# On N Quasi (m, p+k)-Power D-Operator Operators 

WANJALA VICTOR ${ }^{1}$, DR. VINCENT MARANI ${ }^{2}$, DR. ANDANJE MULAMBULA ${ }^{3}$<br>${ }^{1,2,3}$ Kibabii University, Bungoma-Kenya.


#### Abstract

In this paper, we introduce the class of ( $p+k$ )-D-Operatoracting on the usual Hilbert space $H$ over the complex plane. An operator $T$ is said to be an $(p+k)$-D-Operatorif $T\left(T^{* 2}\left(T^{D}\right)^{2(p+k)}\right)=N\left(T^{*}\left(T^{D}\right)\right.$ $\left.{ }^{p+k}\right)^{2} T$ for positive integers $p$ and $k$ and for $N$ which is a bounded operator on $H$. We investigate thebasic behavior of this class of operator.


Indexed Terms- Normal operators, D-Operator, Almost Class (Q), quasi -class (Q) operators, $N$ quasi-D-operator.

## I. INTRODUCTION

H denotes the separable complex Hilbert space in this paper, while $\mathrm{B}(\mathrm{H})$ is the usual Banach algebra of all bounded linear operators on $H$. Let $T \in B(H)$, Drazin inverse of $T$ is an operator $T^{D} \in B(H)$, such that $T^{D}=$ $\mathrm{T}^{\mathrm{D}} \mathrm{T}, \mathrm{T}^{\mathrm{D}}=\mathrm{T}^{\mathrm{D}} \mathrm{TT}{ }^{\mathrm{D}}$ and $\mathrm{T}^{\mathrm{k}+1} \mathrm{~T}^{\mathrm{D}}=\mathrm{T}^{\mathrm{k}}$ provided it exists. An operator $T \in B(H)$ is said to be $D$-Operator if $T$ ${ }^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2}=\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{D}}\right)^{2}(1)$, class $(\mathrm{Q})$ if $\mathrm{T}^{* 2} \mathrm{~T}^{2}=(\mathrm{T} * \mathrm{~T})^{2}$ (4), M Quasi class (Q) if $T\left(T{ }^{* 2} \mathrm{~T}^{2}\right)=\mathrm{M}(\mathrm{T} * \mathrm{~T})^{2} \mathrm{~T}(5)$, Quasi class $(\mathrm{Q})$ if $\mathrm{T}\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}\right)=(\mathrm{T} * \mathrm{~T})^{2} \mathrm{~T}$, N quasi-DOperator if $\mathrm{T}\left(\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2}\right)=\mathrm{N}\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{D}}\right)^{2} \mathrm{~T}$, for a bounded linear operator N . Let $\mathrm{T}=\xi+\mathrm{i} \zeta$, with $\xi=\operatorname{Re}(\mathrm{T})$ $=\frac{\mathrm{TD}+\mathrm{T} *}{2}$ and $\zeta=\operatorname{Im}(\mathrm{T})=\frac{\mathrm{TD}-\mathrm{T} *}{2 i}$. We shall simply denote $\mathrm{U}^{2}=\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{D}}\right)^{2}$ and $\mathrm{V}^{2}=\mathrm{T}^{* 2}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2}$ where C and V are non-negative definite.

## II. MAIN RESULTS

- Definition 1. Let $T \in B(H)$ be Drazin invertible, an operator T is called (m, p+k)-D-Operatorif $\mathrm{T}(\mathrm{T} * 2 \mathrm{~m}$ $\left.\left(\mathrm{T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)=\mathrm{N}\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}$ for positive integers p and k and N which is a bounded operator on H .
- Theorem 2. Let $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ and let V commute with $\xi$ and $\zeta$ such that $\mathrm{V}{ }^{2} \mathrm{~T}=\mathrm{NU}{ }^{2} \mathrm{~T}$, it follows that T is an ( $\mathrm{m}, \mathrm{p}+\mathrm{k}$ )-D-Operator.

Proof. We recall that $T=\xi+i \zeta$, with $\xi=\operatorname{Re}(T)=$ $\frac{\mathrm{TD}+\mathrm{T} *}{2}$ and $\zeta=\operatorname{Im}(\mathrm{T})=\frac{\mathrm{TD}-\mathrm{T} *}{2 i}$ and Since $V \xi=\xi V$ and $U \zeta=\zeta U$, we have;
$V^{2} \xi=\xi \mathrm{V}^{2}$ and $\mathrm{U}^{2} \zeta=\zeta \mathrm{U}^{2}$, thus
$\mathrm{V}^{2} \mathrm{~T}+\mathrm{V}^{2}(\mathrm{~T})^{*}=\mathrm{TV}{ }^{2}+(\mathrm{T})^{*} \mathrm{~V}^{2}$
$\mathrm{V}^{2} \mathrm{~T}-\mathrm{V}^{2}(\mathrm{~T})^{*}=\mathrm{TV}{ }^{2}-(\mathrm{T})^{*} \mathrm{~V}^{2}$ implies;
$T V{ }^{2}=V^{2} T$. Hence;
$\mathrm{T}\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)=\left(\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)\right.$
$\mathrm{T}=\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}$.
$\mathrm{TU}^{2}=\mathrm{NU}^{2} \mathrm{~T}$ implies;
$\mathrm{T}\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)=\mathrm{N}\left(\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right) \mathrm{T}\right.$
$\mathrm{T}\left(\mathrm{T} \quad{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)=\mathrm{N}\left(\mathrm{T}{ }^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}$

Hence T is an (m, p+k)-D-Operator.

Proposition 3. Let $T \in B(H)$ be a ( $\mathrm{m}, \mathrm{p}+\mathrm{k}$ )-D-operator where $\mathrm{V}^{2} \xi=\frac{1}{N} \xi \mathrm{~V}^{2}$ and $\mathrm{V}^{2} \zeta=\frac{1}{N} \zeta \mathrm{~V}^{2}$, then T is an ( $\mathrm{m}, \mathrm{p}+\mathrm{k}$ )-D-Operator.
Proof. $\mathrm{V}^{2} \xi=\frac{1}{N} \xi \mathrm{~V}^{2}$ and $\mathrm{V}^{2} \zeta=\frac{1}{N} \zeta \mathrm{~V}^{2}$ implies
$\mathrm{V}^{2}(\xi+\mathrm{i} \zeta)=\frac{1}{N}(\xi+\mathrm{i} \zeta) \mathrm{V}^{2}$
$\mathrm{V}^{2} \mathrm{~T}=\frac{1}{N} \mathrm{TV}^{2}$
$\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right) \mathrm{T}=\frac{1}{N} \mathrm{~T}\left(\mathrm{~T}^{* \mathrm{~m}}\left(\mathrm{~T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)\right.\right.$
$\left.\left.{ }^{\mathrm{p}+\mathrm{k}}\right)\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)$
$\mathrm{T}\left(\mathrm{T} * \mathrm{~m}\left(\mathrm{~T} * \mathrm{~m}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)\left(\mathrm{T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)=\mathrm{N}\left(\mathrm{T} * \mathrm{~m}\left(\mathrm{~T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)\right.\right.$ $\left.\left.{ }^{p+k}\right)\left(T^{D}\right)^{p+k}\right) T$
$=\mathrm{N}\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2}$ (Since T is a $(\mathrm{m}, \mathrm{p}+\mathrm{k})$ - D-operator $)$.

Hence T is an $(\mathrm{m}, \mathrm{p}+\mathrm{k})$-D-Operator.

- Theorem 4. Let $T_{\alpha}$ and $T_{\beta}$ be two $N$ Quasi- $(\mathrm{m}, \mathrm{p}+\mathrm{k})-$ D-Operators from $B(H, H)$ such that $\left(T_{\alpha}{ }^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}} \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}$ $=\left(\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}} \mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}=\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}=\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}$ $=0$, then $\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}$ is an N Quasi- $(\mathrm{p}+\mathrm{k})$-D-Operator.

Proof. Since $\mathrm{T}_{\alpha}$ and $\mathrm{T}_{\beta}$ are N Quasi-(p+k)-D-Operator, we have;
$\left(\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}\right)\left[\left(\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}\right)^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}+\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right]=\left(\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}\right)$
$\left[\left(\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}+\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\right)\left(\left(\mathrm{T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}+\left(\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right.$
$=\left(\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}\right)\left[\mathrm{T}_{\beta^{* 2 \mathrm{~m}}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}+\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}+\right.$

$$
\begin{aligned}
& \left.\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}+\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right] \\
& =\left(\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}\right)\left[\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}+\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right] \text { since } \\
& \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}=\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}=0 \\
& =\left(\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}\right)\left[\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}+\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right] \\
& =\mathrm{T}_{\alpha} \mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}+\mathrm{T}_{\beta} \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})} \text { since } \\
& \mathrm{T}_{\alpha} \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}=\mathrm{T}_{\beta} \mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}=0 \\
& =\mathrm{N}\left(\mathrm{~T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right) \mathrm{T}_{\alpha}+\mathrm{N}\left(\mathrm{~T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right) \mathrm{T}_{\beta} \\
& =\mathrm{N}\left(\mathrm{~T}^{* \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}_{\alpha}+\mathrm{N}\left(\mathrm{~T}{ }^{* \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}_{\beta}
\end{aligned}
$$

Thus $\mathrm{T}_{\alpha}+\mathrm{T}_{\beta}$ is an (m, $\mathrm{p}+\mathrm{k}$ )-D-Operator.

- Theorem 5. Let $T_{\alpha}$ and $T_{\beta}$ be two $N$ Quasi- ( $\mathrm{p}+\mathrm{k}$ )-D-Operatorfrom B (H, H) such that $\left(\mathrm{T}_{a}{ }^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}$
$\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}=\left(\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}} \mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}=\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}=$
$\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}=0$, then $\mathrm{T}_{\alpha}-\mathrm{T}_{\beta}$ is an N Quasi- (m, $\mathrm{p}+\mathrm{k})$-D-Operator.

Proof. The proof follows from Theorem 4 above.

- Theorem 6. Let $T_{\alpha}$ and $T_{\beta}$ be two $N$ Quasi -(p+k)-D-Operators, then $T_{\alpha} T_{\beta}$ is an $N$ Quasi -(p+k)-D-Operator provided $\mathrm{T}_{\alpha} \mathrm{T}_{\beta}=\mathrm{T}_{\beta} \mathrm{T}_{\alpha}$ and $\left(\mathrm{T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})} \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}=\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}$.

Proof. Since $T_{\alpha}$ and $T_{\beta}$ are N Quasi-( $\mathrm{p}+\mathrm{k}$ )-D-Operator, we have ;
$\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)\left[\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)^{* 2 \mathrm{~m}}\left(\left(\mathrm{~T}_{\alpha} \mathrm{T}_{\beta}\right)^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right]$
$=\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)\left[\left(\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}} \mathrm{~T}_{\beta}{ }^{* 2 \mathrm{~m}}\right)\left(\mathrm{T}_{\alpha}{ }^{\mathrm{D}} \mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right]$
$=\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)\left[\left(\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}} \mathrm{~T} \alpha{ }^{* 2 \mathrm{~m}}\right)\left(\mathrm{T}_{\alpha}{ }^{\mathrm{D}} \mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right]$
$=T_{\alpha}\left(T_{\beta} T_{\alpha}{ }^{* 2 m}\right)\left(T_{\beta}{ }^{* 2 m}\left(T_{\alpha}{ }^{\mathrm{D}}\right)^{2(p+k)}\right)\left(\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(p+k)}$
$=\mathrm{T}_{\alpha}\left(\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}} \mathrm{~T}_{\beta}\right)\left(\mathrm{T}_{\beta^{* 2}}{ }^{2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\left(\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}$
$=\mathrm{T}_{\alpha} \mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}} \mathrm{~T}_{\beta}\left(\mathrm{T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})} \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}$
$=\mathrm{T}_{\alpha} \mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})} \mathrm{T}_{\beta} \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}$
$=\mathrm{N}\left(\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right) \mathrm{T}_{\alpha} \mathrm{N}\left(\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right) \mathrm{T}_{\beta}$
$\left.=\mathrm{N}\left(\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})} \mathrm{T}_{\alpha}\right)\left(\mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right) \mathrm{T}_{\beta}\right)$
$=\mathrm{N}\left(\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})} \mathrm{T}_{\beta}{ }^{* 2 \mathrm{~m}} \mathrm{~T}_{\alpha}\left(\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(p+k)} \mathrm{T}_{\beta}\right)$
$=\mathrm{N}\left(\mathrm{T}_{\alpha}{ }^{* 2 \mathrm{~m}} \mathrm{~T}_{\beta}{ }^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\left(\mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})} \mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)$
$=\mathrm{N}\left[\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)^{* 2 \mathrm{~m}}\left(\mathrm{~T}_{\alpha}{ }^{\mathrm{D}} \mathrm{T}_{\beta}{ }^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)\right]$
$\left.=\mathrm{N}\left[\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)^{* 2 \mathrm{~m}}\left(\left(\mathrm{~T}_{\alpha} \mathrm{T}_{\beta}\right)^{\mathrm{D}}\right)\right)^{2(\mathrm{p}+\mathrm{k})}\left(\mathrm{T}_{\alpha} \mathrm{T}_{\beta}\right)\right]$
$=N\left[\left(T_{\alpha} T_{\beta}\right)^{* \mathrm{~m}}\left(\left(\mathrm{~T}_{\alpha} \mathrm{T}_{\beta}\right)^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right]^{2}\left(\mathrm{~T}_{\alpha} \mathrm{T}_{\beta}\right)$

Thus $\mathrm{T}_{\alpha} \mathrm{T}_{\beta}$ is N Quasi -(m, $\left.\mathrm{p}+\mathrm{k}\right)$-D-Operator.

- Theorem 7. Power of N Quasi D-operator is similarly N Quasi- (m, p+k)-D-Operator.

Proof. We first show that the result holds for some p $=1$, then we have;
$\mathrm{T} \quad\left(\mathrm{T} \quad{ }^{* 2 \mathrm{~m}}(\mathrm{~T} \quad \mathrm{D})^{2(\mathrm{p}+\mathrm{k})}\right)=\mathrm{N}\left(\begin{array}{llll} & * \mathrm{~m} & (\mathrm{~T} & \mathrm{D}\end{array}\right)$ $\left.{ }^{p+k}\right)^{2}$ T.........................(0.1)

Suppose the result holds for $\mathrm{p}=\mathrm{n}$, we have;
$\left[\mathrm{T}\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right]^{\mathrm{n}}=\left(\mathrm{N}\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}\right)$ n.. $\qquad$ (0.2)
we then prove that the result is true for $\mathrm{p}=\mathrm{n}+1$. We have;
$\left[\mathrm{T}\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right]^{\mathrm{n}+1}=\left(\mathrm{N}\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}\right)$ $\mathrm{n}+1$. . (0.3)
$\left[\mathrm{T}\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right]^{\mathrm{n}+1}=\left[\mathrm{NT}\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right]^{\mathrm{n}}[\mathrm{NT}$ $\left.\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right]$ $\qquad$
$=\left[\mathrm{N}\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}\right]^{\mathrm{n}}\left[\mathrm{N}\left(\mathrm{T}^{* \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}\right]$ by $(0.1)$ and (0.2)
$\left[\mathrm{T}\left(\mathrm{T}^{* 2 \mathrm{~m}}\left(\mathrm{~T}^{\mathrm{D}}\right)^{2(\mathrm{p}+\mathrm{k})}\right)\right]^{\mathrm{n}+1}=\left[\mathrm{N}\left(\mathrm{T}^{* \mathrm{~m}}(\mathrm{~T}\right.\right.$
$\left.\left.\left.{ }^{\mathrm{D}}\right)^{\mathrm{p}+\mathrm{k}}\right)^{2} \mathrm{~T}\right]^{\mathrm{n}+1}$

Hence the proof as required.

## REFERENCES

[1] Abood and Kadhim. Some properties of Doperator. Iraqi Journal of science, vol. 61(12), (2020), 3366-3371.
[2] Campbell, S.R. and Meyer, C.D. 1991. Generalized inverses of linear transformations, pitman, New York.
[3] Dana, M and Yousef, R... On the classes of Dnormal operators and D-quasi normal operators on Hilbert space, operators and matrices, vol. 12 (2) (2018),465-487.
[4] Jibril, A.A.S.., On Operators for which $T^{* 2}(T)^{2}=$ $(\mathrm{T} * \mathrm{~T})^{2}$, international mathematical forum, vol. 5(46) ,2255-2262.
[5] V. Revathi and P. Maheswari Naik., A study on properties of M quasi- class ( Q ) operator, international Journal of advance research, ideas and innovations in technology, vol. 5 (2).

