On (N+K)- Power- D-Operator

WANJALA VICTOR ${ }^{1}$, A.M. NYONGESA ${ }^{2}$
${ }^{1,2}$ Kibabii University, Bungoma-Kenya.

Abstract

In this paper, we introduce the class of ($N+K$)-power -D-operator acting on the Hilbertspace H over the complex plane. A bounded linear operator T is said to be an $(N+K)$-power -D-operatorif $T^{2}(T$ $\left.\left.{ }^{D}\right)^{2(n+k)}\right)=\left(T^{*}\left(T^{D}\right)^{n+k}\right)^{2}$ for positive integers n and k and where T^{D} is the Drazin inverse of T. We investigate thebasic behavior of this class of operator.

Indexed Terms- Normal operators, D-Operator, Almost Class (Q), quasi -class (Q) operators, N quasi D-operator.

I. INTRODUCTION

H denotes the separable complex Hilbert space in this paper, while $\mathrm{B}(\mathrm{H})$ is the usual Banach algebra of all bounded linear operators on H. Let $T \in B(H)$, Drazin inverse of T is an operator $\mathrm{T}^{\mathrm{D}} \in \mathrm{B}(\mathrm{H})$, such that $\mathrm{TT}^{\mathrm{D}}=$ $T^{\mathrm{D}} \mathrm{T}, \mathrm{T}^{\mathrm{D}}=\mathrm{T}^{\mathrm{D}} \mathrm{TT}^{\mathrm{D}}$ and $\mathrm{T}^{\mathrm{k}+1} \mathrm{~T}^{\mathrm{D}}=\mathrm{T}^{\mathrm{k}}$ provided it exists. An operator $T \in B(H)$ is said to be D-Operator if T ${ }^{* 2}\left(T^{\mathrm{D}}\right)^{2}=\left(\mathrm{T} * \mathrm{~T}^{\mathrm{D}}\right)^{2}$, this was covered by Abood and Kadhim in (1),N quasi D- Operator was covered by Wanjala Victor and A.M. Nyongesa in (6), a bounded linear operator T is said to be N Quasi D -operator ifT $\left(\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2}\right)=\mathrm{N}\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{D}}\right)^{2} \mathrm{~T}, \mathrm{M}$ Quasi class (Q) if $\mathrm{T}(\mathrm{T}$ $\left.{ }^{* 2} \mathrm{~T}^{2}\right)=\mathrm{M}\left(\mathrm{T}{ }^{*} \mathrm{~T}\right)^{2} \mathrm{~T}(5)$, class (Q) if $\mathrm{T}{ }^{* 2} \mathrm{~T}^{2}=\left(\mathrm{T}{ }^{*} \mathrm{~T}\right)^{2}$ (4), Quasiclass (Q) if $\mathrm{T}\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}\right)=\left(\mathrm{T}{ }^{*} \mathrm{~T}\right)^{2} \mathrm{~T}$, for a bounded linear operator N . Let $\mathrm{T}=\xi+\mathrm{i} \zeta$, with $\xi=$ $\operatorname{Re}(\mathrm{T})=\frac{\mathrm{TD}+\mathrm{T} *}{2}$ and $\zeta=\operatorname{Im}(\mathrm{T})=\frac{\mathrm{TD}-\mathrm{T} *}{2 i}$. We shall simply denote $\mathrm{U}^{2}=\left(\mathrm{T} * \mathrm{~T}^{\mathrm{D}}\right)^{2}$ and $\mathrm{V}^{2}=\mathrm{T}{ }^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2}$ where C and V are non-negative definite.

II. MAIN RESULTS

Definition 1. Let $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ be Drazin invertible, an operator T is called ($\mathrm{N}+\mathrm{K}$)-power -D-operator if $\mathrm{T}^{* 2}(\mathrm{~T}$ $\left.\left.{ }^{D}\right)^{2(n+k)}\right)=\left(T^{*}\left(T^{D}\right)^{n+k}\right)^{2}$ for positive integers n and k.

Proposition 2. Let Tbe $(\mathrm{n}+\mathrm{k})$-power D-operator, then the following holds;
i. $\quad \lambda T \in(n+k)$-D-operator for every scalar λ.
ii. $\quad S \in(n+k)$-D-operator for every $S \in B(H)$ that is unitarily equivalent to T.
iii. The restriction/ M of T to any closed subspace M of H which reduces T is in $(\mathrm{n}+\mathrm{k})$-D-operator.
iv. $\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \in(\mathrm{n}+\mathrm{k})$-D-operator.

Proof.
i. The proof is trivial.
ii. Since S is unitarily equivalent to T, there exists a unitary operator $U \quad \in \quad B(H)$ such that $\mathrm{S}=\mathrm{UTU}$ *. Hence;

$$
S^{* 2 n}\left(S^{\mathrm{D}}\right)^{2(n+k)}=\left(\mathrm{UT}{ }^{*} \mathrm{U}^{*}\right)^{2}\left(\mathrm{U}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k} \mathrm{U}^{*}\right)^{2}
$$

$$
=\left(\mathrm{UT} * \mathrm{U}^{*}\right)\left(\mathrm{UT} * \mathrm{U}^{*}\right)\left(\mathrm{U}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k} \mathrm{U}^{*}\right)\left(\mathrm{U}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k} \mathrm{U} *\right)
$$

$$
=U T * T^{*}\left(T^{D}\right)^{n+k}\left(T^{D}\right)^{n+k} U^{*}
$$

$$
=\mathrm{UT}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(n+k)} \mathrm{U}^{*}
$$

$$
=U\left(T^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k}\right)^{2} \mathrm{U}^{*}
$$

$$
=U T^{*}\left(T^{D}\right)^{n+k} T^{*}\left(T^{D}\right)^{n+k} U^{*}
$$

$$
=\left(\mathrm{UT}{ }^{*} \mathrm{U}^{*}\right)\left(\mathrm{U}\left(\mathrm{~T}^{\mathrm{D}} \mathrm{D}^{n+k} \mathrm{U} *\right)\left(\mathrm{UT}^{*} \mathrm{U}^{*}\right)\left(\mathrm{U}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k} \mathrm{U}^{*}\right)\right.
$$

$$
=S^{*}\left(S^{\mathrm{D}}\right)^{n+k} S^{*}\left(S^{D}\right)^{n+k}
$$

$$
=\left(\mathrm{S}^{*}\left(\mathrm{~S}^{\mathrm{D}}\right)^{n+k}\right)^{2}
$$

Thus $S \in(\mathrm{n}+\mathrm{k})$-D-operator.

Hence $T / M \in(n+k)$-D-operator.
iv. Suppose $\mathrm{T} \in(\mathrm{n}+\mathrm{k})$-D-operator, then; $\mathrm{T}{ }^{* 2 \mathrm{n}}\left(\mathrm{T} \mathrm{D}^{2(n+k)}=\left(\mathrm{T} *\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k}\right)^{2}\right.$, hence $T{ }^{*} T *\left(T^{D}\right)^{n+k}\left(T^{D}\right)^{n+k}=T *\left(T^{D}\right)^{n+k} T^{*}\left(T^{D}\right)^{n+k}$ taking adjoins on both sides

$$
\begin{aligned}
& \text { iii. } \quad(\mathrm{T} / \mathrm{M})^{* 2}((\mathrm{~T} / \mathrm{M}) \mathrm{D})^{2(n+k)} \\
& =(T / M)^{*}(T / M)^{*}\left((T / M)^{D}\right)^{n+k}\left((T / M)^{\mathrm{D}}\right)^{n+k} \\
& =\left(T^{*} / \mathrm{M}\right)\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{nk} k} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{n+k} / \mathrm{M}\right) \\
& =\left(T^{*} T * / M\right)\left(\left(T^{D}\right)^{n+k}\left(T^{D}\right)^{n+k} / M\right)^{2} \\
& =\left(\mathrm{T}^{* 2} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{2(n+k)} / \mathrm{M}\right) \\
& =\left(\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(n+k)}\right) / \mathrm{M} \\
& =\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k} \mathrm{~T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k}\right) / \mathrm{M} \\
& =\left(\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}+k}\right) / \mathrm{M}\right)\left(\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k}\right) / \mathrm{M}\right) \\
& =\left(\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}} \mathrm{D}^{\mathrm{nk}} / \mathrm{M}\right)\left(\mathrm{T}^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{nk}} / \mathrm{M}\right)\right)\right. \\
& =\left(\left(T^{*} / \mathrm{M}\right)\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}+k} / \mathrm{M}\right)^{2}\right. \\
& =\left((\mathrm{T} / \mathrm{M})^{*}\left((\mathrm{~T} / \mathrm{M})^{\mathrm{D}}\right)^{n+k}\right)^{2 .}
\end{aligned}
$$

$=\left((\mathrm{T} *)^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\left((\mathrm{T} *)^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \mathrm{TT}=\left((\mathrm{T} *)^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \mathrm{T}\left((\mathrm{T} *)^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \mathrm{T}$. Thus $\left(\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{*}\right)^{2} \mathrm{~T}^{2}=\left(\left(\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{*} \mathrm{~T}\right)^{2}$ 。
hence $\left(T^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \in(\mathrm{n}+\mathrm{k})$-D-operator.

Proposition 3. The set of all $(\mathrm{n}+\mathrm{k})$-D-operator is a closed subset of $\mathrm{B}(\mathrm{H})$ on H .

Proof.
Let $\left\{T_{q}\right\}$ be a sequence of $(n+k)$-D-operator operators with $\mathrm{Tq} \rightarrow \mathrm{T}$. We have to show that
$T \in(n+k)$-D-operator. Now $T_{q} \rightarrow T$ implies $T_{q}{ }^{*} \rightarrow T$ ${ }^{*}$ and $\left(\mathrm{T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \rightarrow\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n} .+\mathrm{k}}$ Thus $\mathrm{T}_{\mathrm{q}}{ }^{*}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \rightarrow \mathrm{T} *(\mathrm{~T}$ $\left.{ }^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}$ gives
$\left(\mathrm{T}_{\mathrm{q}}{ }^{*}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2} \rightarrow\left(\mathrm{~T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2}$ \qquad

Similarly,
$\mathrm{T}_{\mathrm{q}}{ }^{* 2} \rightarrow \mathrm{~T}{ }^{* 2}$ and $\left(\mathrm{T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})} \rightarrow\left(\mathrm{T}^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}$, thus
$\mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})} \rightarrow \mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}$
hence from (0.1) and (0.2) we have;

$$
\begin{aligned}
& \left\|\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(n+k)}-\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}+k}\right)^{2}\right\| \\
& =\| T^{* 2}\left(T^{D}\right)^{2(n+k)}-T_{q^{* 2}}\left(T_{q}\right)^{2(n+k)}+T_{q}^{* 2}\left(T_{q}{ }^{\mathrm{D}}\right)^{2(n+k)}-(\mathrm{T} \\
& \left.{ }^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2} \| \\
& \leq\left\|T^{* 2}\left(T^{D}\right)^{2(n+k)}-T_{q^{* 2}}\left(T_{q}{ }^{\mathrm{D}}\right)^{2(n+k)}\right\|+\| T_{q^{* 2}}\left(T_{q}{ }^{\mathrm{D}}\right)^{2(n+k)} \\
& -\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k}\right)^{2} \| \\
& =\left\|\mathrm{T} \quad{ }^{* 2}(\mathrm{~T} \quad \mathrm{D})^{2(n+k)}-\mathrm{T}_{\mathrm{q}}{ }^{* 2}\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{2(n+k)} \quad\right\| \quad+ \\
& \left\|\mathrm{T}_{\mathrm{q}^{* 2}}\left(\left(\mathrm{~T}_{\mathrm{q}}{ }^{\mathrm{D}}\right)^{n+k}\right)^{2}-\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{n+k}\right)^{2}\right\| \rightarrow 0 \text { as } \mathrm{q} \rightarrow \infty \text { and } \\
& \text { thus }
\end{aligned}
$$

$\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}=\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2}$ hence $\mathrm{T} \in(\mathrm{n}+\mathrm{k})-\mathrm{D}-$ operator.

- Proposition 4. Let $S, T \in(n+k)$-D-operator. If [S, $\mathrm{T}]=\left[\mathrm{S}, \mathrm{T}^{*}\right]=0$, then $\mathrm{TS} \in(\mathrm{n}+\mathrm{k})$-D-operator.

Proof
$[\mathrm{S}, \mathrm{T}]=\left[\mathrm{S}, \mathrm{T}^{*}\right]=0$ implies;
$[\mathrm{S}, \mathrm{T}]=\left[\mathrm{S}^{\mathrm{D}}, \mathrm{T}\right]=\left[\mathrm{S}^{*}, \mathrm{~T}^{\mathrm{D}}\right]=0$ with $\mathrm{S}, \mathrm{T} \in(\mathrm{n}+\mathrm{k})$-Doperatorwe have; $S^{* 2}\left(S^{D}\right)^{2(n+k)}=\left(S^{*}\left(S^{D}\right)^{n+k}\right)^{2}$ and
$T^{* 2}\left(T^{D}\right)^{2(n+k)}=\left(T^{*}\left(T^{D}\right)^{n+k}\right)^{2}$, hence
$(\mathrm{TS})^{* 2}\left((\mathrm{TS})^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}=(\mathrm{TS})^{*}(\mathrm{TS})^{*}(\mathrm{TS})^{\mathrm{D})}{ }^{\mathrm{n}+\mathrm{k}}\left((\mathrm{TS})^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}$
$=S * T * S^{*} T *\left(T^{D}\right)^{n+k}\left(S^{D}\right)^{n+k}\left(T^{D}\right)^{n+k}\left(S^{D}\right)^{n+k}$
$=S^{*} S^{*}\left(S^{D}\right)^{\mathrm{n}+\mathrm{k}}\left(\mathrm{S}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \mathrm{T}^{*} \mathrm{~T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}$
$=S^{* 2} T^{* 2}\left(S^{D}\right)^{2(n+k)}\left(T^{D}\right)^{2(n+k)}$
$=S^{*} S^{*} T * T *\left(S^{D}\right)^{n+k}\left(T^{D}\right)^{n+k}\left(S^{D}\right)^{n+k}\left(T^{D}\right)^{n+k}$
$=S * T * S^{*} T{ }^{*}\left(S^{D}\right)^{n+k}\left(T^{D}\right)^{n+k}\left(S^{D}\right)^{n+k}\left(T^{D}\right)^{n+k}$
$=\left((\mathrm{TS})^{*}(\mathrm{TS})^{*}\left((\mathrm{TS})^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2}$.

Hence TS $\in(n+k)$-D-operator.

Proposition 5. Let $\mathrm{S}, \mathrm{T} \in(\mathrm{n}+\mathrm{k})$-D-operator.If $\mathrm{TS}=$ $\mathrm{ST}=0$, then $\mathrm{S}+\mathrm{T} \in(\mathrm{n}+\mathrm{k})$-D-operator.

Proof.
S, T $\in(n+k)$-D-operator implies; $\quad S^{* 2}\left(S^{D}\right)^{2(n+k)}=$ $\left(S^{*}\left(S^{\mathrm{D}}\right)^{\mathrm{nk}}\right)^{2}$ and
$\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}=\left(\mathrm{T}^{*}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2}$.
$\mathrm{TS}=\mathrm{ST}=0$ implies $\mathrm{T}^{*} \mathrm{~S}^{*}=\mathrm{S}^{*} \mathrm{~T} *$ which further implies $\left((S+T)^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}=(\mathrm{SD})^{\mathrm{n}+\mathrm{k}}+\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k} .}$ Thus, $=(\mathrm{S}+\mathrm{T})^{* 2}((\mathrm{~S}+\mathrm{T}) \mathrm{D})^{2(\mathrm{n}+\mathrm{k})}=(\mathrm{S}+\mathrm{T})^{*}(\mathrm{~S}+\mathrm{T})^{*}((\mathrm{~S}+$ T) D $)^{\mathrm{n}+\mathrm{k}}((\mathrm{S}+\mathrm{T}) \mathrm{D})^{\mathrm{n}+\mathrm{k}}$
$=\left(S^{*}+T^{*}\right)\left(S^{*}+T^{*}\right)\left(S^{D}+T^{D}\right)^{n+k}\left(S^{D}+T^{D}\right)^{n+k}$
$=\left(\mathrm{S}^{* 2}+\mathrm{T}^{* 2}\right)\left(\left(\mathrm{S}^{\mathrm{D}}\right)^{2(n+k)}+\left(\mathrm{T}^{\mathrm{D}}\right)^{2(n+k)}\right)$
$=\mathrm{S}^{* 2}\left(\mathrm{~S}^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}+\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}$
$=\left(S^{*}\left(S^{D}\right)^{n+k}\right)^{2}+\left(T^{*}\left(T^{D}\right)^{n+k}\right)^{2}$
$=\left(S^{*}\left(S^{D}\right)^{n+k}+T^{*}\left(T^{D}\right)^{n+k}\right)\left(S^{*}\left(S^{D}\right)^{n+k}+T^{*}\left(T^{D}\right)^{\mathrm{n}+\mathrm{k}}\right)$
$=\left(\mathrm{S}^{*}+\mathrm{T}^{*}\right)\left(\left(\mathrm{S}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}+\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)\left(\mathrm{S}^{*}+\mathrm{T}^{*}\right)\left(\left(\mathrm{S}^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}+(\mathrm{T}\right.$
$\left.\left.{ }^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)$
$=\left((\mathrm{S}+\mathrm{T})^{*}\left((\mathrm{~S}+\mathrm{T})^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2}$.
Hence $\mathrm{S}+\mathrm{T} \in(\mathrm{n}+\mathrm{k})$-D-operator.

Theorem 6. Let $\mathrm{T}_{\alpha 1}, \mathrm{~T}_{\alpha 2} \ldots \ldots \mathrm{T}_{\alpha q} \in(\mathrm{n}+\mathrm{k})$-D-operator. , then it follows that;
i. $\quad \mathrm{T}_{\alpha 1} \oplus \mathrm{~T}_{\alpha 2} \oplus$
$\oplus \mathrm{T}_{\alpha q} \in(\mathrm{n}+\mathrm{k})$-D-operator.
ii. $\quad \mathrm{T}_{\alpha 1} \otimes \mathrm{~T}_{\alpha 2} \otimes$
$\otimes \mathrm{T}_{\alpha q} \in(\mathrm{n}+\mathrm{k})$-D-operator.

Proof. (i). $T_{\alpha j} \in(n+k)$-D-operator for all $\alpha \mathrm{j}=1,2$, qq implies;
$T_{\alpha j}{ }^{* 2}\left(T_{\alpha j}{ }^{\mathrm{D}}\right)^{2(n+k)}=\left(T_{\alpha j} *\left(T_{\alpha \mathrm{j}}\right)^{\mathrm{D}+\mathrm{k}}\right)^{2}$ thus
$\left(\mathrm{T}_{\alpha 1} \oplus \mathrm{~T}_{\alpha 2} \oplus \ldots \ldots \oplus \mathrm{~T}_{\mathrm{aj}}\right)^{* 2}\left(\left(\mathrm{~T}_{\alpha 1} \oplus \mathrm{~T}_{\alpha 2} \oplus \ldots \ldots \oplus \mathrm{~T}_{\alpha \mathrm{j}}\right)\right.$
$\left.{ }^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}$
$=\mathrm{T}_{\alpha 1}{ }^{* 2}\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})} \oplus \mathrm{T}_{\alpha 2^{* 2}}\left(\mathrm{~T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})} \oplus \ldots \ldots \oplus \mathrm{T}_{\alpha}$
$\mathrm{j}^{* 2}\left(\mathrm{~T}_{\alpha} \mathrm{j}^{\mathrm{D}}\right)^{2(\mathrm{n}+\mathrm{k})}$
$=\left(\mathrm{T}_{\alpha 1}{ }^{*}\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}}\right)^{2} \oplus\left(\mathrm{~T}_{\alpha 2^{*}}\left(\mathrm{~T}_{\alpha 2} \mathrm{D}^{\mathrm{n}+\mathrm{k}}\right)^{2} \oplus \ldots \ldots \oplus\left(\mathrm{~T}_{\alpha \mathrm{j}^{*}}\left(\mathrm{~T}_{\alpha}\right.\right.\right.$

```
\(\left.\left.{ }_{j}{ }^{D}\right)^{n+k}\right)^{2}\)
\(=\mathrm{T}_{\alpha 11^{*}}\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{n+\mathrm{k}} \mathrm{T}_{\alpha 11^{*}}\left(\mathrm{~T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{\mathrm{nk}} \oplus \mathrm{T}_{\alpha 2^{*}}\left(\mathrm{~T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{n+\mathrm{k}} \mathrm{T}_{\alpha 2}{ }^{*}\)
\(\left(\mathrm{T}_{\alpha 2}{ }^{\mathrm{D}}\right)^{n+k} \oplus \ldots \ldots \ldots . \oplus \mathrm{T}_{\alpha j}{ }^{*}\left(\mathrm{~T}_{\alpha j}{ }^{\mathrm{D}}\right)^{n+k} \mathrm{~T}_{\alpha j^{*}}\left(\mathrm{~T}_{\alpha j}{ }^{\mathrm{D}}\right)^{n+k}\)
\(=\mathrm{T}_{\alpha 1^{*}}\left(\mathrm{~T}_{a 1} \mathrm{D}^{\mathrm{D}}\right)^{n+k} \oplus \mathrm{~T}_{\alpha 2^{*}}\left(\mathrm{~T}_{\alpha 2} \mathrm{D}^{\mathrm{D}}\right)^{n+\mathrm{k}} \oplus \ldots \ldots . . \oplus \mathrm{T}_{\alpha j}{ }^{*}\left(\mathrm{~T}_{\alpha}\right.\)
\(\left.{ }_{j}{ }^{\text {D }}\right)^{n+k}\)
\(=\left(\left(\mathrm{T}_{a 1}{ }^{*} \oplus \mathrm{~T}_{\alpha 2}{ }^{*} \oplus \ldots \ldots . \oplus \mathrm{T}_{\alpha j^{*}}\right)\left(\left(\mathrm{T}_{\alpha 1}{ }^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \oplus\left(\mathrm{T}_{\alpha 2}\right)^{\mathrm{D}}\right)^{\mathrm{n}+\mathrm{k}} \oplus\right.\)
\(\left.\left.\ldots . . . \oplus\left(\mathrm{T}_{\alpha j}{ }^{\mathrm{D}}\right)^{n+k}\right)\right)\)
\(=\left(\left(T_{\alpha 1} \oplus T_{\alpha 2} \oplus \ldots \ldots \oplus T_{\alpha j}\right)^{*}\left(\left(T_{\alpha 1} \oplus T_{\alpha 2} \oplus \ldots \ldots \oplus\right.\right.\right.\)
\(\left.\left.\mathrm{T}_{\text {(j) }} \mathrm{D}^{\mathrm{D}}\right)^{n+k}\right)^{2}\)
```

iii. The proof for (ii) follows similarly.

REFERENCES

[1] Abood and Kadhim. Some properties of Doperator. Iraqi Journal of science, vol. 61(12), (2020), 3366-3371.
[2] Campbell, S.R. and Meyer, C.D. 1991. Generalized inverses of linear transformations, pitman, New York.
[3] Dana, M and Yousef, R.., On the classes of Dnormal operators and D-quasi normal operators on Hilbert space, operators and matrices, vol. 12 (2) (2018),465-487.
[4] Jibril, A.A.S.., On Operators for which $\mathrm{T}^{* 2}(\mathrm{~T})^{2}=$ $\left(\mathrm{T}{ }^{*}\right)^{2}$, international mathematical forum, vol. 5(46) ,2255-2262.
[5] V. Revathi and P. Maheswari Naik., A study on properties of M quasi- class (Q) operator, international Journal of advance research, ideas and innovations in technology, vol. 5 (2).
[6] Wanjala Victor and A.M. Nyongesa., On N Quasi D-operator operators, international journal of mathematics and its applications, vol. $9(2)$ (2021), 245-248.

