enters in the house,			
	and steps on the floor			
	immediately it is sensed			
	by the sensor which			
	passes on the signal to			
	raspberry pi controller.			
	The controller in turn			
	processes it to be valid			
	signal and then moves			
	the camera tothe area			
	where movement was			
	detected.The research			
	work that will be carried			
	out in this thesis would			
	be mainly focused to			
	design and develop			
	efficient and convenient			
	motion surveillance i.e.			
	an Anti-Theft device to			
	solve security problems			
	which will help to			
	reduce/stop theft. This			
	system is suitable for			
L	1			

small	personal	area
surveillance.		

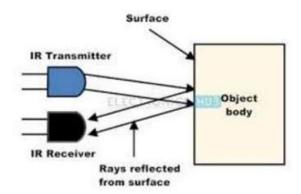
IV. CONCEPTUAL OVERVIEW

• RASPBERRY PI:

- 1) In this project raspberry pi 3B (model) is a ARM processor based board with 2 to 4 gb ram been used as heart of system. This proposed system is an intelligent system and it eliminates the need of continuous by human resource. Thus, any human extra workis ruled out.
- 2) This system continuously checks the status of place by sensors that Is anyone enteringin the shop or not. And sends the alert message to the owner with live images by rotating camera with different angles.
- 3) In this security system human bodies are detected by PIR sensor.
- 4) Capture the image upload on cloud and turn on buzzer get notify to user.
- 5) The main aim of this project is to make an automated security system for Home, Banks and jewelry shops.
- 6) Pi for high processing speed act as the brain of project Will control & perform coordination between hardware & cloud

• Wi-Fi Module (Signal):

Wi-Fi is a wireless technology that provides high speed connectivity. It is trademarkedas IEEE 802.11x. it is supported by many applications such as video games, home networks, mobile phone etc. The Wi-Fi is the most favorable choice for IOT now days which will increase the speed of connecting the network worldwide. In this system the Raspberry pi has a inbuilt Wi-Fi, hence accessing it from anywhere, controlling the raspberry pi


• USB Camera:

IT-306 WC WEBCAM NIGHT VISION Camera used with Raspberry Pi for recording Will takes images Passive Infrared sensor has been used to detect human. & record videos at upload on cloud server and live videos to user.

• INFRARED SENSOR:

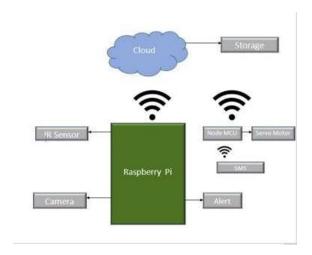
The key of this project is Human sensing technology. In this project Infrared sensor has been used to detect

human. Infrared radiation exists in the electromagnetic spectrum at a wavelength which is longer than visible light. it can be detected though it cannot be seen. Objects that generate heat also generate infrared radiation and those objects include animals and the human body whose radiation is strongest at a wavelength of 9.4um .IR sensor is able to detect the change of radiation 11 of these infrared radiations. A picture of working principle of IR sensor is given below IR sensorgenerates signal when any human or animal passes in front of the sensor or any movement is detected of human or animal in front of this. The sensor converts the resulting change in the incoming infrared radiation into a change in the output voltage, and this triggers the detection. Objects of similar temperature but different surface characteristics may also have a different infrared emission pattern, and thus moving them with respect to the background may trigger the detector as well security system using IR sensor + Pi + Alarm = door locking! systems IR sensors Will be connected to the Raspberry Pi Will be used to sense if someone enters & alert the Raspberry Pi to take an image.

DOOR LOCKING

- 1. Initialize Raspberry pi, camera module, IR sensor etc.
- 2. If person arrives, he/she will get detected by IR sensor.
- 3. In front of the sensor or any movement is detected, then the image iscaptured by the camera and will send a snap on a smart phone.
- 4. To sending the notification and turn on buzzer and upload picture to user.
- 5. Quickly to lock door.
- 6. Stop.

Cloud Sever:


Cloud service to send images from Raspberry Pi Enable use to monitor house remotely.

• Alarm:

Will be connected directly to Raspberry Pi Trigger when sensor has been used to detectmotion someone breaks in & alert surroundings.

• Alert:

After detecting the motion, sms message will be automatically sent to the user.

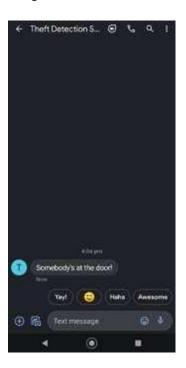
V. WORKING

Step 1: Initially the camera will be recording the movements in the room.

Step 2: IR sensor is used to detect the motion of the intruder. If the motion is detected will perform the flowing steps and if motion is not detected, the camera will keep recording the video.

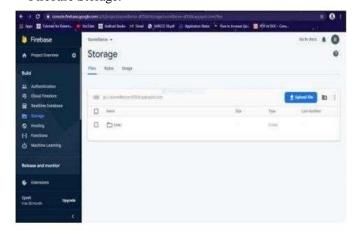
Step 3: If the motion is detected in IR sensor, it will capture the image of the intruderand this image will be uploaded on the cloud server for further reference.

Step 4: Simultaneously the doors of the room will be locked automatically, to trap the intruder and sms message will be sent to the user.


Step 5: A buzzer will be blown to alert everyone in the surrounding area and an snap will be sent to the authorized users.

VI. RESULT

• Regular Updates.


• Alert Message

• Movement Capture with Door locking/unlocking button.

• Firebase Storage.

CONCLUSION

The research work that will be carried out in this thesis would be mainly focused to design and develop efficient and convenient motion detection surveillance i.e. an Anti-Theft device to solve security problems which will help to reduce/stop theft. This system is

suitable for small personal area surveillance. I.e., personal office cabin, bank locker room, parking entrance. Whenever the motion is detected through. The main Advantage of the project is Easy to implement, Low cost with High quality. Captured image can be used as strong evidence for further investigation. Also, this system is scalable and flexible. By covering all these objectives, we can conclude that system issuccessfully implemented. We have successfully implemented and designed a costeffective Raspberry PI based home security system. The proposed system provides home security and surveillance. Deploying sensors, webcam helps to detect, report and monitor intrusion events to users. Also, the system informs to the neighbourhood using buzzer, thereby reducing damages caused by burglary. The use of cloud network in the system allows for storage of captured images and recorded videos. By integrating cloud networking and wireless communication a fully functional home security systemcan be designed and built.

ACKNOWLEDGEMENT

With due respect and gratitude, we take the opportunity to thank all those who helpedus directly and indirectly. We feel pleasure in expressing our Heartfelt gratitude and vote of thanks to our guide Prof. M.R. Gorbal, who guided us in difficult situations. We would also like to thank our respected Head of Department Dr. Savita Sangam for providing unlimited access to all possible resources and encouragem

REFERENCES

- [1] Amol Dhumane, Rajesh Prasad, Jayeshree Prasad, "An Optimal Routing Algorithm for Internet of Things Enabling Technologies", International Journal of Rough Set and Data Analysi (IJRSDA) ,2017.
- [2] Patchava Vamsikrishna, Shaikh Riyaz Hussain, Neelavaratu Ramu, Goli Rohan," Advanced Raspberry Pi Surveillance System (ARS)", Proceeding of 2015 Global Conference on Communication Technology. (GCCT 2015)
- [3] Sadhna Godbole, Shivani Deshpande, Neha Barve, Sakshi Galim, "Review on Theft

- Prevention using Raspberry Pi and PIR Sensors", International Journal of Computer Application, December 2016.
- [4] Sharma, Rupam Kumar," Android Interface Based GSM Home Security System", Issues and Challenges in Intelligent Computing Techniques. (ICICT), 2014 International Conference on IEEE 2014