An Alternative Method of Constructing Skew-Hadamard Matrices of Order 2^{n}

A.P. BATUWITA ${ }^{1}$, N.T.S.G. GAMACHCHIGE ${ }^{2}$, P.G.R.S. RANASINGHE ${ }^{3}$, A.A.I. PERERA ${ }^{4}$
${ }^{1,2}$ Department of Science and Technology, University of Uva Wellassa, Sri Lanka.
${ }^{3,4}$ Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka.

Abstract

In this paper we proposed an alternative method of constructing skew-Hadamard matrices of order 2^{n}. The doubling construction method can be used to construct an infinite number of skewHadamard matrices of order $2^{n}(n \geq 2)$.

Indexed Terms- Hadamard matrix, skew-Hadamard matrix

I. INTRODUCTION

A matrix H of order n with entries ± 1 and satisfying $H H^{T}=n I_{n}$, where H^{T} is the transpose of H and I_{n} is the identity matrix of order n is called a Hadamard matrix of order n. It is well known that the order of a Hadamard matrix is 1,2 or a multiple of 4[1]. Hadamard matrices have been used in many applications in different fields, such as Olivia MFSK, Balanced repeated replication, Hadamard transform, etc.

Hadamard matrices can be constructed in many ways. A new Hadamard matrix can be obtained from a known Hadamard matrix using the method known as the Sylvester construction. If H_{n} is an $n \times n$ Hadamard matrix, then a $2 n \times 2 n$ matrix $H_{2 n}$ can be defined by $H_{2 n}=\left[\begin{array}{rr}H_{n} & H_{n} \\ H_{n} & -H_{n}\end{array}\right]$. Among these, SkewHadamard matrices are of special interest. If H is a Hadamard matrix and $H+H^{T}=2 I_{n}$, then H is called a Skew-Hadamard matrix. Any square matrix H of order n is symmetric if $H=H^{T}$ and skew symmetric if $H+H^{T}=0$. Skew-Hadamard matrices are used to construct several combinatorial objects, such as association schemes, self-dual codes, strongly regular graphs etc. [2].There are various methods to construct skew-Hadamard matrices. But there are many of orders of skew-Hadamard matrices those have not been constructed yet.

Though the constructions of most Hadamard matrices are known, not all of those give skew-Hadamard matrices [3].

Goethals and Seidel proposed a new method to construct skew-Hadamard matrices using four square circulant matrices [4]. Wallis constructed skewHadamard matrices of order 92 and he proposed the doubling construction method to construct these matrices[5]. In 1972, Wallis and Whiteman proposed a method to construct unknown skew-Hadamard matrices using four incidence matrices [6].

In this paper we propose an alternative method to construct skew-Hadamard matrices of order 2^{n}.

II. MATERIAL AND METHODS

Consider a 2×2 matrix $H_{2}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$. Then H_{2} satisfies $\mathrm{H}_{2} \mathrm{H}_{2}{ }^{T}=2 I_{2}$ and
$\mathrm{H}_{2}+{H_{2}}^{T}=2 I_{2}$. Therefore, H_{2} is both Hadamard and skew-Hadamard.
Let's define H_{4} as $H_{4}=\left[\begin{array}{cc}H_{2} & H_{2} \\ -H_{2}{ }^{T} & H_{2}{ }^{T}\end{array}\right]$. Then, H_{4} is both Hadamard and skew-Hadamard.
This doubling construction can be used to construct skew-Hadamard matrices of order 2^{n}.

III. RESULTS AND DISCUSSION

Consider the 2×2 matrix $H_{2}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$.
Let $H_{4}=\left[\begin{array}{cc}H_{2} & H_{2} \\ -H_{2}{ }^{T} & H_{2}{ }^{T}\end{array}\right]=\left[\begin{array}{cccc}1 & - & 1 & - \\ 1 & 1 & 1 & 1 \\ - & - & 1 & 1 \\ 1 & - & - & 1\end{array}\right] \quad$ and
$H_{4}{ }^{T}=\left[\begin{array}{cccc}1 & 1 & - & 1 \\ - & 1 & - & - \\ 1 & 1 & 1 & - \\ - & 1 & 1 & 1\end{array}\right]$
(Here, we denote -1 by - sign.)

Then, $H_{4} H_{4}{ }^{T}=4 I_{4}$ and $H_{4}+H_{4}{ }^{T}=2 I_{4}$.
Therefore, H_{4} is both Hadamard and skew-Hadamard. Let

$$
\begin{aligned}
H_{8} & =\left[\begin{array}{cc}
H_{4} & H_{4} \\
-H_{4}{ }^{T} H_{4}{ }^{T}
\end{array}\right] \\
& =\left[\begin{array}{cccccccc}
1 & - & 1 & - & 1 & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & - & - & 1 & 1 \\
1 & - & - & 1 & 1 & - & - & 1 \\
- & - & 1 & - & 1 & 1 & - & 1 \\
1 & - & 1 & 1 & - & 1 & - & - \\
- & - & - & 1 & 1 & 1 & 1 & - \\
1 & - & - & - & - & 1 & 1 & 1
\end{array}\right] \text { and } \\
H_{8}{ }^{T} & =\left[\begin{array}{cccccccc}
1 & 1 & - & 1 & - & 1 & - & 1 \\
- & 1 & - & - & - & - & - & - \\
1 & 1 & 1 & - & 1 & 1 & - & - \\
- & 1 & 1 & 1 & - & 1 & 1 & - \\
1 & 1 & - & 1 & 1 & - & 1 & - \\
- & 1 & - & - & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & - & - & 1 & 1 \\
- & 1 & 1 & 1 & 1 & - & - & 1
\end{array}\right]
\end{aligned}
$$

Then, $H_{8} H_{8}{ }^{T}=4 I_{8}$ and $H_{8}+H_{8}{ }^{T}=2 I_{8}$.
Therefore, H_{8} is both Hadamard and skew-Hadamard. Generalization of this construction is given by the following Theorem.

Theorem:
Let $H_{2}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$ be a skew Hadamatd matrix of order 2 . Then,

$$
H_{2^{n}}=\left[\begin{array}{cc}
H_{2^{n-1}} & H_{2^{n-1}} \\
-H_{2^{n-1}}^{T} & H_{2^{n-1}}^{T}
\end{array}\right] \quad \text { is } \quad \text { a } \quad \text { skew- }
$$

Hadamard matrix of order 2^{n}.

Proof
Since $H_{2}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$ is a skew Hadamard matrix of order 2, H_{2} satisfies $\mathrm{H}_{2} \mathrm{H}_{2}{ }^{T}=2 \mathrm{I}_{2}$ and $\mathrm{H}_{2}+\mathrm{H}_{2}{ }^{T}=$ $2 I_{2}$.
Consider $H_{4}=\left[\begin{array}{cc}H_{2} & H_{2} \\ -H_{2}{ }^{T} & H_{2}{ }^{T}\end{array}\right]$. Then,

$$
H_{4}{ }^{T}=\left[\begin{array}{cc}
H_{2}{ }^{T} & -H_{2} \\
H_{2}{ }^{T} & H_{2}
\end{array}\right] .
$$

Note that

$$
\begin{aligned}
H_{4} H_{4}{ }^{T} & =\left[\begin{array}{cc}
H_{2} & H_{2} \\
-H_{2}{ }^{T} & H_{2}{ }^{T}
\end{array}\right]\left[\begin{array}{cc}
H_{2}{ }^{T} & -H_{2} \\
H_{2}{ }^{T} & H_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
H_{2} H_{2}{ }^{T}+H_{2} H_{2}{ }^{T} & -H_{2} H_{2}+H_{2} H_{2} \\
-H_{2} H_{2}{ }^{T}+H_{2} H_{2}{ }^{T} & H_{2} H_{2}{ }^{T}+H_{2} H_{2}{ }^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 I_{2}+2 I_{2} & 0 \\
0 & 2 I_{2}+2 I_{2}
\end{array}\right]=\left[\begin{array}{cc}
4 I_{2} & 0 \\
0 & 4 I_{2}
\end{array}\right]=4 I_{4}
\end{aligned}
$$

$$
\begin{aligned}
H_{4}+H_{4}{ }^{T} & =\left[\begin{array}{cc}
H_{2} & H_{2} \\
-H_{2}{ }^{T} & H_{2}{ }^{T}
\end{array}\right]+\left[\begin{array}{cc}
H_{2}{ }^{T} & -H_{2} \\
H_{2}{ }^{T} & H_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
H_{2}+H_{2}{ }^{T} & H_{2}-H_{2} \\
-H_{2}{ }^{T}+H_{2}{ }^{T} & H_{2}{ }^{T}+H_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 I_{2} & 0 \\
0 & 2 I_{2}
\end{array}\right]=2\left[\begin{array}{cc}
I_{2} & 0 \\
0 & I_{2}
\end{array}\right]=2 I_{4} .
\end{aligned}
$$

i.e., $H_{4} H_{4}{ }^{T}=4 I_{4}$ and $H_{4}+H_{4}{ }^{T}=2 I_{4}$. Here " 0 " denotes the zero matrix of the same order.
Therefore, H_{4} is Hadamard and skew-Hadamard.
Now consider, $H_{2^{n}}=\left[\begin{array}{cc}H_{2^{n-1}} & H_{2^{n-1}} \\ -H_{2^{n-1}}^{T} & H_{2^{n-1}}^{T}\end{array}\right]$.
Then, $H_{2^{n}}^{T}=\left[\begin{array}{cc}H_{2^{n-1}}^{T} & -H_{2^{n-1}} \\ H_{2^{n-1}}^{T} & H_{2^{n-1}}\end{array}\right]$.
Note that

$$
\begin{aligned}
& H_{2^{n}} H_{2^{n}}^{T}=\left[\begin{array}{cc}
H_{2^{n-1}} & H_{2^{n-1}} \\
-H_{2^{n-1}}^{T} & H_{2^{n-1}}^{T}
\end{array}\right]\left[\begin{array}{cc}
H_{2^{n-1}}^{T} & -H_{2^{n-1}} \\
H_{2^{n-1}}^{T} & H_{2^{n-1}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
H_{2^{n-1}} H_{2^{n-1}}^{T}+H_{2^{n-1}} H_{2^{n-1}}^{T} & -H_{2^{n-1}} H_{2^{n-1}}+H_{2^{n-1}} H_{2^{n-1}} \\
-H_{2^{n-1}} H_{2^{n-1}}^{T}+H_{2^{n-1}} H_{2^{n-1}}^{T} & H_{2^{n-1}} H_{2^{n-1}}^{T}+H_{2^{n-1}} H_{2^{n-1}}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2^{n} I_{2^{n-1}} & 0 \\
0 & 2^{n} I_{2^{n-1}}
\end{array}\right]=2^{n}\left[\begin{array}{cc}
2_{2^{n-1}} & 0 \\
0 & I_{2^{n-1}}
\end{array}\right] \text { and } \\
& \begin{aligned}
& H_{2^{n}}+H_{2^{n}}^{T}=\left[\begin{array}{cc}
H_{2^{n-1}} & H_{2^{n-1}} \\
-H_{2^{n-1}}^{T} & H_{2^{n-1}}^{T}
\end{array}\right] \\
& \quad+\left[\begin{array}{ll}
H_{2^{n-1}}^{T} & -H_{2^{n-1}} \\
H_{2^{n-1}}^{T} & H_{2^{n-1}}
\end{array}\right] \\
&= {\left[\begin{array}{cc}
H_{2^{n-1}}+H_{2^{n-1}}^{T} & H_{2^{n-1}-}-H_{2^{n-1}} \\
-H_{2^{n-1}}^{T}+H_{2^{n-1}}^{T} & H_{2^{n-1}}^{T}+H_{2^{n-1}}
\end{array}\right] } \\
&= {\left[\begin{array}{cc}
2 I_{2^{n-1}} & 0 \\
0 & 2 I_{2^{n-1}}
\end{array}\right]=2\left[\begin{array}{cc}
I_{2^{n-1}} & 0 \\
0 & I_{2^{n-1}}
\end{array}\right] . }
\end{aligned}
\end{aligned}
$$

i.e., $H_{2} n H_{2^{n}}^{T}=2^{n} I_{2^{n}}$ and $H_{2^{n}}+H_{2^{n}}^{T}=2 I_{2^{n}}$

Therefore, $\mathrm{H}_{2} n$ is both Hadamard and skew-
Hadamard.

Note:
Consider a 2×2 skew-Hadamard matrix $A_{2}=$
$\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]=H_{2}{ }^{T}$.
Then $A_{2^{n}}=\left[\begin{array}{rr}A_{2^{n-1}}^{T} & A_{2^{n-1}}^{T} \\ -A_{2^{n-1}} & A_{2^{n-1}}\end{array}\right]$ is both Hadamard and skew-Hadamard of order 2^{n}.
There are various methods to construct skewHadamard matrices. In this research, an alternative method was proposed. The doubling construction can be used to construct an infinite number of skewHadamard matrices of order $2^{n}(n \geq 2)$.
and

CONCLUSION

A special emphasis can be given to Skew-Hadamard matrices among other Hadamard matrices. First, 2×2 skew-Hadamard matrices were considered. Using the proposed doubling construction method, our main result shows that skew-Hadamard matrices of orders $4,8,16,32,64, \ldots, 2^{n} \quad(n \geq 2) \quad$ can \quad be constructed. Further, this construction was illustrated with some examples. As a future work, we are planning to implement a computer programme to construct large skew-Hadamard matrices of order 2^{n} and unknown skew-Hadamard matrices.

REFERENCES

[1] R. Paley, "On orthogonal matrices," Journal of Mathematics and Physics, pp. 311-320, 1933.
[2] Hanaki, H. Kharaghani, A. Mohammadian and B. Tayfeh-Rezaie, "Classification of skewHadamard matrices of order 32 and association schemes of order 31," Journal of Combinatorial Design, pp. 421-427, 2020.
[3] C. Koukouvinos and S. Stylianou, "On skewHadamard matrices," ScienceDirect, p. 27232731, 2008.
[4] J. Goethals and J. Seidel, "A Skew Hadamard Matrix of Order 36.," Journal of the Australian Mathematical Society, pp. 343-344, 1970.
[5] J. Seberry, "A skew-Hadamard matrix of order 92," Bulletin of the Australian Mathematical Society, pp. 203-204, 1971.
[6] J. Wallis and A. Whiteman, "Some classes of Hadamard matrices with constant diagonal," Bulletin of the Australian Mathematical Society, pp. 233-249, 1972.

