On the Duals of Some Banach Spaces

JOHN WANYONYI MATUYA¹, VINCENT NYONGESA MARANI²

¹ Department of Mathematics and Physical Sciences, Maasai Mara University, Narok Kenya. ² Department of Mathematics, Kibabii University, Bungoma, Kenya.

Abstract- The main purpose of this paper is to establish the reflexive space of ℓ^p . We establish whether the linear functional $F_x : (\ell^p)^* \to C$ defined by $F_x(f) = f(x)$ is bounded $\forall f \in (\ell^p)^*$ i.e. $F_x \in L^p$ and $||F_x|| = ||x||$ and whether the Canonical mapping given by $C : \ell^p \to L^p$ is linear and bijective $\forall x \in \ell^p$ and $F_x \in L^p$.

2010 Mathematics Subject Classification: 94B 05C

Indexed Terms- Dual Spaces, Reflexive Spaces.

I. INTRODUCTION

We shall consider a normed space X, its dual X^* and the dual of X^* of which we represent by $(X^*)^*$. Now X^{**} is some times called the second dual of X. We define the functional g_x on X^* by choosing a fixed $x \in X$ and setting $g_x(f) = f(x) \quad \forall f \in X^*$. The linear functional f is bounded and we show that g_x is a bounded linear functional on X^* .

II. DUAL SPACES

2.1 Definition

If X is a linear space, the space of functions on X is called continuous linear functionals. They are also called dual spaces.

2.2 Definition

If X is normed linear space, the set of all bounded linear functionals on X denoted by X^* is also normed where the norm is defined as:

$$||f|| = \sup\left(\frac{|f(x)|}{||x||} : x \in X, x \neq 0\right)$$

2.3 Definition

Let X and Y be linear spaces. Then a function $T: X \rightarrow Y$ is called a linear operator if and only if.

$$T(\lambda x_1 + \mu x_2) = \lambda T(x_1) + \mu T(x_2), \forall x_1, x_2 \in X, \lambda, \mu \in K$$

=

2.4 Definition

An isomorphism of normed space X onto a normed space Y is a bijective linear operator $T: X \to Y$ which preserves the norm i.e., $||Tx|| = ||x||, \forall x \in X. X$ is said to be isomorphic to Y.

III. REFLEXIVE SPACES

We shall consider a normed space X, its dual X^* and the dual of X^* of which we represent by $(X^*)^*$ Now X^{**} is some times called the second dual of XWe define the functional g_x on X^* by choosing a fixed $x \in X$ and setting $g_x(f) = f(x) \quad \forall f \in X^*$. The linear functional f is bounded and we show that g_x is a bounded linear functional on X^* as we shall see below:

3.1 Lemma

Let X be a normed linear space and $x \in X$, then the linear functional $g_x(f) = f(x)$ is bounded $\forall f \in X^*$ i.e. $g_x \in X^{**}$ and $||g_x|| = ||x||$.

Proof Linearity

$$g_{x}(\alpha_{1}f_{1}+\alpha_{2}f_{2}) = (\alpha_{1}f_{1}+\alpha_{2}f_{2})(x) = \alpha_{1}f_{1}(x) + \alpha_{2}f_{2}(x) = \alpha_{1}g_{x}(f_{1}) + \alpha_{2}g_{x}(f_{2})$$

$$\forall f_{1}, f_{2} \in X^{*}, \alpha_{1}, \alpha_{2} \in \mathbf{K} \text{ and } g_{x} \in X^{**}$$

$$(\alpha g_{x})(f) = (\alpha f)(x) = \alpha f(x) = \alpha g_{x}(f).$$

$$\forall g_{x} \in X^{**}, f \in X^{*}, \alpha \in \mathbf{K}$$
Moreover
$$\|g_{x}\| = \sup\left\{\frac{|g_{x}(f)|}{\|f\|} : f \in X^{*}, f \neq 0\right\} = \sup\left\{\frac{|f(x)|}{\|f\|} : f \in X^{*}, f \neq 0\right\} = \|x\|.$$

Now for each $x \in X$, there corresponds a unique bounded linear functional $g_x(f) = f(x)$. This defines a mapping.

$$C: X \to X^{**}$$
 such that $C(x) = g_x$.

C is called the canonical mapping of X on to XWe shall show that C is linear and bijective.

3.2 Lemma

The canonical mapping C given by:

$$\begin{array}{c} X \to X^{**} \\ x \to g_x \end{array}$$

is linear and bijective of a normed space X on to the normed space R(C) where R(C) is the range of C.

Proof

Linearity of *C* is clear, since we have

$$g_{\alpha x+\beta y}(f) = f(\alpha x+\beta y) = \alpha f(x)+\beta f(y) = \alpha g_x(f)+\beta g_y(f)$$

 $\forall x, y \in X \text{ and } \alpha, \beta \in \mathbf{K}$
Thus $C(\alpha x+\beta y) = \alpha C(x)+\beta C(y)$
 $(\alpha g_x)(f) = (\alpha f)(x) = \alpha f(x) = \alpha g_x(x)$.
Thus $C(\alpha x) = \alpha C(x)$.
If $C(x) = C(y)$, then $g_x = g_y$, so $x - y$. Thus C is
1-1.
If $g_x \in X^{**}$ then $C(x) = g_x$, where $x \in X$. Thus,
C is onto X^{**} .

This shows that C is linear and bijective.

3.3 Definition

A normed space X is said to be embeddedable in a normed space Z if X is isomorphic to a sub space Z.

Lemma 1.1 And 1.2 shows that X is embeddable in X^{**} and C is also called the canonical embedding of X into X^{**} .

3.4 Definition

A normed space X is said to be reflexive if the range R(C) of C is X^{**} where C is the canonical mapping of X onto X^{**} . If X is reflexive, it is isomorphic with X^{**} space

IV. THE DUAL OF ℓ^p SPACE.

Let $\ell^p (0 \le p \le \infty)$ be a linear space and $(\ell^p)^* = \ell^q$, the set of linear functionals on ℓ^p where $\frac{1}{p} + \frac{1}{q} = 1$ ℓ^q is the dual of ℓ^p .

If
$$x \in \ell^p$$
 then $||x|| = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$ and if $f \in (\ell^p)^*$ then $||f|| = \left(\int_x |f|^p\right)^{\frac{1}{p}}$

The schauder basis of ℓ^p is e_k , where

$$e_{k} = \partial_{i,k} = \begin{cases} 1, j = k \\ 0, j \neq k \end{cases}$$
$$\|e_{k}\| = 1, \forall \kappa = 1, 2, \dots$$
We define
$$x = \sum_{k=1}^{\infty} x_{k} e_{k}, \forall x = (x_{1}, x_{2}, \dots) \in \ell^{p}$$
and $f(x) = \sum_{k=1}^{\infty} x_{k} \eta_{k}$ where $\eta_{k} = f(e_{k})$.

The following theorem illustrates that ℓ^q is the dual of ℓ^p .

4.1 Lemma

Let ℓ^p be a linear space and $x \in \ell^p$, then the linear functional $f \in (\ell^p)^*$ is bounded i.e. ||f|| = ||x||. Proof

Isometric

Let $x_n = x_k^{(n)}$ where

$$x_{k}^{(n)} = \begin{cases} \frac{\left|\eta_{k}\right|^{q}}{\eta_{k}}, k \leq n \text{ where } \eta_{k} = f(e_{k})\\ 0, k > n \end{cases}$$

It follows that,

$$f(x_{n}) \leq ||f||||x_{n}|| = ||f|| \left(\sum_{k=1}^{\infty} |x_{k}|^{p}\right)^{\frac{1}{p}} = ||f|| \left(\sum_{k=1}^{n} |\eta_{k}|^{q}\right)^{\frac{1}{p}}$$
$$\left\{ |x_{k}|^{p} = \frac{|\eta_{k}|^{pq}}{|\eta_{k}|^{p}} = |\eta_{k}|^{q}, \forall q = qp - p \right\}$$

But
$$f(x_n) = \sum x_k^{(n)} \eta_k = \sum_{k=1}^n |\eta_k|^q$$

Therefore $\sum_{k=1}^{n} |\eta_k|^q \leq ||f| \left(\sum_{k=1}^{n} |\eta_k|^q\right)^{\frac{1}{p}}$

So that
$$\left(\sum_{k=1}^{n} |\eta_{k}|^{q}\right)^{\overline{q}} \le ||f||$$

 $\Rightarrow n = (n_{k}) \in \ell^{q}, so ||n|| \le ||f||$

Conversely,

Suppose $n = (n_n) \in \ell^q$ is given.

Define f on ℓ^p by

$$f(x) = \sum_{k=1}^{n} \eta_k x_k, x = (x_n) \in \ell^p$$

By Holders inequality,

$$|f(x)| \le \left(\sum_{k=1}^{n} |\eta_{k}|^{q}\right)^{\frac{1}{q}} \left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{\frac{1}{p}} = \|\eta\|\|x\|.$$

Therefore $||f|| \le ||\eta|| \Rightarrow f \in \ell^q$ Since $f(e_k) = \eta_k$ and $||\eta|| \le ||f||$ $\Rightarrow ||f|| = ||\eta||$. If $x = (\eta_1, \eta_2, \dots, \eta_n)$, then it follows that ||f|| = ||x||. Now there corresponds a unique bounded linear

functional $f \in (\ell^p)^*$ given by $\lim_{k \to 0} f(x) = \sum_{k=1}^{\infty} x_k \eta_n$. This defines a mapping

 $T: \left(\ell^p\right)^* \to \ell^q.$

The mapping $T: (\ell^p)^* \to \ell^q$ is linear and bijective. Proof

T is linear

Let
$$f, g \in (\ell^p)^*, f(\ell_k) = \eta_k$$
 and $g(e_k) = \eta_k, \forall k \in \mathbb{N}$

Then

$$Tf = \alpha_1, \alpha_2, \alpha_3, \dots, and$$

 $Tg = (\alpha'_1, \alpha'_2, \alpha'_3, \dots,) \in \ell^q$.
Therefore
 $f + g \in (\ell^p)^*$ and $(f + g)(e_k)$
 $= f(e_k) + g(e_k) = \alpha_k + \alpha'_k$
Therefore
 $T(f + g) = (\alpha_1 + \alpha'_1, \alpha_2 + \alpha'_2, + \dots)$
 $= (\alpha_1, \alpha_2, \dots) + (\alpha'_1, \alpha'_2, \dots) = Tf + Tg$.
Likewise
 $T(\lambda f) = (\lambda \alpha_1, \lambda \alpha_2, \dots) = \lambda(\alpha_1, \alpha_2, \dots) = \lambda Tf$.
T is 1-1
Let $f, g \in (\ell^p)^*$ and $Tf = Tg$, then $Tf - Tg = 0$
(since T is linear).

© MAY 2021 | IRE Journals | Volume 4 Issue 11 | ISSN: 2456-8880

But since T is an isometry.

$$\|T(f-g)\| = \|f-g\| = \|0\| = 0$$
So that $\|f-g\| = 0 \Rightarrow f-g = 0$
T is onto
If $(\beta_1\beta_2....) \in \ell^q$ then there is a g
 $\in (\ell^p)^* : Tg = (\beta_1, \beta_2, ...)$
i.e. $g(e_k) = \beta_k, \forall k \in K$
Let $x = (\alpha_1, \alpha_2,) \in \ell^p$ and define $g : \ell^p \rightarrow K$ by
 $g(x) = \sum_{k=1}^{\infty} \alpha_k \beta_k$ then g is well defined and linear.
Let $x = (\alpha_1, \alpha_2,), y = (\lambda_1, \lambda_2, ...) \in \ell^p$,
then $x + y = (\alpha_1 + \lambda_1, \alpha_2 + \lambda_2,)$

Therefore

$$g(x+y) = \sum_{k=1}^{\infty} (\alpha_k + \lambda_k) \beta_k = \sum_{K=1}^{\infty} \alpha_K \beta_K = g(x) + g(y)$$

Therefore

 $T: (\ell^p)^* \to \ell^q$ is linear, isometry, 1-1 and on to. Hence $(\ell^p)^*$ is congruent to ℓ^q .

V. METHODS

To establish the reflexive space of ℓ^p , we shall use lemma 3.1, 3.2, 4.1 and 4.2 on boundedness, linearity and bijective mappings.

RESULTS AND DISCUSSIONS

We define the functional

 F_x on $(\ell^p)^*$ by choosing a fixed $x \in \ell^p$ and setting $F_x(f) = f(x)$, for all $f \in (\ell^p)^*$. The linear functional f is bounded and we show that F_x is bounded linear functional on $(\ell^p)^*$.

6.1 Proposition Let $x \in \ell^p$, then the linear functional $F_x : (\ell^p)^* \rightarrow$ C defined by $F_x(f) = f(x), \forall f \in (\ell^p)^*$ is bounded i.e. $F_x \in L^p$ and $||F_x|| = ||x||$. Proof Linearity $F_x(\alpha_1 f_1 + \alpha_2 f_2) = (\alpha_1 f_1 + \alpha_2)(x) =$ $\alpha_1 f_1(x) + \alpha_2 f_2(x) = \alpha_1 F_x(f_1) + \alpha_2 f_x(f_2)$ $\forall f_1, f_2 \in (\ell^p)^*, \alpha_1, \alpha_2 \in K.$ $(\alpha F_x)(f) = (\alpha f)(x) = \alpha F_x(f), \forall \alpha \in \kappa.$ Isometric

$$\left\|F_{x}\right\| = \sup\left\{\frac{\left|F_{x}(f)\right|}{\left\|f\right\|} : f \in \left(\ell^{p}\right)^{*}, f \neq o\right\}$$

$$\sup \left\{ \frac{|f(x)|}{\|f\|} : f \in \left(\ell^p\right)^*, f \neq 0 \right\} = \|x\|, \forall x \in \ell^p$$

i.e. $\|F_x\| = \|x\|.$

Now for each $x \in \ell^p$ there corresponds a unique bounded linear functional $F_x(f) = f(x), \forall f \in (\ell^p)^*$. This defines a mapping $C : \ell^p \to L^p$ such that

This defines a mapping $C: \ell^{p} \to L$ such that $C(x) = F_{x}$. C is called the canonical mapping of ℓ^{p} on to L^{p} .

6.2 Proposition

=

The canonical mapping C given by $C: \ell^P \to L^p$ is linear and bijective $\forall x \in \ell^p$ and $F_x \in L^p$.

Proof Linearity of C $F_{x+y}(f) = f(x+y) = f(x) + f(y)$ $= F_x(f) + Fy(f)$ $\forall x, y \in \ell^p$. $(\alpha F_x)(f) = (\alpha f)(x) = \alpha F_x(f) \forall \alpha \in \kappa$ C is 1-1

41

For $x \in \ell^p$, define $C(x) = F_x$, this gives a mapping $C : \ell^p \to L^p$ If C(x) = C(y), then $F_x = F_y$, so x = y. Thus C is 1-1 C is onto. If $F_x \in L^p$ then $C(x) = F_x$, where $x \in \ell^p$. Thus

C is onto L^{P} .

CONCLUSIONS AND RECOMMENDATIONS

Both the dual and reflexive spaces of ℓ^p have drawn substantial interest in this study where,

$$\frac{1}{p} + \frac{1}{q} = 1$$

We have established that:

- i. The linear functional $F_x : (\ell^p)^* \to \mathbf{C}$ defined by $F_x(f) = f(x)$ is bounded $\forall f \in (\ell^p)^*$ i.e. $F_x \in L^p$ and $||F_x|| = ||x||$
- ii. The canonical mapping C given by $C: \ell^P \to L^p$ is linear and bijective $\forall x \in \ell^P$ and $F_x \in L^P$.

Therefore (i) and (ii) implies that ℓ^p space is reflexive and is isomorphic to L^p . We recommend that effort be directed towards establishing duality among other Banach spaces.

REFERENCES

- Elliott H. L and Michael L (2001). Analysis. Graduate studies in Mathematics. American Mathematical Society.
- [2] Sten, K (1978). A note on Dual Banach Space. Mathematica Scandinavica Vol. 41, No 2 Page 325-330.