On N Quasi (m, p+k)-Power D-Operator Operators

WANJALA VICTOR ${ }^{1}$, WANJALA WILBERFORCE ${ }^{2}$
${ }^{1,2}$ Maasai Mara University, Narok-Kenya.

Abstract

In this paper, we introduce the class of ($p+k$)-D-Operator acting on the usual Hilbert space H over the complex plane. An operator T is said to be an $(p+k)$-D-Operator if $T\left(T^{22}\left(T^{D}\right)^{2(p+k)}\right)=N(T *$ $\left(T^{D}\right)^{p+k)}{ }^{2 T}$ for positive integers p and k and for N which is a bounded operator on H. We investigate the basic behavior of this class of operator.

Indexed Terms- Normal operators, D-Operator, Almost Class (Q), quasi -class (Q) operators, N quasi D-operator.

I. INTRODUCTION

H denotes the separable complex Hilbert space in this paper, while $B(H)$ is the usual Banach algebra of all bounded linear operators on H. Let $T \in B(H)$, Drazin inverse of T is an operator $\mathrm{T}^{\mathrm{D}} \in \mathrm{B}(\mathrm{H})$, such that $\mathrm{TT}^{\mathrm{D}}=$ $\mathrm{T}^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}}=\mathrm{T}^{\mathrm{D}} \mathrm{TT}^{\mathrm{D}}$ and $\mathrm{T}^{\mathrm{k}+1} \mathrm{~T}^{\mathrm{D}}=\mathrm{T}^{\mathrm{k}}$ provided it exists. An operator $T \in B(H)$ is said to be D-Operator if $\mathrm{T}^{22}(\mathrm{~T}$ $\left.{ }^{\mathrm{D}}\right)^{2}=\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{D}}\right)^{2}(1)$, class (Q) if $\mathrm{T}^{* 2} \mathrm{~T}^{2}=(\mathrm{T} * \mathrm{~T})^{2}(4), \mathrm{M}$ Quasi class (Q) if $\mathrm{T}\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}\right)=\mathrm{M}(\mathrm{T} * \mathrm{~T})^{2} \mathrm{~T}(5)$, Quasi class (Q) if $\mathrm{T}\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}\right)=(\mathrm{T} * \mathrm{~T})^{2} \mathrm{~T}$, N quasi-D- Operator if $\mathrm{T}\left(\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2}\right)=\mathrm{N}\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{D}}\right)^{2} \mathrm{~T}$, for a bounded linear operator N . Let $\mathrm{T}=\xi+\mathrm{i} \zeta$, with $\xi=\operatorname{Re}(\mathrm{T})=\frac{\mathrm{TD}+\mathrm{T} *}{2}$ and $\zeta=\operatorname{Im}(\mathrm{T})=\frac{\mathrm{TD}-\mathrm{T} *}{2 i}$. We shall simply denote $\mathrm{U}^{2}=$ $\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{D}}\right)^{2}$ and $\mathrm{V}^{2}=\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2}$ where C and V are nonnegative definite.

II. MAIN RESULTS

Definition 1. Let $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ be Drazin invertible, an operator T is called ($\mathrm{m}, \mathrm{p}+\mathrm{k}$)-D-Operator if $\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}$ (T D) $2(\mathrm{p}+\mathrm{k}))=\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k}) 2 \mathrm{~T}$ for positive integers p and k and N which is a bounded operator on H.

Theorem 2. Let $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ and let V commute with ξ and ζ such that $\mathrm{V} 2 \mathrm{~T}=\mathrm{NU} 2 \mathrm{~T}$, it follows that T is an $(\mathrm{m}, \mathrm{p}+\mathrm{k})$-D-Operator. Proof. We recall that $\mathrm{T}=\xi+\mathrm{i} \zeta$, with $\xi=\operatorname{Re}(\mathrm{T})=(\mathrm{T}$ $\left.\mathrm{D}+\mathrm{T}^{*}\right) / 2$ and $\zeta=\operatorname{Im}(\mathrm{T})=(\mathrm{T}-\mathrm{T} *) / 2 \mathrm{i}$ and
$\mathrm{U} 2=(\mathrm{T} * \mathrm{~m}(\mathrm{~T} D) \mathrm{p}+\mathrm{k}) 2$ and $\mathrm{V} 2=\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} D) 2(\mathrm{p}+\mathrm{k})$.
Since $V \xi=\xi \mathrm{V}$ and $\mathrm{U} \zeta=\zeta \mathrm{U}$, we have;
$\mathrm{V} 2 \xi=\xi \mathrm{V} 2$ and $\mathrm{U} 2 \zeta=\zeta \mathrm{U} 2$, thus
$\mathrm{V} 2 \mathrm{~T}+\mathrm{V} 2(\mathrm{~T}) *=\mathrm{TV} 2+(\mathrm{T}) * \mathrm{~V} 2$
$\mathrm{V} 2 \mathrm{~T}-\mathrm{V} 2(\mathrm{~T}) *=\mathrm{TV} 2-(\mathrm{T}) * \mathrm{~V} 2$ implies;
TV $2=\mathrm{V} 2 \mathrm{~T}$. Hence;
$\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))=((\mathrm{T} * \mathrm{~m}(\mathrm{~T} * \mathrm{~m}(\mathrm{~T} D) \mathrm{p}+\mathrm{k})(\mathrm{T}$
D) $p+k) T$
$=(\mathrm{T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k}) 2 \mathrm{~T}$.
TU 2 = NU 2T implies;
$\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))=\mathrm{N}((\mathrm{T} * \mathrm{~m}(\mathrm{~T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k})$
(T D) $\mathrm{p}+\mathrm{k}$) T
$\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} D) 2(\mathrm{p}+\mathrm{k}))=\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} D) \mathrm{p}+\mathrm{k}) 2 \mathrm{~T}$
Hence T is an $(\mathrm{m}, \mathrm{p}+\mathrm{k})$-D-Operator.

Proposition 3. Let $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ be a (m, $\mathrm{p}+\mathrm{k})$-D-operator where $\mathrm{V} 2 \xi=1 / \mathrm{N} \xi \mathrm{V} 2$ and $\mathrm{V} 2 \zeta=1 / \mathrm{N} \zeta \mathrm{V} 2$,
then T is an ($\mathrm{m}, \mathrm{p}+\mathrm{k}$)-D-Operator.
Proof. V $2 \xi=1 / \mathrm{N} \xi \mathrm{V} 2$ and V $2 \zeta=1 / \mathrm{N} \zeta \mathrm{V} 2$ implies
$\mathrm{V} 2(\xi+\mathrm{i} \zeta)=1 / \mathrm{N}(\xi+\mathrm{i} \zeta) \mathrm{V} 2$
$\mathrm{V} 2 \mathrm{~T}=1 / \mathrm{N}$ TV 2
$(\mathrm{T} * \mathrm{~m}(\mathrm{~T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k})(\mathrm{T} D) \mathrm{p}+\mathrm{k}) \mathrm{T}=1 / \mathrm{NT}(\mathrm{T} * \mathrm{~m}$ ($\mathrm{T} * \mathrm{~m}(\mathrm{~T} D) \mathrm{p}+\mathrm{k})(\mathrm{T} \mathrm{D}) \mathrm{p}+\mathrm{k})$
$\mathrm{T}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k})(\mathrm{T} \mathrm{D}) \mathrm{p}+\mathrm{k})=\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T}$ *m (TD) $\mathrm{p}+\mathrm{k}$) (T D) $\mathrm{p}+\mathrm{k}$) T
$=\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} D) \mathrm{p}+\mathrm{k}) 2$ (Since T is a $(\mathrm{m}, \mathrm{p}+\mathrm{k})-\mathrm{D}$ operator).
Hence T is an (m,p+k)-D-Operator.

Theorem 4. Let $T \alpha$ and $T \beta$ be two N Quasi- ($m, p+k$)-D-Operators from $B(H, H)$ such that ($T \alpha D$) $p+k T \beta$ $* 2 \mathrm{~m}=(\mathrm{T} \beta \mathrm{D}) \mathrm{p}+\mathrm{k} \mathrm{T} \alpha * 2 \mathrm{~m}=\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})=$ $\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})=0$, then $\mathrm{T} \alpha+\mathrm{T} \beta$ is an N Quasi($\mathrm{p}+\mathrm{k}$)-D-Operator.
Proof. Since $T \alpha$ and $T \beta$ are N Quasi- ($p+k$)-DOperator, we have ;
$(\mathrm{T} \alpha+\mathrm{T} \beta)[(\mathrm{T} \alpha+\mathrm{T} \beta) * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}+\mathrm{T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})]=(\mathrm{T} \alpha$ $+\mathrm{T} \beta)[(\mathrm{T} \alpha * 2 \mathrm{~m}+\mathrm{T} \beta * 2 \mathrm{~m})((\mathrm{T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})+(\mathrm{T} \beta$ D) $2(\mathrm{p}+\mathrm{k}))$
$=(\mathrm{T} \alpha+\mathrm{T} \beta)[\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})+\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta$ D) $2(\mathrm{p}+\mathrm{k})+\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})+\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \beta$
D) $2(\mathrm{p}+\mathrm{k})$]
$=(\mathrm{T} \alpha+\mathrm{T} \beta)[\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})+\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha$
D) $2(\mathrm{p}+\mathrm{k})]$ since $\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})=\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha$
D) $2(\mathrm{p}+\mathrm{k})=0$
$=(\mathrm{T} \alpha+\mathrm{T} \beta)[\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})+\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha$
D) $2(\mathrm{p}+\mathrm{k})]$
$=\mathrm{T} \alpha \mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})+\mathrm{T} \beta \mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})$
since $\mathrm{T} \alpha \mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})=\mathrm{T} \beta \mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha$
D) $2(\mathrm{p}+\mathrm{k})=0$
$=\mathrm{N}(\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})) \mathrm{T} \alpha+\mathrm{N}(\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta$
D) $2(\mathrm{p}+\mathrm{k})) \mathrm{T} \beta$
$=\mathrm{N}(\mathrm{T} \alpha * \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) \mathrm{p}+\mathrm{k}) 2 \mathrm{~T} \alpha+\mathrm{N}(\mathrm{T} \beta * \mathrm{~m} \quad(\mathrm{~T} \beta$ D) $\mathrm{p}+\mathrm{k}) 2 \mathrm{~T} \beta$

Thus $\mathrm{T} \alpha+\mathrm{T} \beta$ is an $(\mathrm{m}, \mathrm{p}+\mathrm{k})$-D-Operator.

Theorem 5. Let $\mathrm{T} \alpha$ and $\mathrm{T} \beta$ be two N Quasi- ($\mathrm{p}+\mathrm{k}$)-DOperator from $B(H, H)$ such that $(T \alpha D) p+k T \beta * 2 m$ $=(T \beta D) p+k$
$\mathrm{T} \alpha * 2 \mathrm{~m}=\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})=\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha$ D) $2(\mathrm{p}+\mathrm{k})=0$, then $\mathrm{T} \alpha-\mathrm{T} \beta$ is an N Quasi-(m, $\mathrm{p}+\mathrm{k})-\mathrm{D}-$ Operator.
Proof. The proof follows from Theorem 4 above.

Theorem 6. Let $T \alpha$ and $T \beta$ be two N Quasi -($p+k$)-DOperators, then $T \alpha T \beta$ is an N Quasi
$-(\mathrm{p}+\mathrm{k})$-D-Operator provided $\mathrm{T} \alpha \mathrm{T} \beta=\mathrm{T} \beta \mathrm{T} \alpha$ and $(\mathrm{T} \alpha$ D) $2(\mathrm{p}+\mathrm{k}) \mathrm{T} \beta * 2 \mathrm{~m}=\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})$.

Proof. Since $T \alpha$ and $T \beta$ are N Quasi-($\mathrm{p}+\mathrm{k}$)-DOperator, we have ;
$(\mathrm{T} \alpha \mathrm{T} \beta)[(\mathrm{T} \alpha \mathrm{T} \beta) * 2 \mathrm{~m}((\mathrm{~T} \alpha \mathrm{~T} \beta) \mathrm{D}) 2(\mathrm{p}+\mathrm{k})]$
$=(\mathrm{T} \alpha \mathrm{T} \beta)[(\mathrm{T} \alpha * 2 \mathrm{mT} \beta * 2 \mathrm{~m})(\mathrm{T} \alpha \mathrm{DT} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})]$
$=(\mathrm{T} \alpha \mathrm{T} \beta)[(\mathrm{T} \beta * 2 \mathrm{mT} \alpha * 2 \mathrm{~m})(\mathrm{T} \alpha \mathrm{DT} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})]$
$=\mathrm{T} \alpha(\mathrm{T} \beta \mathrm{T} \alpha * 2 \mathrm{~m})(\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))(\mathrm{T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})$
$=\mathrm{T} \alpha(\mathrm{T} \alpha * 2 \mathrm{mT} \beta)(\mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))(\mathrm{T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})$
$=\mathrm{T} \alpha \mathrm{T} \alpha * 2 \mathrm{mT} \beta(\mathrm{T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k}) \mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})$
$=\mathrm{T} \alpha \mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k}) \mathrm{T} \beta \mathrm{T} \beta * 2 \mathrm{~m}(\mathrm{~T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})$
$=\mathrm{N}(\mathrm{T} \alpha \quad * 2 \mathrm{~m}(\mathrm{~T} \alpha \quad \mathrm{D}) 2(\mathrm{p}+\mathrm{k})) \mathrm{T} \alpha \mathrm{N}(\mathrm{T} \beta \quad * 2 \mathrm{~m}(\mathrm{~T} \beta$
D) $2(\mathrm{p}+\mathrm{k})) \mathrm{T} \beta$
$=\mathrm{N}(\mathrm{T} \alpha \quad * 2 \mathrm{~m}((\mathrm{~T} \alpha \quad \mathrm{D}) 2(\mathrm{p}+\mathrm{k}) \mathrm{T} \alpha)(\mathrm{T} \beta \quad * 2 \mathrm{~m}(\mathrm{~T} \beta$
D) $2(\mathrm{p}+\mathrm{k}))) \mathrm{T} \beta$)
$=\mathrm{N}(\mathrm{T} \alpha * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k}) \mathrm{T} \beta * 2 \mathrm{mT} \alpha(\mathrm{T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k}) \mathrm{T} \beta)$
$=\mathrm{N}(\mathrm{T} \alpha * 2 \mathrm{mT} \beta * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{D}) 2(\mathrm{p}+\mathrm{k})(\mathrm{T} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k}) \mathrm{T} \alpha \mathrm{T} \beta)$
$=\mathrm{N}[(\mathrm{T} \alpha \mathrm{T} \beta) * 2 \mathrm{~m}(\mathrm{~T} \alpha \mathrm{DT} \beta \mathrm{D}) 2(\mathrm{p}+\mathrm{k})(\mathrm{T} \alpha \mathrm{T} \beta)]$
$=\mathrm{N}[(\mathrm{T} \alpha \mathrm{T} \beta) * 2 \mathrm{~m}((\mathrm{~T} \alpha \mathrm{~T} \beta) \mathrm{D})) 2(\mathrm{p}+\mathrm{k})(\mathrm{T} \alpha \mathrm{T} \beta)]$
$=\mathrm{N}[(\mathrm{T} \alpha \mathrm{T} \beta) * \mathrm{~m}((\mathrm{~T} \alpha \mathrm{~T} \beta) \mathrm{D}) \mathrm{p}+\mathrm{k}] 2(\mathrm{~T} \alpha \mathrm{~T} \beta)$

Thus $\mathrm{T} \alpha \mathrm{T} \beta$ is N Quasi -($\mathrm{m}, \mathrm{p}+\mathrm{k})$-D-Operator.

Theorem 7. Power of N Quasi D-operator is similarly N Quasi- (m, p+k)-D-Operator.
Proof. We first show that the result holds for some $\mathrm{p}=$ 1 , then we have;

$$
\begin{aligned}
& \mathrm{T}(\mathrm{~T} \quad * 2 \mathrm{~m}(\mathrm{~T} \quad \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))=\mathrm{N} \quad(\mathrm{~T} \quad * \mathrm{~m} \quad(\mathrm{~T} \quad \mathrm{D}) \\
& \mathrm{p}+\mathrm{k}) 2 \mathrm{~T} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(0.1)
\end{aligned}
$$

Suppose the result holds for $\mathrm{p}=\mathrm{n}$, we have;
$[\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} D) 2(\mathrm{p}+\mathrm{k}))] \mathrm{n}=(\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k}) 2 \mathrm{~T})$ n. \qquad (0.2)
we then prove that the result is true for $\mathrm{p}=\mathrm{n}+1$. We have;
$[\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} D) 2(\mathrm{p}+\mathrm{k}))] \mathrm{n}+1=(\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} \mathrm{D})$ $\mathrm{p}+\mathrm{k}) 2 \mathrm{~T}) \mathrm{n}+1$ \qquad (0.3)
$[\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))] \mathrm{n}+1=[\mathrm{NT}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T}$
D) $2(\mathrm{p}+\mathrm{k}))] \mathrm{n}[\mathrm{NT}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))]$ \qquad
$=[\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k}) 2 \mathrm{~T}] \mathrm{n}[\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T} \mathrm{D}) \mathrm{p}+\mathrm{k}) 2 \mathrm{~T}]$ by (0.1) and (0.2)
$[\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}(\mathrm{~T} \quad \mathrm{D}) 2(\mathrm{p}+\mathrm{k}))] \mathrm{n}+1=[\mathrm{N}(\mathrm{T} * \mathrm{~m}(\mathrm{~T}$ D) $\mathrm{p}+\mathrm{k}) 2 \mathrm{~T}] \mathrm{n}+1$ \qquad
Hence the proof as required.

REFERENCES

[1] Abood and Kadhim. Some properties of Doperator. Iraqi Journal of science, vol.61(12), (2020), 3366-3371.
[2] Campbell, S.R. and Meyer, C.D. 1991. Generalized inverses of linear transformations, pitman, New York.
[3] Dana, M and Yousef, R.., on the classes of Dnormal operators and D-quasi normal operators on Hilbert space, operators and matrices, vol. 12 (2) (2018), 465-487.
[4] Jibril, A.A.S.., On Operators for which $T * 2(T) 2$ $=(\mathrm{T} * \mathrm{~T}) 2$, international mathematical forum, vol. 5(46) ,2255-2262.
[5] V. Revathi and P. Maheswari Naik., A study on properties of M quasi- class (Q) operator, international Journal of advance research, ideas and innovations in technology, vol. 5 (2).

