On N Quasi (m, p+k)-Power D-Operator Operators

WANJALA VICTOR¹, WANJALA WILBERFORCE² ^{1, 2} Maasai Mara University, Narok-Kenya.

Abstract- In this paper, we introduce the class of (p+k)-D-Operator acting on the usual Hilbert space H over the complex plane. An operator T is said to be an (p+k)-D-Operator if T $(T *^2 (T^D)^{2(p+k)}) = N (T * (T^D)^{p+k})^{2T}$ for positive integers p and k and for N which is a bounded operator on H. We investigate the basic behavior of this class of operator.

Indexed Terms- Normal operators, D-Operator, Almost Class (Q), quasi -class (Q) operators, N quasi D-operator.

I. INTRODUCTION

H denotes the separable complex Hilbert space in this paper, while B (H) is the usual Banach algebra of all bounded linear operators on H. Let $T \in B(H)$, Drazin inverse of T is an operator $T^{D} \in B(H)$, such that $TT^{D} =$ $T^{D}T$, $T^{D} = T^{D}TT^{D}$ and $T^{k+1}T^{D} = T^{k}$ provided it exists. An operator $T \in B(H)$ is said to be D-Operator if $T^{*2}(T^{D})^{2} = (T^{*}T^{D})^{2}$ (1), class (Q) if $T^{*2}T^{2} = (T^{*}T)^{2}$ (4), M Quasi class (Q) if $T (T^{*2}T^{2}) = M (T^{*}T)^{2}T$ (5), Quasi class (Q) if $T (T^{*2}T^{2}) = (T^{*}T)^{2}T$, N quasi-D- Operator if $T (T^{*2}(T^{D})^{2}) = N (T^{*}T^{D})^{2}T$, for a bounded linear operator N. Let $T = \xi + i\zeta$, with $\xi = \text{Re}(T) = \frac{TD + T^{*}}{2}$ and $\zeta = \text{Im}(T) = \frac{TD - T^{*}}{2i}$. We shall simply denote U² = $(T^{*}T^{D})^{2}$ and V² = $T^{*2}(T^{D})^{2}$ where C and V are nonnegative definite.

II. MAIN RESULTS

Definition 1. Let $T \in B(H)$ be Drazin invertible, an operator T is called (m, p+k)-D-Operator if T (T *2m (T D)2(p+k)) = N (T *m (T D) p+k)2T for positive integers p and k and N which is a bounded operator on H.

Theorem 2. Let $T \in B(H)$ and let V commute with ξ and ζ such that V 2T = NU 2T,

it follows that T is an (m, p+k)-D-Operator.

Proof. We recall that $T = \xi + i\zeta$, with $\xi = Re(T) = (T D + T *)/2$ and $\zeta = Im(T) = (T D - T *)/2i$ and

U 2 = (T *m (T D) p+k)2 and V 2 = T *2m(T D)2(p+k). Since V $\xi = \xi V$ and U $\zeta = \zeta U$, we have; V 2 $\xi = \xi V$ 2 and U 2 $\zeta = \zeta U$ 2, thus V 2T + V 2(T)* = TV 2 + (T)*V 2 V 2T - V 2(T)* = TV 2 - (T)*V 2 implies; TV 2 = V 2T. Hence; T (T *2m(T D)2(p+k)) = ((T *m (T *m (T D) p+k) (T D) p+k) T = (T *m (T D) p+k)2T. TU 2 = NU 2T implies; T (T *2m(T D)2(p+k)) = N ((T *m (T *m (T D) p+k) (T D) p+k) T T (T *2m(T D)2(p+k)) = N (T *m (T D) p+k)2T Hence T is an (m, p+k)-D-Operator.

Proposition 3. Let $T \in B(H)$ be a (m, p+k)-D-operator where V $2\xi = 1/N\xi V 2$ and V $2\zeta = 1/N\zeta V 2$, then T is an (m, p+k)-D-Operator. Proof. V $2\xi = 1/N\xi V 2$ and V $2\zeta = 1/N\zeta V 2$ implies V $2(\xi + i\zeta) = 1/N(\xi + i\zeta) V 2$ V 2T = 1/N TV 2(T *m (T *m (T D) p+k) (T D) p+k) T = 1/NT (T *m (T *m (T D) p+k) (T D) p+k)

T (T *m (T *m (T D) p+k) (T D) p+k) = N (T *m (T *m (T D) p+k) (T D) p+k) T

= N (T *m (T D) p+k)2 (Since T is a (m,p+k)- Doperator). Hence T is an (m,p+k)-D-Operator.

Theorem 4. Let T α and T β be two N Quasi- (m,p+k)-D-Operators from B (H, H) such that (T α D) p+k T β *2m = (T β D) p+k T α *2m = T α *2m(T β D)2(p+k) = T β *2m(T α D)2(p+k) = 0, then T α + T β is an N Quasi-(p+k)-D-Operator.

Proof. Since $T\alpha$ and $T\beta$ are N Quasi- (p+k)-D-Operator, we have ;

 $\begin{array}{l} (T\alpha + T\beta)[(T\alpha + T\beta)*2m(T\alpha \ D + T\beta \ D)2(p+k)] = (T\alpha \\ + \ T\beta)[(T\alpha \ *2m \ + \ T\beta \ *2m)((T\alpha \ D)2(p+k) \ + \ (T\beta \ D)2(p+k)) \end{array}$

= $(T\alpha + T\beta)[T\beta *2m(T\alpha D)2(p+k) + T\beta *2m(T\beta$ D)2(p+k) + T α *2m(T α D)2(p+k) + T α *2m(T β D(p+k)= $(T\alpha + T\beta)[T\beta *2m(T\beta D)2(p+k) + T\alpha *2m(T\alpha$ D)2(p+k)] since T β *2m(T α D)2(p+k) = T α *2m(T α D(p+k) = 0= $(T\alpha + T\beta)[T\beta *2m(T\beta D)2(p+k) + T\alpha *2m(T\alpha$ D(p+k)= $T\alpha T\alpha * 2m(T\alpha D)2(p+k) + T\beta T\beta * 2m(T\beta D)2(p+k)$ since $T\alpha T\beta *2m(T\beta D)2(p+k) = T\beta T\alpha *2m(T\alpha$ D(p+k) = 0= $N(T\alpha *2m(T\alpha D)2(p+k))T\alpha + N(T\beta *2m(T\beta$ D)2(p+k))T β = $N(T\alpha * m (T\alpha D)p+k)2T\alpha + N(T\beta * m (T\beta))$ D)p+k)2T β Thus $T\alpha + T\beta$ is an (m, p+k)-D-Operator.

Theorem 5. Let T α and T β be two N Quasi- (p+k)-D-Operator from B (H, H) such that (T α D) p+kT β *2m = (T β D) p+k

Proof. The proof follows from Theorem 4 above.

Theorem 6. Let $T\alpha$ and $T\beta$ be two N Quasi -(p+k)-D-Operators, then $T\alpha$ $T\beta$ is an N Quasi

-(p+k)-D-Operator provided T α T β = T β T α and (T α D)2(p+k) T β *2m = T β *2m(T α D)2(p+k).

Proof. Since $T\alpha$ and $T\beta$ are N Quasi-(p+k)-D-Operator, we have ;

 $(T\alpha T\beta)[(T\alpha T\beta)*2m((T\alpha T\beta)D)2(p+k)]$

= $(T\alpha T\beta)[(T\alpha *2mT\beta *2m)(T\alpha DT\beta D)2(p+k)]$

= $(T\alpha T\beta)[(T\beta *2mT\alpha *2m)(T\alpha DT\beta D)2(p+k)]$

- $= T\alpha(T\beta T\alpha *2m)(T\beta *2m(T\alpha D)2(p+k))(T\beta D)2(p+k)$
- $= T\alpha(T\alpha * 2mT\beta)(T\beta * 2m(T\alpha D)2(p+k))(T\beta D)2(p+k)$
- $= T\alpha T\alpha * 2mT\beta(T\alpha D)2(p+k)T\beta * 2m(T\beta D)2(p+k)$
- = $T\alpha T\alpha * 2m(T\alpha D)2(p+k)T\beta T\beta * 2m(T\beta D)2(p+k)$

= $N(T\alpha *2m(T\alpha D)2(p+k))T\alpha N(T\beta *2m(T\beta D)2(p+k))T\beta$

= $N(T\alpha *2m((T\alpha D)2(p+k)T\alpha)(T\beta *2m(T\beta D)2(p+k)))T\beta)$

- =N(T α *2m(T α D)2(p+k)T β *2mT α (T β D)2(p+k)T β)
- =N(T α *2mT β *2m(T α D)2(p+k)(T β D)2(p+k)T α T β)
- =N[$(T\alpha T\beta)*2m(T\alpha DT\beta D)2(p+k)(T\alpha T\beta)$]
- =N[$(T\alpha T\beta)*2m((T\alpha T\beta)D))2(p+k)(T\alpha T\beta)$]
- =N[(T α T β)*m ((T α T β)D)p+k]2(T α T β)

Thus T α T β is N Quasi -(m, p+k)-D-Operator.

Theorem 7. Power of N Quasi D-operator is similarly N Quasi- (m, p+k)-D-Operator.

Proof. We first show that the result holds for some p = 1, then we have;

T (T *2m(T D)2(p+k)) = N (T *m (T D)p+k)2T....(0.1)

Suppose the result holds for p=n, we have;

[T (T *2m(T D)2(p+k))] n = (N (T *m (T D) p+k)2T) $n \dots (0.2)$

we then prove that the result is true for p=n+1. We have;

 $\begin{bmatrix} T & (T & *2m(T & D)2(p+k)) \end{bmatrix} & n+1 = (N & (T & *m & (T & D) \\ p+k)2T & n+1 & \dots & (0.3) \end{bmatrix}$

 $\begin{bmatrix} T & (T & *2m(T & D)2(p+k)) \end{bmatrix} & n+1 &= \begin{bmatrix} NT & (T & *2m(T \\ D)2(p+k)) \end{bmatrix} n \begin{bmatrix} NT & (T & *2m(T & D)2(p+k)) \end{bmatrix} \dots \dots \dots \dots (0.4) \\ &= \begin{bmatrix} N & (T & *m & (T & D)p+k)2T \end{bmatrix} n \begin{bmatrix} N & (T & *m & (T & D)p+k)2T \end{bmatrix} \\ by & (0.1) \text{ and } (0.2) \\ \end{bmatrix}$

 $[T (T *2m(T D)2(p+k))] n+1 = [N (T *m (T D)p+k)2T] n+1 \dots (0.5)$

Hence the proof as required.

REFERENCES

- Abood and Kadhim. Some properties of Doperator. Iraqi Journal of science, vol.61(12), (2020), 3366-3371.
- [2] Campbell, S.R. and Meyer, C.D. 1991. Generalized inverses of linear transformations, pitman, New York.
- [3] Dana, M and Yousef, R.., on the classes of D-normal operators and D-quasi normal operators on Hilbert space, operators and matrices, vol.12 (2) (2018), 465-487.
- [4] Jibril, A.A.S., On Operators for which T *2(T)2
 = (T *T)2, international mathematical forum, vol. 5(46) ,2255-2262.
- [5] V. Revathi and P. Maheswari Naik., A study on properties of M quasi- class (Q) operator, international Journal of advance research, ideas and innovations in technology, vol. 5 (2).