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Abstract- Here we have obtained solutions for fully 

developed laminar flow through a vertical 

cylinderwhose cross section is confocal vertical 

elliptical cylinder under a pressure gradient. The 

solutions are established in terms of Mathieu 

functions. 

 

I. INTRODUCTION 

 

Heat transfer problem of combined free and forced 

convection due to a fully developed laminar flow 

with constant wall temperature has been investigated 

for many years. On the other hand the situation with 

varying wall temperature has been studied only 

recently. 

 

The problem of fully developed laminar convection 

flows of incompressible viscous fluid under a 

pressure gradient in a vertical circular cylinder with 

varying wall temperature was solved by Tao (1) and 

Morton (2). Dalip Singh (3) discussed the flows of 

incompressible viscous fluid under a pressure 

gradient in a vertical elliptical cylinder. 

 

Here we have obtained solutions for fully developed 

laminar flow through a vertical cylinder whose cross-

section is confocal vertical elliptical cylinder under a 

pressure gradient. The solutions are established in 

terms of Mathieu functions. 

 

1. FORMULATION OF PROBLEM : 

The flow is assumed to be developed steady and 

incompressible and to have constant physical 

properties except density. Jaking Z-axis along the 

axis of the cylinder the equation of continuity 

momentum for fully developed flow of 

incompressible viscous fluid in confocal vertical 

elliptical cylinder of linearly confocal vertical 

elliptical cylinder of linearly varying wall 

temperature with heat sources are (Tao, 1).  

𝜕𝑢

𝜕𝑧
= 0      (1.1) 

 

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜌𝑔𝛽𝑡

𝜇
=

1

𝜇
 
𝜕𝑝

𝜕𝑧
+  𝜌𝑤 − 𝑝∘ 𝑔   (1.2) 

 

𝜕2𝑡

𝜕𝑥2 +
𝜕2𝑡

𝜕𝑦2 +
𝜌𝐶𝑝𝐶1𝑢

𝐾
= −

𝑄

𝐾
    (1.3) 

 

Where 𝑝 is the pressure, 𝜌 the density, 𝜇 the 

viscosity, 𝑔 the acceleration due to gravity, 𝛽 the 

expansivity, 𝐶𝑝  the specific heat at constant pressure, 

𝐾 the thermal conductivity, 𝑄 the heat source 

intensity, and 𝐶1the wall temperature gradient, 𝜇 is 

the axial velocity and 𝑡the difference of local and 

wall temperature. 

 

Following Tao the dimensionless form of (1.1), (1.2) 

and (1.3) are 
𝜕𝑢

𝜕𝑧
= 0      (1.4) 

 

𝜕2𝑈

𝜕𝑥2 +
𝜕2𝑈

𝜕𝑦2 + 𝑅𝑎𝜙 = 𝐸    (1.5) 

 

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 − 𝑈 = −𝐹    (1.6) 

 

Where 𝑈 =
𝑢

𝑢𝑚
 

 

𝑅𝑎 =
𝜌2𝑔𝐶𝑝𝐶1𝛽𝜍4

𝐾𝜇
 , 

 

𝜙 =
𝐾𝑡

𝜌𝐶𝑝𝐶1𝑢𝑚 𝜍2, 

 

𝐹 =
𝑄

𝜌𝐶𝑝𝐶1𝑢𝑚
, 

 

𝐸 =
𝜍2

𝜇𝑢𝑚
 
𝜕𝑝

𝜕𝑧
+  𝜌𝑚 − 𝜌∘ 𝑔    (1.7) 

 

𝑅𝑎being the Railegh number 𝑈𝑚  the average 

velocity. 
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Again combining (1.5) and (1.6) with the help of 

complex function. 

𝜃 = 𝑈 + 𝑖𝜖2𝜙 

𝐺 = 𝐹 +
𝑖𝐸

𝜖2     (1.8) 

 

and 𝜖4 = 𝑅𝑎  

we get 

𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 − 𝑖𝜖2𝜃 = −𝑖𝜖2𝐺   (1.9) 

 

Let ℎ2 = 𝑖3𝜖2 

So equation (1.9) transforms to  

𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 + ℎ2𝜃 = ℎ2𝐺    (1.10) 

 

Now let us introduce elliptic – 

Coordinates given by 

𝑥 = 𝐶 cosh 2𝜉 − cos 𝜂 

𝑦 = 𝐶 sinh 𝜉 sin 𝜂    (1.11) 

 

 

In elliptic coordinates equation (1.10) transforms to  

𝜕2𝜃

𝜕𝜉2 +
𝜕2𝜃

𝜕𝜂2 + 2𝐾2 cosh 2𝜉 − cos 2𝜂 𝜃 =

2𝐾2𝐺 cosh 2𝜉 − cos 2𝜂   

 

where 4𝐾2 = 𝐶2ℎ2    (1.12) 

 

BOUNDARY CONDITIONS : 

Let the boundary of the elliptic confocal cylinder 

is𝜉 = 𝜉∘ and 𝜉 = 𝜉1 

So 𝜃 = 0 

where 𝜉 = 𝜉∘ 

and 𝜉 = 𝜉1 

SOLUTION : 

Let solve equation (1.12) let us choose 𝑞2𝑛,𝑚  to be 

the roots of the equation 

𝐶𝜌2𝑛 𝜉1, 𝑞 𝐹𝜌𝑦2𝑛 𝜉∘, 𝑞 − 𝐹𝜌𝑦2𝑛 𝜉1 , 𝑞 𝐶𝜌2𝑛 𝜉∘, 𝑞 =

0. 

 

Now multiply equation (1.12) by 

𝛽2𝑛 𝜉, 𝑞2𝑛,𝑚 𝐶2𝑛 𝜂, 𝑞2𝑛,𝑚  and integrate 𝜉 with in 

the limits 𝜉∘ to 𝜉1 and 𝜂 with in the limits ∘ to 2𝑛 

where 

𝛽2𝑛 𝜉, 𝑞2𝑛,𝑚 =

  𝐹𝜌𝑦2𝑛 𝜉∘, 𝑞2𝑛,𝑚 − 𝐹𝜌𝑦2𝑛 𝜉, 𝑞2𝑛,𝑚  𝐶𝜌2𝑛
  𝜉, 𝑞2𝑛,𝑚   

−  𝐶𝜌2𝑛 𝜉°, 𝑞2𝑛,𝑚 −

𝐶𝜌2𝑛𝜉1,𝑞2𝑛,𝑚𝐹𝜌𝑦2𝑛𝜉,𝑞2𝑛,𝑚  (1.13) 

We get 

   
𝜕2

𝜃

𝜕𝜉2 +
2Π

°

𝜉1

𝜉∘

𝜕2𝜃𝜕𝜂2𝛽2𝑛𝜉,𝑞2𝑛,𝑚𝐶𝜌2𝑛𝜂,𝑞2𝑛,𝑚𝑑𝜉𝑑𝜂  

+2𝐾2    cosh 2𝜉 −
2Π

°

𝜉1

𝜉∘

cos2𝜂𝜃𝛽2𝑛𝜉,𝑞2𝑛,𝑚𝐶𝜌2𝑛𝜂,𝑞2𝑛,𝑚𝑑𝜉𝑑𝜂  

=

2𝐾2𝐺    cosh 2𝜉 −
2Π

°

𝜉1

𝜉∘

cos2𝜂𝛽2𝑛𝜉,𝑞2𝑛,𝑚𝐶𝜌2𝑛𝜂,𝑞2𝑛,𝑚𝑑𝜉𝑑𝜂  

or 

 −2𝑞2𝑛,𝑚𝜃 + 2𝐾2𝜃 =

2𝐾2𝐺    cosh 2𝜉 −
2Π

°

𝜉1

𝜉∘

cos2𝜂𝛽2𝑛𝜉,𝑞2𝑛,𝑚𝐶𝜌2𝑛𝜂,𝑞2𝑛,𝑚𝑑𝜉𝑑𝜂  

or 𝜃 =
𝐾2𝐺

𝐾2−𝑞2𝑛 ,𝑚
   cosh 2𝜉 −

2Π

°

𝜉1

𝜉∘

cos2𝜂𝛽2𝑛𝜉,𝑞2𝑛,𝑚𝐶𝜌2𝑛𝜂,𝑞2𝑛,𝑚𝑑𝜉𝑑𝜂.  

By inversion theorem of Gupta (4), we get 

𝜃 =  
  𝛽2𝑛 𝜉, 𝑞2𝑛,𝑚 𝐶𝜌2𝑛 𝜂, 𝑞2𝑛,𝑚 𝐾2𝐺    cosh 2𝜉 − cos 2𝜂 𝛽2𝑛 𝜉, 𝑞2𝑛,𝑚 𝐶𝜌2𝑛 𝜂, 𝑞2𝑛,𝑚 𝑑𝜉𝑑𝜂

2Π

°

𝜉1

𝜉∘

∞
𝑛=0  

Π 𝐾2 − 𝑞2𝑛,𝑚  𝛽2𝑛
2  𝜉, 𝑞2𝑛,𝑚  cosh 2𝜉 − 𝛩2𝑛 ,𝑚  𝑑𝜉

𝜉1

𝜉∘

∞

𝑛=0

   

= 𝐺  
 𝐾2𝛽2𝑛 𝜉, 𝑞2𝑛,𝑚 𝐶ℓ2𝑛 𝜂, 𝑞2𝑛,𝑚  𝛽2𝑛

𝜉1

𝜉∘

∞
𝑚=0  𝜉, 𝑞2𝑛,𝑚  2𝐴°

2𝑛 cosh 2𝜉 − 𝐴2
2𝑛 𝑑𝜉

Π 𝐾2 − 𝑞2𝑛,𝑚  𝐴2𝑛
2  𝜉, 𝑞2𝑛,𝑚  cosh 2𝜉 − 𝛩2𝑛 ,𝑚  𝑑𝜉

𝜉1

𝜉∘

∞

𝑛=0

 

 

 TRANSITION TO CIRCULAR CYLINDERS : 

We find as in Gupta (4) 

𝐶𝜌2𝑛 𝜉, 𝑞2𝑛,𝑚 → 𝑃′2𝑛 𝐽2𝑛   
𝛼

𝜅
𝛾   

𝐹𝜌𝑦2𝑛 𝜉, 𝑞2𝑛,𝑚 → 𝑃′2𝑛𝑌2𝑛   
𝛼

𝜅
𝛾   

𝐴°
2 → 2

1
2 , 𝐴°

2 →∘ , 𝛩2𝑛 →∘ 

𝐶𝜌∘ 𝜂, 𝑞∘,𝑚 → 2−1
2 𝛼 = 𝜅𝑝2 . 

By Gupta (5) equation (1.15) transforms to  

𝜃 = −𝐺  
𝐾2

𝑝2−𝐾2𝑝
𝐽∘

2 𝑝𝑏  𝛽∘ 𝑝𝛾  

𝐽∘
2 𝑝𝑏  −𝐽∘

2 𝑝𝑎  
×

𝐽∘ 𝑝𝑏  −𝐽∘ 𝑝𝑎  

𝐽∘ 𝑝𝑏  
  (1.16) 

where 𝛽∘ 𝑝𝛾 = 𝐽∘ 𝑝𝛾 𝛾∘ 𝑝𝑎 − 𝛾∘ 𝑝𝛾 𝐽∘ 𝑝𝑎  
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Where 𝑝′𝑠 are the roots of the equation. 

𝐽∘ 𝑝𝑏 𝛾∘ 𝑝𝑎 − 𝛾∘ 𝑝𝑏 𝐽∘ 𝑝𝑎 = 0  (1.17) 

Now ∪ +𝒊 ∈𝟐 ∅ = − 𝑭 +
𝒊∈

∈𝟐  

 
 𝑖𝐶2 ∈2 𝛽2𝑛 𝜉, 𝑞2𝑛,𝑚 𝐶𝜌2𝑛 𝜂, 𝑞2𝑛,𝑚 ×  𝛽2𝑛 𝜉, 𝑞2𝑛,𝑚  2𝐴∘

2𝑛 cosh 2𝜉 − 𝐴2
2𝑛 𝑑𝜉

𝜉1

𝜉∘

∞
𝑚=1

Π 𝐶2𝜖2𝑖 + 𝛩𝑞2𝑛,𝑚  𝐴2𝑛
2𝜉1

𝜉∘
 𝜉, 𝑞2𝑛,𝑚  cosh 2𝜉 − 𝛩𝑞2𝑛,𝑚  𝑑𝜉

∞

𝑛=0

 

 

=

 

 𝛽2 𝜉 ,𝑞2𝑛 ,𝑚  𝐶𝜌2𝑛  𝜂 ,𝑞2𝑛 ,𝑚   𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  ×
𝜉1
𝜉∘

∞
𝑚 =1

 2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉 𝐶2 ∈4𝑃𝐶2−4𝑞2𝑛 ,𝑚 𝐸 +𝑖∈2𝐶2 4𝐹𝑞2𝑛 ,𝑚 +∈4𝐶2𝐸 

Π 𝐶4∈4+16𝑞2𝑛 ,𝑚
2   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

∞
𝑛=1   

.  

On separating real and imaginary parts, we get 

 ∪=

− 

 𝐶2 𝑅𝑎𝐹𝐶2−4𝑞2𝑛 ,𝑚 𝐸 𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  𝐶ℓ2𝑛  𝜂 ,𝑞2𝑛 ,𝑚  ∞
𝑚−1

× 𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚   2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉
𝜉1
𝜉∘

Π 16𝑞2𝑛 ,𝑚
2 +𝐶4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

∞
𝑛−1

 (1.18) 

 𝜙 =

− 

𝐶2   𝐶2𝐸+4𝑞2𝑛 ,𝑚 𝐹 𝛽2𝑛 ,𝑚  𝜉 ,𝑞2𝑛 ,𝑚  𝐶ℓ2𝑛  𝜂 ,𝑞2𝑛 ,𝑚  ∞
𝑚 =1

× 𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚   2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉
𝜉1
𝜉∘

Π 16𝑞2𝑛 ,𝑚
2 +𝐶4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

∞
𝑛=0  

(1.19) 

Now 𝑈 =
𝑢

𝑢𝑚
 

So

 4 =

− 

 𝑢𝑚 𝐶2 𝐹𝐶2−4𝑞2𝑛 ,𝑚 𝐹 𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  𝐶ℓ2𝑛  𝜂 ,𝑞2𝑛 ,𝑚  ∞
𝑚 =1

× 𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚   2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉
𝜉1
𝜉∘

Π 16𝑞2𝑛 ,𝑚
2 +𝐶4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

∞
𝑛=0

  (1.20) 

and 𝜙 =
𝐾𝑡

𝜌𝐶𝑝𝐶1𝑢𝑚 𝜍2 

 𝑡 =
𝜌𝐶𝑝𝐶1𝑢𝑚 𝜍2

𝐾
𝜙 

 𝑡 =

− 

𝜌𝐶𝑝𝐶1𝑢𝑚 𝜍2𝐶2   𝐶2𝐸+4𝑞2𝑛 ,𝑚  𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  𝐶ℓ2𝑛  𝜂 ,𝑞2𝑛 ,𝑚  ∞
𝑚 =1

× 𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚   2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉
𝜉1
𝜉∘

ΠK 16𝑞2𝑛 ,𝑚
2 +𝐶4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

∞
𝑛=0

  (1.21) 

 

Now to evaluate the flow rate we have  

  𝑈𝑑𝐴 = 𝑢𝑚  𝑑𝐴
𝐴𝐴

 

 

𝑒𝑒

 𝐶2 𝐹𝐶2𝑅𝑎−4𝑞2𝑛 ,𝑚    𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  𝐶𝜌2𝑛  𝜂 ,𝑞2𝑛 ,𝑚  
2Π
∘

𝜉1
𝜉∘

∞
𝑚 =1

×
𝐶2

2
 cosh 2𝜉−cos 2𝜂 𝑑𝜉𝑑𝜂  𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚   2𝐴∘

2𝑛 cosh 2𝜉−𝐴2
2𝑛  𝑑𝜉

𝜉1
𝜉∘

Π 16𝑞2𝑛 ,𝑚
2 +𝜖4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

=

Π𝐶2

2
 sinh 2𝜉1 − sinh 2𝜉°  

 

 
 𝐶2 4𝑞2𝑛 ,𝑚 𝐸−𝛽𝐶 2𝑅𝑎    𝑃2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  

𝜉1
𝜉∘

 2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉  
2

∞
𝑚 =1

Π2 16𝑞2𝑛 ,𝑚
1 +𝐶4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

=∞
𝑛=0

 sinh 2𝜉1 − sinh 2𝜉°  

or

 

𝐸  
 4𝐶2𝑞2𝑛 ,𝑚   𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  

𝜉1
𝜉∘

 2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉  
2

∞
𝑚 =1

Π2 16𝑞2𝑛 ,𝑚
1 +𝐶4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

∞
𝑛=0  

 =

 

𝐹𝐶4𝑅𝑎

Π2    𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚  
𝜉1
𝜉∘

 2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉  
2

∞
𝑚 =1

 16𝑞2𝑛 ,𝑚
2 +𝐶4𝑅𝑎   𝛽2𝑛

2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉
𝜉1
𝜉∘

∞
𝑛=0 +

 sinh 2𝜉1 − sinh 2𝜉°  

or  𝐸 =   
𝐹𝐶2𝑅𝑎

4𝑞𝑛 ,𝑚

∞
𝑚=1

∞
𝑛=0 +  sinh 2𝜉1 −

sinh 2𝜉°  

 ×

  
 16𝑞2𝑛 ,𝑚

2 +𝐶4𝑅𝑎   𝛽2𝑛
2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉

𝜉1
𝜉∘

4Π2𝐶2𝑞2𝑛 ,𝑚   𝛽2𝑛
𝜉1
𝜉∘

 𝜉 ,𝑞2𝑛 ,𝑚   2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉  
2

∞
𝑚=1

∞
𝑛=0

  (1.22) 

Now mixed temperature is given by  

 𝑇𝑀 =
 𝑡𝑢𝑑𝐴
°

 𝑢𝑑𝐴∘

. 

On substituting the values of t, u, dA and integrating 

and on making use of orthogonal property of Mathieu 

functions, we get 

 𝑇𝑀 =

  

𝜌𝐶𝑝 𝜍2𝐶2 𝐶2𝜖+4𝑞2𝑛 ,𝑚   𝐹𝐶2𝑅𝑎−4𝑞2𝑛 ,𝑚  

× 𝛽2𝑛
2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉

𝜉1
𝜉∘

× 𝛽2𝑛  𝜉 ,𝑞2𝑛 ,𝑚   2𝐴∘
2𝑛 cosh 2𝜉−𝐴2

2𝑛  𝑑𝜉
𝜉1
𝜉∘

 sinh 2𝜉1−sinh 2𝜉° Π
2𝐾 16𝑞2𝑛 ,𝑚

2 +∈4𝑅𝑎  

 𝛽2𝑛
2  𝜉 ,𝑞2𝑛 ,𝑚   cosh 2𝜉−𝛩𝑞2𝑛 ,𝑚  𝑑𝜉

𝜉1
𝜉∘

∞
𝑚=1

∞
𝑛=0  

  (1.23) 

Now the Nusselts number in this case is  

 𝑁𝑢 =
𝜋𝑐 2/2 sinh 2𝜉1−sinh 2𝜉° 

4𝐶 cosh 𝜉1−cosh 𝜉°   1−𝑒2 cos 2 ƟdƟ
Π

2 

°

∙

𝐹−1

𝑇𝑀
 

Where e is the eccentricity of the elliptical tube. 
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So 𝑁𝑢 =
𝜋𝑐  sinh 2𝜉1−sinh 2𝜉° 

8 cosh 𝜉1−cosh 𝜉°   1−𝑒2 cos 2 ƟdƟ
Π

2 

°

×

𝐹−1

𝑇𝑀
    (1.24) 

Where 𝑇𝑀  is given by Equation 1.23. 

 

II. REMARKS 

 

Here the solutions are in the form of double aeries 

involving Mathieu functions. The rapidity of 

convergence is an important point. It can be easily 

seen that first three terms of the series are sufficient 

to give the shape of the results. 

 

III. DISCUSSIONS 

 

It is seen that the results hold good only for positive 

Raileigh numbers. For zero or negative Raileigh 

number the formula obtained do not hold good. 

 

In this the Mathieu functions and transform 

applicable to Mathieu functions analogous to Hankel 

transform are used. 
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