On *D-Operator

WANJALA VICTOR ${ }^{1}$, A.M. NYONGESA ${ }^{2}$
${ }^{1,2}$ Department of Mathematics Kibabii University, Kenya.

Abstract- In this paper, we introduce the class of $* D$ Operator a bounded linear operator T is said to be a *D-Operator if $T^{* 2}\left(T^{D}\right)^{2}=\left(T^{D} T^{*}\right)^{2}$. we investigate the basic properties of this class and also show that this class is closed under strong operator topology.

Indexed Terms- D-Operator, *D-Operator, Class (Q), Almost Class (Q), ($\alpha, \beta)$-Class (Q), Normal operators, \boldsymbol{n}-Normal, \boldsymbol{n}-D-Operator operators.

I. INTRODUCTION

Throughout this paper, H is a separable complex Hilbert space, $\mathrm{B}(\mathrm{H})$ is the Banach algebra of all bounded linear operators. n-normal if $\mathrm{T}^{*} \mathrm{Tn}=\mathrm{TnT}$ $*$, $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ is normal if $\mathrm{T} * \mathrm{~T}=\mathrm{TT} *$, quasinormal if $\mathrm{T}(\mathrm{T} * \mathrm{~T})=(\mathrm{T} * \mathrm{~T}) \mathrm{T}$. D-Operator if $\mathrm{T} * 2(\mathrm{~T} \mathrm{D}) 2=(\mathrm{T}$ $* \mathrm{~T}$ D) $2(1)$, class (Q) if $\mathrm{T} * 2 \mathrm{~T} 2=(\mathrm{T} * \mathrm{~T}) 2(5)$, n-power class (Q) if $\mathrm{T} * 2(\mathrm{~T} \mathrm{n}) 2=(\mathrm{T} * \mathrm{~T} \mathrm{n}) 2(6)$, n -D-Operator if $\mathrm{T} * 2(\mathrm{~T} \mathrm{D}) 2 \mathrm{n}=(\mathrm{T} *(\mathrm{~T} \mathrm{D}) \mathrm{n}) 2$, for any positive integer n . We note that n -D-Operator is D-Operator when $\mathrm{n}=1$.

II. MAIN RESULTS

- Definition 1. Let $T \in B(H)$ be Drazin invertible. Then an operator T is called $* \mathrm{D}-$ Operator, denoted by, $\left[{ }^{*} \mathrm{D}\right]$, if $\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 n}=\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$, for any positive integer n .
- Proposition 2. Let $\mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$, then the following holds;
i. $\quad \lambda \mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$ for every scalar λ.
ii. $\quad S \in\left[{ }^{*} D\right]$ for every $S \in B(H)$ that is unitarily equivalent to T.
iii. The restriction/ M of T to any closed subspace M of H which reduces T is in ["D].
iv. $\quad\left(\mathrm{T}^{\mathrm{D}}\right) \in\left[{ }^{*} \mathrm{D}\right]$.
- Proof.
(i) The proof is trivial.
(ii) Since S is unitarily equivalent to T , there exists a unitary operator $U \quad \in \quad B(H)$ such that $\mathrm{S}=\mathrm{UTU}$ *. Hence;
$S^{* 2 n}\left(S^{D}\right)^{2 n}=\left(U T * U^{*}\right)^{2}\left(U\left(T^{D}\right)^{n} U^{*}\right)^{2}$
$=\left(\mathrm{UT}^{*} \mathrm{U}^{*}\right)\left(\mathrm{UT}{ }^{*} \mathrm{U}^{*}\right)\left(\mathrm{U}(\mathrm{T} \mathrm{D})^{\mathrm{n}} \mathrm{U}^{*}\right)\left(\mathrm{U}\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{U}^{*}\right)$
$=U T * T *\left(T^{D}\right)^{n}\left(T^{D}\right){ }^{n} U *$
$=U T{ }^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 n} \mathrm{U}^{*}$
$=\mathrm{U}\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2} \mathrm{U}^{*}$
$=U T$ * $\left(T^{D}\right)^{n} T{ }^{*}\left(T^{D}\right)^{n} U^{*}$
$=\left(U T{ }^{*} U^{*}\right)\left(U\left(T^{D}\right)^{n} U^{*}\right)\left(U T{ }^{*} U^{*}\right)\left(U\left(T^{D}\right)^{n} U *\right)$
$=S^{*}\left(S^{D}\right)^{n} S^{*}\left(S^{D}\right)^{n}$
$=\left(S^{*}\left(S^{D}\right)^{n}\right)^{2}$

Thus $\mathrm{S} \in\left[{ }^{*} \mathrm{D}\right]$.
(iii) $\quad(\mathrm{T} / \mathrm{M})^{* 2}((\mathrm{~T} / \mathrm{M}) \mathrm{D})^{2 \mathrm{n}}=(\mathrm{T} / \mathrm{M}) *(\mathrm{~T} / \mathrm{M}) *((\mathrm{~T} / \mathrm{M})$
$\left.{ }^{\mathrm{D}}\right)^{\mathrm{n}}\left((\mathrm{T} / \mathrm{M})^{\mathrm{D}}\right)^{\mathrm{n}}$
$=\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}} / \mathrm{M}\right)$
$\left.=\left(\mathrm{T}^{*} \mathrm{~T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{nT}}{ }^{\mathrm{D}}\right)^{\mathrm{n}} / \mathrm{M}\right)^{2}$
$=\left(\mathrm{T}^{* 2} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{2 \mathrm{n}} / \mathrm{M}\right)$
$=\left(\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}\right) / \mathrm{M}$
$=\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right) / \mathrm{M}$
$=\left(\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right) / \mathrm{M}\right)\left(\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right) / \mathrm{M}\right)$
$=\left(\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}} / \mathrm{M}\right)\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}} / \mathrm{M}\right)\right)$
$=\left(\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n} /} \mathrm{M}\right)^{2}\right.$
$=\left((\mathrm{T} / \mathrm{M}) *\left((\mathrm{~T} / \mathrm{M})^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$

Hence T/M $\in\left[{ }^{*} \mathrm{D}\right]$.
(iv) Suppose $\mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$, then;
$T * 2 n\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$, hence
$\mathrm{T} * \mathrm{~T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}=\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}$
taking adjoins on both sides
$=\left(\left(T{ }^{*}\right)^{\mathrm{D}}\right)^{\mathrm{n}}\left(\left(\mathrm{T}{ }^{*}\right)^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{TT}=\left((\mathrm{T} *)^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{T}\left((\mathrm{T} *)^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{T}$. Thus $\left(\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{*}\right)^{2} \mathrm{~T}^{2}=\left(\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{*)} \mathrm{T}\right)^{2}$.
hence (T D) $\mathrm{n} \in\left[{ }^{*} \mathrm{D}\right]$.

- Proposition 3. The set of all *D-Operators is a closed subset of $\quad \mathrm{B}(\mathrm{H})$ on H . Proof.

Let $\left\{\mathrm{T}_{\mathrm{q}}\right\}$ be a sequence of $\left[{ }^{*} \mathrm{D}\right]$ operators with $\mathrm{Tq} \rightarrow \rightarrow$ T. We have to show that
$\mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$. Now $\mathrm{T}_{\mathrm{q}} \rightarrow \mathrm{T}$ implies $\mathrm{T}_{\mathrm{q}}{ }^{*} \rightarrow \mathrm{~T} *$ and $\left(\mathrm{T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \rightarrow$ $\left(\mathrm{T}^{\mathrm{D}}\right)^{\text {n. }}$ Thus $\mathrm{T}_{\mathrm{q}}{ }^{*}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \rightarrow \mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}$ gives $\left(\mathrm{T}_{\mathrm{q}}{ }^{*}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2} \rightarrow\left(\mathrm{~T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$ \qquad

Similarly,
$\mathrm{T}_{\mathrm{q}}{ }^{* 2} \rightarrow \mathrm{~T}^{* 2}$ and $\left(\mathrm{T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}} \rightarrow\left(\mathrm{T}^{\mathrm{D}}\right)^{2 \mathrm{n}}$, thus
$\mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}} \rightarrow \mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}$
hence from (0.1) and (0.2) we have;

$$
\begin{aligned}
& \left\|\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}-\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}\right\| \\
& =\| \mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}-\mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}}+\mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}}^{\mathrm{D}}\right)^{2 \mathrm{n}}-\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)\right. \\
& \left.{ }^{\mathrm{n}}\right)^{2} \| \\
& \leq\left\|\mathrm{T}{ }^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}-\mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}} \mathrm{D}\right)^{2 \mathrm{n}}\right\|+\| \mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}}-\left(\mathrm{T}^{*}\right. \\
& \left.\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2} \| \\
& =\left\|\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}-\mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}}\right\|+\| \mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}-\left(\mathrm{T}^{*}\right. \\
& \left.\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2} \| \rightarrow 0 \text { as } \mathrm{q} \rightarrow \infty \text { and thus } \\
& \mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}=\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2} \text { hence } \mathrm{T} \in\left[{ }^{*} \mathrm{D}\right] . \\
& \text { - Proposition 4. Let } \mathrm{S}, \mathrm{~T} \in\left[{ }^{*} \mathrm{D}\right] . \text { If }[\mathrm{S}, \mathrm{~T}]=\left[\mathrm{S}, \mathrm{~T}{ }^{*}\right] \\
& \quad=0, \text { then TS } \in\left[{ }^{*} \mathrm{D}\right] .
\end{aligned}
$$

Proof
$[\mathrm{S}, \mathrm{T}]=\left[\mathrm{S}, \mathrm{T}^{*}\right]=0$ implies;
$[\mathrm{S}, \mathrm{T}]=\left[\mathrm{S}^{\mathrm{D}}, \mathrm{T}\right]=\left[\mathrm{S}^{*}, \mathrm{~T}^{\mathrm{D}}\right]=0$ with $\mathrm{S}, \mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$ we have; $S^{* 2}\left(S^{D}\right)^{2 n}=\left(S^{*}\left(S^{D}\right)^{n}\right)^{2}$ and
$T^{* 2}\left(T^{D}\right)^{2 n}=\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$, hence
$(\mathrm{TS})^{* 2}\left((\mathrm{TS})^{\mathrm{D}}\right)^{2 \mathrm{n}}=(\mathrm{TS})^{*}(\mathrm{TS})^{*}(\mathrm{TS})^{\mathrm{D}}(\mathrm{TS})^{\mathrm{D}}$
$=S^{*} T{ }^{*} S^{*} T^{*}\left(T^{D}\right)^{n}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n}\left(S^{D}\right)^{n}$
$=S^{*} S^{*}\left(S^{D}\right)^{n}\left(S^{D}\right)^{n} T * T *\left(T^{D}\right)^{n}\left(T^{D}\right)^{n}$
$=S^{* 2} T^{* 2}\left(S^{D}\right)^{2 n}\left(T^{D}\right)^{2 n}$
$=S * S^{*} T * T^{*}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n}$
$=S^{*} T^{*} S^{*} T^{*}\left(S^{D}\right)^{\mathrm{n}}\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\left(\mathrm{S}^{\mathrm{D}}\right)^{\mathrm{n}}\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}$
$\left.=(\mathrm{TS})^{*}(\mathrm{TS})^{*}\left((\mathrm{TS})^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$.
Hence TS $\in\left[{ }^{*} \mathrm{D}\right]$.

- Proposition 5. Let $\mathrm{S}, \mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$. If $\mathrm{TS}=\mathrm{ST}=0$, then $\mathrm{S}+\mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$.

Proof.
$S, T \in\left[{ }^{*} D\right]$ implies; $S^{* 2}\left(S^{D}\right)^{2 n}=\left(S^{*}\left(S^{D}\right)^{n}\right)^{2}$ and
$\mathrm{T}{ }^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}=\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$.
$\mathrm{TS}=\mathrm{ST}=0$ implies $\mathrm{T} * \mathrm{~S}^{*}=\mathrm{S}^{*} \mathrm{~T}$ * which further implies $\left((S+T)^{\mathrm{D}}\right)^{\mathrm{n}}=(\mathrm{SD})^{\mathrm{n}}+\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n} .}$ Thus,
$=(\mathrm{S}+\mathrm{T})^{* 2}((\mathrm{~S}+\mathrm{T}) \mathrm{D})^{2 \mathrm{n}}=(\mathrm{S}+\mathrm{T}) *(\mathrm{~S}+\mathrm{T}) *((\mathrm{~S}+\mathrm{T})$
D) ${ }^{n} \quad((S \quad+\quad T) \quad D) \quad{ }^{n}$
$=\left(S^{*}+\mathrm{T}^{*}\right)\left(\mathrm{S}^{*}+\mathrm{T}^{*}\right)\left(\mathrm{S}^{\mathrm{D}}+\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\left(\mathrm{S}^{\mathrm{D}}+\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}$
$=\left(\mathrm{S}^{* 2}+\mathrm{T}{ }^{* 2}\right)\left(\left(\mathrm{S}^{\mathrm{D}}\right)^{2 \mathrm{n}}+\left(\mathrm{T}^{\mathrm{D}}\right)^{2 \mathrm{n}}\right)$
$=\mathrm{S}^{* 2}\left(\mathrm{~S}^{\mathrm{D}}\right)^{2 \mathrm{n}}+\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2 \mathrm{n}}$
$=\left(S^{*}\left(S^{D}\right)^{n}\right)^{2}+\left(T^{*}\left(T^{D}\right)^{n}\right)^{2}$
$=\left(S^{*}\left(S^{\mathrm{D}}\right)^{\mathrm{n}}+\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)\left(\mathrm{S}^{*}\left(\mathrm{~S}^{\mathrm{D}}\right)^{\mathrm{n}}+\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)$
$=\left(S^{*}+T^{*}\right)\left(\left(S^{D}\right)^{\mathrm{n}}+\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)\left(\mathrm{S}^{*}+\mathrm{T}^{*}\right)\left(\left(\mathrm{S}^{\mathrm{D}}\right)^{\mathrm{n}}+\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}}\right)$
$=\left((\mathrm{S}+\mathrm{T})^{*}\left((\mathrm{~S}+\mathrm{T})^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$.
Hence $\mathrm{S}+\mathrm{T} \in\left[{ }^{*} \mathrm{D}\right]$.

Theorem 6. Let $\mathrm{T}_{\alpha 1}, \mathrm{~T}_{\alpha 2} \ldots \ldots \mathrm{T}_{\alpha q} \in\left[{ }^{*} \mathrm{D}\right]$, then it follows that;
(i) $\mathrm{T}_{\alpha 1} \oplus \mathrm{~T}_{\alpha 2} \oplus$
$\oplus \mathrm{T}_{a q} \in[\mathrm{nD}]$.
(ii) $\mathrm{T}_{\alpha 1} \otimes \mathrm{~T}_{\alpha 2} \otimes$
$\otimes \mathrm{T}_{\mathrm{qq}} \in[\mathrm{nD}]$.

Proof. (i) . $T_{\alpha j} \in[n D]$ for all $\alpha j=1,2, \ldots \ldots . . \alpha q$ implies;
$\mathrm{T}_{\mathrm{aj}}{ }^{* 2}\left(\mathrm{~T}_{\alpha \mathrm{j}}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}}=\left(\mathrm{T}_{\alpha \mathrm{j}} *\left(\mathrm{~T}_{\alpha \mathrm{j}}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$ thus
$\left(\mathrm{T}_{\alpha 1} \oplus \mathrm{~T}_{\alpha 2} \oplus \ldots \ldots \oplus \mathrm{~T}_{\mathrm{aj}}\right)^{* 2}\left(\left(\mathrm{~T}_{\alpha 1} \oplus \mathrm{~T}_{\alpha 2} \oplus \ldots \ldots \oplus \mathrm{~T}_{\mathrm{aj}}\right)\right.$ $\left.{ }^{\mathrm{D}}\right)^{2 \mathrm{n}}$
$=\mathrm{T}_{\alpha 1}{ }^{* 2}\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}} \oplus \mathrm{T}_{\alpha 2}{ }^{* 2}\left(\mathrm{~T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{2 \mathrm{n}} \oplus \ldots \ldots \oplus \mathrm{T}_{\alpha \mathrm{j}^{* 2}}\left(\mathrm{~T}_{\alpha \mathrm{j}}\right.$ $\left.{ }^{D}\right)^{2 n}$
$=\left(\mathrm{T}_{\alpha 1}{ }^{*}\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2} \oplus\left(\mathrm{~T}_{\alpha 2}{ }^{*}\left(\mathrm{~T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2} \oplus$ \qquad $\left.\left(\mathrm{T}_{\alpha \mathrm{j}}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$
$=\mathrm{T}_{\alpha 1} *\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{T}_{\alpha 1} *\left(\mathrm{~T}_{\alpha 1} \mathrm{D}^{\mathrm{n}} \oplus \mathrm{T}_{\alpha 2} *\left(\mathrm{~T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{T}_{\alpha 2} *\left(\mathrm{~T}_{\alpha 2}\right.\right.$
$\left.{ }^{\mathrm{D}}\right)^{\mathrm{n}} \oplus \ldots \ldots . .{ }^{\oplus} \mathrm{T}_{\alpha \mathrm{j}}{ }^{*}\left(\mathrm{~T}_{\alpha \mathrm{j}}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \mathrm{T}_{\alpha \mathrm{j}}{ }^{*}\left(\mathrm{~T}_{\alpha \mathrm{j}}{ }^{\mathrm{D}}\right)^{\mathrm{n}}$
$=\mathrm{T}_{\alpha 1}{ }^{*}\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \oplus \mathrm{T}_{\alpha 2}{ }^{*}\left(\mathrm{~T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \oplus \ldots \ldots . . \oplus \mathrm{T}_{\alpha \mathrm{j}}{ }^{*}\left(\mathrm{~T}_{\alpha}\right.$
$\left.{ }_{j}{ }^{\mathrm{D}}\right)^{\mathrm{n}}$
$=\left(\left(\mathrm{T}_{\alpha 1}{ }^{*} \oplus \mathrm{~T}_{\alpha 2}{ }^{*} \oplus \ldots \ldots \oplus \mathrm{~T}_{\alpha \mathrm{j}}{ }^{*}\right)\left(\left(\mathrm{T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{\mathrm{n}} \oplus\left(\mathrm{T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right.\right.$
$\left.\oplus \ldots \ldots\left(\mathrm{T}_{\alpha \mathrm{j}}{ }^{\mathrm{D}}{ }^{\mathrm{n}}\right)\right)$
$=\left(\left(\mathrm{T}_{\alpha 1} \oplus \mathrm{~T}_{\mathrm{\alpha} 2} \oplus\right.\right.$ \qquad $\left.\oplus \mathrm{T}_{\mathrm{aj}}\right)^{*}\left(\left(\mathrm{~T}_{\alpha 1} \oplus \mathrm{~T}_{\alpha 2} \oplus \ldots \ldots \oplus\right.\right.$
$\left.\left.\mathrm{T}_{\alpha \mathrm{j}}{ }^{\mathrm{D}}\right)^{\mathrm{n}}\right)^{2}$
(v) The proof for (ii) follows similarly.

REFERENCES

[1] Abood and Kadhim. Some properties of Doperator. Iraqi Journal of science, vol. 61(12), (2020), 3366-3371.
[2] Ben-Israel, A.and Greville, T.N, Generalized inverses: Theory and applications, sec. ed; springer vralg, New York.
[3] Campbell, S.R. and Meyer, C.D. 1991. Generalized inverses of linear transformations, pitman, New York.
[4] Dana, M and Yousef, R.., On the classes of Dnormal operators and D-quasi normal operators on Hilbert space, operators and matrices, vol. 12 (2) (2018),465-487.
[5] Jibril, A.A.S.., On Operators for which $T^{* 2}(T)^{2}=$ ($\mathrm{T} * \mathrm{~T})^{2}$, international mathematical forum, vol. 5(46) ,2255-2262.
[6] S. Panayappan, N. Sivamani., On n-power class(Q) operators, Int. Journal of Math. Analysis, Vol . 6 (31) (2012), 1513-1518.

