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Abstract- The main aim of this present work is to 

compare two methods employed for solving 

squeezing flow problems namely Homotopy 

Perturbation Method (HPM) and the Adomian 

Decomposition Method (ADM). The Comparison 

between HPM and ADM is bench-marked against a 

numerical solution Scheme (FDM). The results show 

that the ADM is more efficient and reliable than 

HPM from a computational viewpoint. Although 

ADM requires tedious computational effort than the 

HPM, but it yields more accurate and reliable results 

than the HPM. 

 

Indexed Terms- Squeezing flow, magneto-hydro-

dynamics (MHD), Homotopy Perturbation Method 

(HPM), Adomian Decomposition Method (ADM), 

Parallel manifolds, Finite Difference Method 

(FDM). 

 

I. INTRODUCTION 

 

Most problems in real-world engineering and the 

applied sciences usually rely upon numerical methods 

to find an approximation of exact solutions. In order to 

find an approximation of the solution for such 

problems, we mostly use numerical methods for 

differential equations, integral equations, nonlinear 

equations, partial differential equations, boundary 

value problems etc. Many numerical methods which 

have been introduced until 1980, represent a discrete 

approximation of solutions. Since 1980, several 

numerical methods have been suggested which yield a 

continuous approximation. These methods 

approximate the result in the form of a series which 

converges towards the exact solution. The ADM and 

the HPM are two examples of such methods which 

have been applied to many problems in the analysis of 

functional equations (Adomian, 1994, 1988, 1989; 

Mirgolbabaei and Ganji, 2009; Ganji et al., 2008; 

Alnasr and Momani, 2008; Jaradat, 2008; He, 2006, 

1999, 2000). They are two powerful methods that 

consider the approximate solution of nonlinear 

problems as an infinite series converging to the exact 

solution (Abbaoui and Cherruault, 1995; Cherruault, 

1989; Cherruault and Adomian, 1993; Cherruault et 

al., 1995). Both methods have been applied to solve a 

wide range of problems, both deterministic and 

stochastic, linear and nonlinear, arising from physics, 

chemistry, biology, engineering, etc. (Adomian, 1976; 

Fazeli et al., 2008; Ghotbi et al., 2008; Sharma and 

Methi, 2011; He, 2006; Vahidi and Isfahani, 2011). 

The comparison between the ADM and HPM 

methods, the Homotopy Analysis Method (HAM) and 

HPM, the HAM and the Variational Iteration Method 

(VIM), the Taylor series method and ADM, have been 

given through theoretical anaalysis and numerical 

analysis, see e.g., (Abbasbandy, 2006; He, 2004; 

Khatami et al., 2008; Liao, 2004; Ozis and Yildirim, 

2008; Sajid and Hayat, 2008; Chowdhury, 2011; 

Wazwaz, 1998) and other papers where the ADM and 

HPM methods are applied. For example, Abbasbandy 

(2006) compared the ADM and HPM methods and by 

a theorem showed that the ADM is only a special case 

of the HPM. And Li introduced a comparison between 

the ADM and the HPM, which showed that these 

methods are equivalent for solving nonlinear 

equations (Li, 2009). Recently, the HPM has been 

successfully compared by the variational iteration 

method to solve many types of linear and nonlinear 

problems in science and engineering by many authors 

(Barari et al., 2008; Choobbasti et al., 2008; Noorzad 

et al., 2008). 

 

In this study, firstly we explain the Mathematical 

Formulation of the Problem, and the solution scheme 

ADM and the HPM to solve nonlinear differential 

equations of the underlying squeezing flow problem in 

section 3 and 4, respectively. Then in section 5, we 

show that the HPM with a specific convex homotopy 

for solving nonlinear differential equation is 

equivalent to the ADM. But the ADM converges faster 

than the HPM, ADM performs well than HPM which 
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can be seen in the table in the discussion of result 

section 

 

II. MATHEMATICAL FORMULATION OF 

THE PROBLEM 

 

MHD flow of a viscous incompressible fluid is taken 

into consideration through a system consisting of two 

parallel infinite disks distance ℎ(𝑡) = 𝐻(1 − 𝑎𝑡)1/2 

apart. Magnetic field proportional to 𝐵0(1 − 𝑎𝑡)1/2 is 

applied normal to the disks. It is assumed that there is 

no induced magnetic field. 𝑇𝑊 and 𝑇ℎ represent the 

constant temperatures at 𝑧 = 0 and 𝑧 = ℎ(𝑡) 

respectively. Upper disk at 𝑧 = ℎ(𝑡) is moving with 

velocity 
𝑎𝐻(1−𝑎𝑡)−1/2

2
  toward or away from the static 

lower but permeable disk at 𝑧 = 0 as shown in Fig. 1. 

We have chosen the cylindrical coordinates system 

(𝑟, 𝜙,z). Rotational symmetry of the flow (𝜕/𝜕𝜙 = 0) 

allows us to take azimuthal component 𝑣 of the 

velocity 𝑉 = (𝑢, 𝑣, 𝑤) equal to zero. As a result, the 

governing equation for unsteady two-dimensional 

flow and heat transfer of a viscous fluid can be written 

as [6] 

 
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0,     (1) 

 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
 + 𝜇 (

𝜕2𝑢

𝜕𝑟2 +
𝜕2𝑢

𝜕𝑧2 +
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2) −
𝜎

𝜌
𝐵2(𝑡)𝑢,     (2)  

 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
 + 𝜇 (

𝜕2𝑤

𝜕𝑟2 +
𝜕2𝑤

𝜕𝑧2 +

1

𝑟

𝜕𝑤

𝜕𝑟
),      (3)               

𝐶𝑃 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) =

𝐾0

𝜌
(

𝜕2𝑇

𝜕𝑟2 +
𝜕2𝑇

𝜕𝑧2 +
1

𝑟

𝜕𝑇

𝜕𝑟
−

𝑢

𝑟2) +

𝑣 {2
𝑢2

𝑟2 + (
𝜕𝑢

𝜕𝑧
)

2

+ 2 (
𝜕𝑤

𝜕𝑧
)

2

+ 2 (
𝜕𝑢

𝜕𝑟
)

2

+ 2 (
𝜕𝑤

𝜕𝑟
)

2

+

2
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑟
},          (4) 

 

  Auxiliary conditions are [5] 

𝑢 = 0,    𝑤 =
𝑑ℎ

𝑑𝑡
    𝑎𝑡 𝑧 = ℎ(𝑡)                                      

      𝑢 = 0,    𝑤 = −𝑤0   𝑎𝑡 𝑧 = 0.   (5) 

𝑇 = 𝑇𝑤     𝑎𝑡 𝑧 = 0                             

𝑢 = 𝑇ℎ   𝑎𝑡 𝑧 = ℎ(𝑡).   (6) 

 

𝑢 and 𝑤 here are the velocity components in 𝑟 and 𝑧 

directions respectively, 𝜇 is dynamic viscosity, 𝑝̂ is the 

pressure and 𝜌 is the density. Further 𝑇 denotes 

temperature, 𝐾0 is the thermal conductivity, 𝐶𝑃 is the 

specific heat, 𝑣 is the kinematic viscosity and 𝑤0 is 

suction/injection velocity. 

 

Using the following transformations [5] 

𝑢 =
𝑎𝑟

2(1 − 𝑎𝑡)
𝑓′(𝜂),    𝑤 = −

𝑎𝐻

√1 − 𝑎𝑡
𝑓′(𝜂),              

𝐵(𝑡) =
𝐵0

√1 − 𝑎𝑡
, 𝜂 =

𝑎𝐻

√1 − 𝑎𝑡
,

𝜃 =
𝑇 − 𝑇ℎ

𝑇𝑤 − 𝑇ℎ

 (7) 

 

Into Eqs. (2)-(4) and eliminating pressure terms from 

the resulting equations, we obtain 

𝑓𝑖𝑣 − 𝑆(𝜂𝑓′′′ + 3𝑓′′ − 2𝑓𝑓′′′) − 𝑀2𝑓′′

= 0,                                              (8) 

𝜃′′ − 𝑆 𝑃𝑟(2𝑓𝜃′ − 𝜂𝜃′) − Pr  𝐸𝑐(𝑓′′2 +

12𝛿2𝑓′2) = 0              (9) 

 

With the associated conditions         

    𝑓(0) = 𝐴,     𝑓′(0) = 0, 𝜃(0) = 1,  (10)                           

    𝑓(1) =
1

2
,     𝑓′(1) = 0, 𝜃(1) = 0, 

 

Where S denotes the squeeze number, 𝐴 is 

suction/injection parameter, 𝑀 is Hartman number, 𝑃𝑟 

Prandtl number, 𝐸𝑐 modified Eckert number, and 𝛿 

denotes the dimensionless length defined as 

𝑆 =
𝑎𝐻2

2𝑣
,    𝑀2 =

𝑎𝐵0
2𝐻2

𝑣
,    𝑃𝑟 =

𝜇𝐶𝑝

𝐾0

,                          

𝐸𝑐 =
1

𝐶𝑝(𝑇𝑤 − 𝑇ℎ)
(

𝑎𝑟

2(1 − 𝑎𝑡)
)

2

,    𝛿2

=
𝐻2(1 − 𝑎𝑡)

𝑟2
          (11) 

 

Skin friction coefficient and the Nusselt number are 

defined in terms of variables (7) as  

 

𝐻2

𝑟2
𝑅𝑒𝑟𝐶𝑓𝑟 = 𝑓′′(1),   (1 − 𝑎𝑡)1/2𝑁𝑢

= −𝜃′(1),         (13)  

𝑅𝑒𝑟 =
𝑟𝑎𝐻(1−𝑎𝑡)1/2

2𝑣
.                                                             (14) 
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III. SOLUTION OF THE PROBLEM BY ADM 

 

The decomposition method was introduced by 

Adomian [3]. Consider the general equation: 

 

𝜑[𝑢(𝑦)] = 𝑔(𝑦)    (15) 

 

Where 𝜑 represents a general non-linear ordinary (or 

partial) differential operator involving both linear and 

non-linear terms. The linear terms is decomposed into 

the form𝐿 + 𝑅, where 𝐿 is usually taken as the highest 

order derivative which is assumed to be easily 

invertible and 𝑅 is the linear differential operator of 

order less than 𝐿. Therefore, equation (15) can be 

expressed as  

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔(𝑦)   (16) 

 

Where 𝑁𝑢 represents the non-linear terms of 𝜑[𝑢]. 

Applying the inverse operator, 𝐿−1 to both sides of 

equation (16) gives 

𝑢 = 𝐿−1𝑔 − 𝐿−1(𝑅𝑢 + 𝑁𝑢).   (17) 

 

If 𝐿 is a fourth order operator, then 𝐿−1 is a 4-fold 

integral. Now, solving equation (17), we have  

𝑢 = ∑ 𝛼𝑗

3

𝑗=0

𝑦

𝑗!
+ 𝐿−1𝑔 − 𝐿−1(𝑅𝑢 + 𝑁𝑢),                 (18) 

 

Where 𝛼𝑗(𝑗 = 1. .3) are constants of integration and 

can be determined from the given boundary 

conditions. 

 

The standard Adomian decomposition method defines 

the solution 𝑢 by the infinite series 

𝑢 = ∑ 𝑢𝑛
∞
𝑛=0      (19)             

 

And the non-linear term by the infinite series 

𝑁𝑢 = ∑ 𝐴𝑛
∞
𝑛=0                           (20)                 

 

Where 𝐴𝑛 are the Adomian polynomials determined 

formally from the relation; 

𝐴𝑛 =
1

𝑛!
[

𝑑𝑛

𝑑𝜆𝑛 𝑁 (∑ 𝜆𝑖

∞

𝑖=0

𝑢𝑖)]

𝜆=0

, 𝑖 = 0,1,2, …       (21) 

The 𝑢𝑛 are determined from the recursive algorithm 

𝑢0 = ∑ 𝛼𝑗

3

𝑗=0

𝑦

𝑗!
+ 𝐿−1𝑔 

        𝑢𝑛+1 = −𝐿−1(𝑅𝑢 + 𝑁𝑢)    𝑛 ≥ 0,                    (22)            

 

Where 𝑢0 is the zeroth component. For numerical 

computation, the truncated series solution is obtained 

as 

 𝑆𝑛(𝑦) = ∑ 𝑢𝑘 𝑛−1
𝑘=0    (23) 

 

Where  𝑆𝑛 denotes the 𝑛-term approximation of 𝑢(𝑦). 

In this section, the solution to the system of non-linear 

differential equations (8 – 9) subject to the boundary 

condition (10) is obtained via ADM. The method is 

imperative because of the non-linearity involved. 

Equations (8 – 9) can be written in operator form as: 

 

𝐿1𝑓 = 𝑆(𝜂𝑓′′′ + 3𝑓′′ − 2𝑓𝑓′′′) + 𝑀2𝑓′′              (24) 

𝐿2𝜃 = 𝑆 𝑃𝑟(2𝑓𝜃′ − 𝜂𝜃′) + Pr  𝐸𝑐(𝑓′′2 + 12𝛿2𝑓′2)    

(25) 

 

Where 𝐿1 =
𝑑4

𝑑𝜂4 and 𝐿2 =
𝑑2

𝑑𝜂2 is a fourth order and 

second order differential operator respectively, with 

inverse operators  𝐿1
−1 = ∫  

𝜂

0
∫  

𝜂

0
∫  

𝜂

0
∫  

𝜂

0
(∙)𝑑𝜏𝑑𝜏𝑑𝜏𝑑𝜏 

and     𝐿2
−1 = ∫  

𝜂

0
∫  

𝜂

0
(∙)𝑑𝜏𝑑𝜏 respectively. Applying 

𝐿1
−1 to both sides of equation (24) and 𝐿2

−1 to both sides 

of equation (25) and imposing the boundary conditions 

at 𝜂 = 0 yields 

 

𝑓 = 𝐴 +
𝜂2

2
𝛼1 +

𝜂3

6
𝛼2 + 𝐿1

−1[𝑆(𝜂𝑓′′′ + 3𝑓′′ −

2𝑁1(𝑓)) + 𝑀2𝑓′′]                              (26) 

 

𝜃 = 1 + 𝜂𝛼3 + 𝐿2
−1[ 𝑆𝑃𝑟(2𝑁2(𝑓, 𝜃)  − 𝜂𝜃′) +

Pr  𝐸𝑐(𝑁3(𝑓) + 12𝛿2𝑁4(𝑓))]         (27) 

 

Where 𝛼1 = 𝑓′′(0) , 𝛼2 = 𝑓′′′(0) , 𝛼3 = 𝜃′(0) are to be 

determined later using the boundary conditions at 𝜂 = 1 and 

𝑁1(𝑓) , 𝑁2(𝑓, 𝜃) , 𝑁3(𝑓) , 𝑁4(𝑓) are the non-linear terms. 

 

In terms of Adomian decomposition methods 𝑓(𝜂) and 𝜃(𝜂) 

are assumed to be a series solution of the form 

𝑓(𝜂) = ∑ 𝑓𝑛(𝜂)∞
𝑛=0  and  𝜃(𝜂) = ∑ 𝜃𝑛(𝜂)∞

𝑛=0            (28) 
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And the non-linear terms are decomposed as series 

𝑁1(𝑓) = ∑ 𝐴𝑛
∞
𝑛=0  , 𝑁2(𝑓, 𝜃) = ∑ 𝐵𝑛

∞
𝑛=0  , 𝑁3(𝑓) =

∑ 𝐶𝑛
∞
𝑛=0  and 𝑁4(𝑓) = ∑ 𝐷𝑛

∞
𝑛=0   (29) 

 

Where 𝐴𝑛, 𝐵𝑛 and 𝐶𝑛 are the Adomian’s polynomials 

which are generated by equation (21). Here  

𝐴0 = 𝑓0𝑓0
′′′

, 𝐴1 = 𝑓0𝑓1
′′′ + 𝑓1𝑓0

′′′ ,…, 

𝐵0 = 𝑓0𝜃0
′
 , 𝐵1 = 𝑓0𝜃1

′ + 𝑓1𝜃0
′
 ,…, 

𝐶0 = (𝑓0
′′

)
2

, 𝐶1 = 2𝑓0
′′
𝑓2

′′
+ (𝑓1

′′
)

2

,…, 

𝐷0 = (𝑓0
′

)
2

 , 𝐷1 = 2𝑓0
′
𝑓1

′
 ,…, 

 

Substituting equations (28-29) in equations (26-27) we 

obtain: 

∑ 𝑓𝑛(𝜂)∞
𝑛=0 = 𝐴 +

𝜂2

2
𝛼1 +

𝜂3

6
𝛼2 +

𝐿1
−1[𝑆(𝜂 ∑ 𝑓𝑛

′′′∞
𝑛=0 +  3 ∑ 𝑓𝑛

′′∞
𝑛=0 − 2 ∑ 𝐴𝑛

 ∞
𝑛=0 ) +

  𝑀2 ∑ 𝑓𝑛
′′∞

𝑛=0 ],    (30) 

∑ 𝜃𝑛(𝜂)∞
𝑛=0 = 1 + 𝜂𝛼3 +

𝐿2
−1[ 𝑆𝑃𝑟(2 ∑ 𝐵𝑛

∞
𝑛=0 − 𝜂𝜃′) +

Pr  𝐸𝑐(∑ 𝐶𝑛
∞
𝑛=0 + 12𝛿2 ∑ 𝐷𝑛

∞
𝑛=0 )]                 (31) 

 

From integral equations (30-31), the recursive 

relations for the approximate analytical solution of 

system (8-10) are given as: 

𝑓0 = 𝐴 +
𝜂2

2
𝛼1 +

𝜂3

6
𝛼2    (32) 

 

𝑓𝑛+1 = 𝐿1
−1[𝑆(𝜂𝑓′′′ + 3𝑓′′ − 2𝐴𝑛

 ) + 𝑀2𝑓′′], 

𝑛 ≥ 0,      (33) 

 

𝜃0 = 1 + 𝜂𝛼3     (34) 

 

𝜃𝑛+1 = 𝐿2
−1[ 𝑆𝑃𝑟(2𝐵𝑛 − 𝜂𝜃′) + Pr  𝐸𝑐(𝐶𝑛 +

12𝛿2𝐷𝑛)]  𝑛 ≥ 0    (35) 

 

The following partial sum 

𝑓(𝜂) = ∑ 𝑓𝑘(𝜂)∞
𝑛=0  and 𝜃(𝜂) = ∑ 𝜃𝑘(𝜂)∞

𝑛=0  (36) 

 

Are the approximate solutions. Equations (32-35) are 

coded using algebraic symbolic package called Maple. 

 

 

 

 

IV. SOLUTION OF THE PROBLEM USING 

HPM 

 

In this section, the solution to the system of non-linear 

differential equations (8 – 9) subject to the boundary 

condition (10) is obtained via HPM. 

 

According to HPM, we can construct an homotopy for 

(8,9) as follows 

𝐻(𝑓, 𝑝) = (1 − 𝑝)(𝑓𝑖𝑣) + 𝑝(𝑓𝑖𝑣 − 𝑆(𝜂𝑓′′′ + 3𝑓′′ −

2𝑓𝑓′′′) − 𝑀2𝑓′′                                        (37) 

 

𝐻(𝜃, 𝑝) = (1 − 𝑝)(𝜃′′) + 𝑝(𝜃′′ − 𝑆 𝑃𝑟(2𝑓𝜃′ −

𝜂𝜃′) − Pr𝐸𝑐(𝑓′′2 + 12𝛿2𝑓′2))         (38) 

 

Where primes denote differentiation with respect to 𝜂 

to third degree and 𝑓𝑖𝑣 is representing 𝑓′′′′. 

 

We are going to consider a three term-solution for 𝑓 

and 𝜃 in the infinite series solution which can be seen 

below as follows 

𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2    (39a) 

𝜃 = 𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2    (39b) 

 

We substitute 39a – 39b into (37) and (38) and we do 

some algebraic manipulation to obtain the below set of 

equations: 

𝑝0: 𝑓0
′′′ = 0 , 

𝑝1: −𝑚2𝑓0
′′ + 2𝑆𝑓0𝑓0

′′′ − 𝑆𝜂𝑓0
′′′ − 3𝑆𝑓0

′′ + 𝑓1
𝑖𝑣 = 0 

(40) 

𝑝2: −𝑚2𝑓1
′′ + 2𝑆𝑓1𝑓0

′′′ + 2𝑆𝑓0𝑓1
′′′ − 𝑆𝜂𝑓1

′′′ −

 3𝑆𝑓1
′′ + 𝑓2

𝑖𝑣 = 0 ,                                      

 

Which is associated with the below initial conditions 

𝑓0(0) = 𝐴 , 𝑓0
′(0) = 0 , 𝑓0(1) =

1

2
 , 𝑓0

′(1) = 0  

𝑓1(0) = 𝐴 , 𝑓1
′(0) = 0 , 𝑓1(1) =

1

2
 , 𝑓1

′(1) = 0 (41) 

𝑓2(0) = 𝐴 , 𝑓2
′(0) = 0 , 𝑓2(1) =

1

2
 , 𝑓2

′(1) = 0          

 

𝑝0: 𝜃0
′′ = 0 , 

𝑝1: −12𝑃𝑟𝐸𝑐𝛿2(𝑓0
′)2 − 𝑃𝑟𝐸𝑐(𝑓0

′′)2 + 2𝑃𝑟𝑆𝑓0𝜃0
′  

 −𝑃𝑟𝑆𝜂𝜃0
′ + 𝜃1

′′ = 0                                 (42)    

𝑝2: −24𝑃𝑟𝐸𝑐𝛿2𝑓0
′𝑓1

′ − 2𝑃𝑟𝐸𝑐𝑓0
′′𝑓1

′′ + 2𝑃𝑟𝑆𝑓1𝜃0
′  

 +2𝑃𝑟𝑆𝑓0𝜃1
′ − 𝑃𝑟𝑆𝜂𝜃1

′ + 𝜃2
′′ = 0  

 

Which is associated with the below initial conditions 
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𝑓0(0) = 𝐴 , 𝑓0
′(0) = 0, 𝜃0(0) = 1  , 𝑓0(1) =

1

2
 , 𝑓0

′(1) = 0, 𝜃0(1) = 0  

                                                                                                                                                                                                            

𝑓1(0) = 𝐴 , 𝑓1
′(0) = 0, 𝜃1(0) = 1  , 𝑓1(1) =

1

2
 , 𝑓1

′(1) = 0, 𝜃1(1) = 0    (43) 

  

𝑓2(0) = 𝐴 , 𝑓2
′(0) = 0, 𝜃2(0) = 1  , 𝑓2(1) =

1

2
 , 𝑓2

′(1) = 0, 𝜃2(1) = 0                                                                                                                 

 

We obtained an analytical solution using the symbolic 

algebra package Maple16 to solve (40) and (42) with 

the associated boundary conditions (41) and (43) 

𝑓0(𝜂) =
1

6
(−6 + 12𝐴)𝜂3 +

1

2
(3 − 6𝐴)𝜂2 + 𝐴 

And 

𝜃0(𝜂) = −𝜂 + 1 

The above are the first term of the series solutions 

 

V. COMPARISON OF THE ADOMIAN 

DECOMPOSITION AND HOMOTOPY 

PERTURBATION METHOD 

In other to compare the two methods used in this 

present work, first we need to set up a bench mark 

numerical solution as a guide. We shall use the table 

of values in [] and [] for ADM and HPM by Mustapha, 

R.A. and Salau, A.M. we note here that the ADM is 

closer to the numerical solution than the HPM. 

 

It’s worth putting in consideration that as we increase 

the power series solution of HPM the HPM solution 

gets progressively worse, whereas the ADM solution 

maintains its accuracy. 

 

From the below table, we see that in this particular 

instance the ADM is clearly a cutting-edge choice to 

choose. Although the HPM is a good method in 

solving non-linear problems. It’s noteworthy to say 

that both methods provide infinite series solutions. 

 

 

Table 1.0 Comparison of Numerical and ADM solutions for diverging channel for 𝛿 = 0.1, 𝐴 = 0.1, 𝑆 = 0.1, 𝑀 =

0.2, 𝑃𝑟 = 0.3, 𝐸𝑐 = 0.2

  

 𝑓′(𝜂) 𝜃  (𝜂) 

𝜂 FDM HPM ADM Error 

(HPM) 

Error 

(ADM) 

FDM HPM ADM Error 

(HPM) 

Error 

(ADM) 

0 0 0 0 0 0 1 1 1 1 0 

0.2 0.384801 0.38400 0.384801 8 ×

10−4 

0 0.793392 0.8000 0.806144 0.8000 1.3×10−2 

0.4 0.575554 0.57600 0.575554 4.5×

10−4 

0 0.592274 0.6000 0.607022 0.6000 1.5×10−2 

0.6 0.575175 0.57600 0.57517 8.25×

10−4 

0 0.392257 0.4000 0.407004 0.4000 1.5×10−2 

0.8 0.384040 0.38400 0.384040 -4×

10−5 

0 0.193382 0.2000 0.206121 0.2000 1.3×10−2 

1 0 0 0 0 0 0 0 0 0 0 

CONCLUSION 

 

In this present work, the HPM and ADM have been 

successfully applied to solve the non-linear equation 

(8-9) along with the boundary conditions. And we see 

that both methods generated a series solution where 

the ADM performs better than HPM. 
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