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Abstract- Black and Scholes [1973] approach to 

option price estimations and option trading brought 

about a great breakthrough in financial 

mathematics.   Since Black and Scholes [1973], the 

standard model in financial mathematics has been 

the Geometric Brownian motion.  In this model it is 

assumed that the asset’s log return has a normal 

distribution with volatility and drift terms. The model 

has proved to have very attractive features. However, 

from empirical study, geometrical Brownian motion 

cannot accurately reflect all behaviors of the stock 

quotation. The model has some limitations in price 

prediction, especially when used to model the price 

over short period of time. The study involves 

derivation of logistic Brownian motion with jump 

diffusion for a better study of the behavior of the 

underlying asset. 

 

I. INTRODUCTION 

 

The aim of modifying the Black-Scholes model is to 

incorporate two major empirical features of financial 

markets: 

 

1.1 The leptokurtic distribution features 

The market trends indicate that the return distribution 

has a higher peak and two heavier tails unlike that of 

the normal distribution. The leptokurtic distribution 

means the kurtosis of the distribution is large. 

 

1.2 The volatility smile 

In Black-Scholes formula, the call/put options are 

monotone increasing functions of volatility. The 

implied volatility 𝜎(𝑇, 𝐾)is a parameter associated 

with a particular strike price 𝐾 and a particular 

maturity time 𝑇 such that if the volatility parameter is 

used in the Black-Scholes formula for European 

call/put options, then we shall obtain a price that 

exactly matches the market price of a particular 

call/put options. More precisely 𝜎(𝑇, 𝐾)is the inverse 

function of the market option price in terms of 

volatility. When implied volatility is plotted against 

different strike prices a convex curve formed 

resembles a ‘smile’. This is contrary to the famous 

Black-Scholes model as it assumes that the volatility 

is constant. In reality the implied volatility is not 

constant. If it was so, then the observed implied 

volatility curve should look flat (Derman and 

Kani[1994]). 

 

A jump diffusion model consists of two parts; a 

diffusion component modeled by a Brownian motion 

describing the instantaneous part of unanticipated 

return due to normal price vibrations and a jump 

component modeled by a Poisson process describing 

the part due to the abnormal price vibrations. The asset 

price jumps are assumed to be independently and 

identically distributed. Generally, the jump diffusion 

model is of the form; 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑍(𝑡) + 𝜌𝑆(𝑡)𝑑𝑞(𝑡) , 

    (1) 

Where,  𝑆(𝑡) is the asset price at a time 𝑡, 𝑑𝑍(𝑡) is the 

Brownian motion process, 𝑞(𝑡) is a Poisson  process 

with an intensity of  𝜆, 𝜌 is an impulse function which 

causes a jump from 𝑆(𝑡) to 𝑆(1 + 𝜌). 

 

II. PRELIMINARIES 

 

In this section we discuss two models which were 

modified from the famous Black-Scholes models. 

 

2.1 Merton Jump diffusion model 

 

Merton [1975] was also involved in the process of 

developing the Black-Scholes model and came up with 

Merton jump model as a better estimation of option 

prices in a precise way. The Merton model has the 

same assumptions as those of BlackScholes except 

how the asset price is modeled. This model where the 

asset price has jumps superimposed upon a geometric 

Brownian motion is given by 

𝑑𝑆(𝑡) = 𝑆(𝑡)(𝜇 − 𝜆𝑘)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑍(𝑡) + 𝑆(𝑡)(𝑞 −

1)𝑑𝑞(𝑡) ,   (2) 

 

where 𝜇 is expected return from the asset, 𝜆 is the rate 

at which jumps happen and k =  𝑘 = 𝜀(𝑞 − 1) is the 



© SEP 2021 | IRE Journals | Volume 5 Issue 3 | ISSN: 2456-8880 

IRE 1702926          ICONIC RESEARCH AND ENGINEERING JOURNALS 99 

average jump size measured as a proportional increase 

in the asset price. 𝑞 − 1 is the random variable 

percentage change in the asset price if the Poisson 

event occurs,  𝜀 is the expectation operator over the 

random variable 𝑞, 𝑑𝑍(𝑡) is the change in Brownian 

motion process and 𝑑𝑞(𝑡) is the independent Poisson 

process generating the jumps.  𝜇𝑑𝑡 is adjusted by 𝜆𝑘𝑑𝑡 

in the drift term to make the jump part unpredictable 

innovation Merton [1975]. Merton gives an insight on 

how we can estimate and come up with option pricing 

model when a mixture of both continuous and jump 

processes generate underlying stock returns. It 

demonstrates how total change in stock price is caused 

by normal price change chat produces a marginal 

change in price and also abnormal price change which 

is described by a jump process showing the non-

marginal impact due to new information. Merton 

model shows that stock prices follow log-normal 

distribution and the probability if a jump occurs or not 

is modeled by a Poisson process. 

 

The probability of the Poisson process can be 

described as; 

(i)  P {the event does not occur in the time 

interval (𝑡, 𝑡 + ℎ)} = 1 − 𝜆𝜓ℎ + 𝑂(𝜓)} 

(ii) P {the event occurs once in the time interval 

(𝑡, 𝑡 + ℎ)} = 𝜆𝜓ℎ + 𝑂(𝜓) 

(iii) P {the event occurs more than once in the 

time interval (𝑡, 𝑡 + ℎ)} = 𝑂(𝜓) 

 

Therefore, this can be described as; 
𝑑𝑆(𝑡)

𝑆(𝑡)
= (𝜇 − 𝜆𝑘)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑍(𝑡) if the event does 

not occur and 
𝑑𝑆(𝑡)

𝑆(𝑡)
= (𝜇 − 𝜆𝑘)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑍(𝑡) + (𝑞 − 1)𝑑𝑞 if the 

event does occur. 

Thus if 𝜆 = 0, also 𝑞 − 1 = 0, then the stock price 

return is equivalent to Black-Scholes and Merton 

approaches. Solving for (2) gives 

𝑆(𝑡) = 𝑆(0) exp [(𝜇 − 𝜆𝑘 −
𝜎2

2
) 𝑡 +

𝜎𝑍(𝑡)] ∏ 𝑞𝑖
𝑖=𝑁(𝑡)
𝑖=1 ,   (3) 

 

where 𝑁(𝑡) is a poisson process with rate 𝜆, 𝑍(𝑡) is a 

standard Brownian motion and 𝜇 is the drift rate. In 

this solution 𝑞𝑖is a sequence of independent identically 

distributed (i.i.d) non-negative random variables. 

Merton [1975] assumed that log(𝑞𝑖) = 𝑌𝑖 is the 

absolute asset price jump size and log-normally 

distributed. In other words log(𝑞𝑖) ~𝑖. 𝑖𝑑. 𝑁( ∼ i.i.d.N 

(𝜇, 𝜎2).  

 

By adding jumps to the Black-Scholes model and 

choosing the appropriate parameters of the jump 

process, the log-normal jump models generate 

volatility smile or skew. When the mean of the jump 

process is set to be negative, steep short-term skews 

are easily captured in this framework (Andersen and 

Andersen [2000]). However, it is difficult to study the 

first passage times for log-normal jump diffusion 

Merton model when a jump diffusion crosses 

boundary level when an overshoot occurs. This makes 

it impossible to simulate the jump unless the exact 

distribution of the overshoot is determined. 

 

2.2 Kou double exponential Jump diffusion model 

Stephen Kou developed what is referred to us Kou 

double exponential jump diffusion model. According 

to this model jumps of stock prices are not log-

normally distributed as in the case of Merton, instead 

jumps follow a double-exponential distribution, (Kou 

[2002]). The assumptions in this model are the same 

as those for Merton and Black-Scholes.  

 

Just as in Merton Model, Kou model consists of two 

parts; The first part is driven by a normal geometric 

Brownian motion hence its path is continuous. The 

second part is the jump part with a logarithm of jump 

size which is double-exponentially distributed and the 

jump times are determined by a Poisson process. The 

model is of the form; 
𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑍(𝑡) + 𝑑[∑ (𝑉𝑖 − 1)

𝑁(𝑡)
𝑖=1 ], 

    (4) 

Where, 𝜇 is the expectation value, 𝜎 is the volatility 

and 𝑁(𝑡) is a Poisson process with the parameter  . 

{𝑉𝑖} is a series of independently identically distributed 

nonnegative random variables. 

 𝑌 = 𝑙𝑜𝑔(𝑉) and has got asymmetric double 

exponential distribution. 

𝑍(𝑡), 𝑁(𝑡) and 𝑌𝑖  are the sources of randomness and 

are assumed to be independent 

Solving equation (4) we obtain; 

𝑆(𝑡) = 𝑆(0) exp [(𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑍(𝑡)] ∏ 𝑉𝑖

𝑖=𝑁(𝑡)
𝑖=1  

    (5) 
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where 𝑆(𝑡) is the stock price, 𝑆0 = 𝑆(0)  is the stock 

price at time zero, 𝜇 is the growth rate, 𝜎 is the 

volatility which depicts the uncertainty of the stock 

price and 𝑍(𝑡) is the Wienner process and {𝑉𝑖} is 

series of independently identically distributed 

nonnegative random variables. 

 

The Kou double exponential jump diffusion model has 

some advantages in that it yields a closed-form 

solution for standard European call and put options. In 

addition it leads to  a variety of closed-form solution 

for path-dependent options such as look back options, 

barrier options, American options and interest rate 

derivatives like bond options. The model captures the 

asymmetric leptokurtic feature and volatility smile. 

This is able to reproduce the leptokurtic feature of the 

return distribution and the “volatility smile” as 

observed in option prices. This makes it fit in stock 

data better than the normal jump diffusion model, 

(Kou [2002]). 

 

Another important aspect is that the model has some 

economical, physical, and psychological 

interpretations. Many empirical studies have 

suggested that markets tend to have both overreaction 

and under reaction to various good and bad news. One 

may interpret the jump part of the model as the market 

response to outside news. In simple terms, in the 

absence of outside news the Kou Double Exponential 

Jump Diffusion Model asset price simply follows a 

geometric Brownian motion. Good and bad news 

arrives according to a Poisson process, and the asset 

price changes in response according to the jump size 

distribution. Because the double exponential 

distribution has both a high peak and heavy tails, it can 

be used to model both the overreaction (attributed to 

the heavy tails) and the under reaction (attributed to 

the high peak) to outside news (Kou and Wang 

[2004]). Therefore, the double exponential jump 

diffusion model can be interpreted as an attempt to 

build a simple model, within the traditional random 

walk and efficient market framework, to incorporate 

investors’ sentiment, (Kou [2002]). 

 

III. MAIN RESULTS 

 

3.1 Logistic Brownian motion with jump diffusion 

The logistic stochastic differential equation and 

incorporating the jump diffusion process in Geometric 

Brownian motion is given as; 

  

     (6) 

Using the Heavyside cover up method on the L.H.S we 

have; 

     (7)  

Integrating equation (7) from 𝑡0to 𝑡 gives; 

    (8) 

which can re-written as, 

    (9)  

Solving for S(t) we will finally get 

     (10) 

This price dynamic is referred to as logistic Brownian 

motion with jump diffusion of stock price S(t), with 

the initial price S(0), equilibrium price S∗, µ is the 

expected return from the asset, λ is the rate at which 

jumps happen and k is the average jump size measured 

as a proportional increase in asset price and q is the 

poison process generating jumps. The model (10) is of 

great use in determining the price of the underlying 

asset. 

 

CONCLUSION 

 

The model has been modified to represent a non-linear 

variation of the famous Black-Scholes equation. Non-

linear Black-Scholes equation tends to provide a better 

tool for predicting price changes by taking into 

account more realistic assumptions than that of the 

original Black-Scholes. This equation takes care of the 

transaction costs, illiquid markets, risks from 

unprotected portfolio and large investor’s preferences. 

These assumptions have a great impact on the stock 

price, the option price, volatility and the asset’s growth 

rate. 
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