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Abstract- Artificial Neural Networks (ANNs) and 

Multiple Linear Regression (MLR) based 

Quantitative Structure-Activity Relationships 

(QSARs) models were developed to predict enzymatic 

activities, that is, the Michaelis-Menten constant 

(Km) and the maximum reaction rate (Vmax) for 

reactions involving the biotransformation of 

xenobiotics, catalysed by three classes of enzymes 

present in the mammalian livers. The enzymes we 

have studied here are alcohol dehydrogenase (ADH), 

aldehyde dehydrogenase (ALDH), and Flavin-

containing monooxygenase (FMO). Data for 

enzymatic constants were collected from the 

literature and the computation of potential predictors 

was done for all xenobiotics to include for hundreds 

of molecular descriptors. The best predictor variables 

were selected (maximum of seven and a minimum of 

two descriptors) using the Microsoft excel 

correlation function for each enzyme class. Each 

dataset was divided into three sets, the divisions were 

training, cross-validation, and test sets in the ratio of 

70%, 15%, and 15% respectively for both the ANNs 

and the MLR models to build the QSARs. The 

MATLAB programming language was employed to 

implement the writing and running of the learning 

algorithms. The predictive strengths of the models 

were assessed through the correlation of their 

predictions relative to the target outcomes for the 

three divisions and the mean square errors were 

computed, after fitting the resulting models with the 

entire dataset for each enzyme class. The ANNs 

model appeared best as it was seen to be relatively 

stable in performance through the training, cross-

validation, and test sets of the data than the MLR 

model. For the prediction of Km, the most influential 

descriptors were partition coefficients and functional 

groups or fragments for compounds metabolised by 

ADH, ALDH, and FMO. Size, shape, symmetry, and 

atom distribution are those properties that mostly 

influenced the prediction of Vmax. This study is 

valuable in predicting Km and Vmax and for 

understanding the principles behind 

biotransformation by the liver enzymes; which in 

turn can be useful in taking proactive and remedial 

actions on issues regarding industrial activities 

affecting environmental wellbeing. It also finds 

relevance when guidance is needed for selecting an 

appropriate analytical model for a given dataset. 

 

Indexed Terms- Machine Learning, Supervised 

Learning, Artificial Neural Network, Multiple 

Linear Regression, Quantitative Structure-Activity 

Relationships, Xenobiotic, Michaelis-Menten 

Constant. 

 

I. INTRODUCTION 

 

Metabolic activities in living organisms are 

responsible for the natural biotransformation of 

edibles, xenobiotic, poisonous substances, and 

medications which precede the consumption of 

substances that are useful to the biological systems and 

the removal of undesired or toxic substances from the 

systems; usually accompanied by the release of 

energy. The major organs that carry out metabolism in 

mammals are kidney, skin, liver, lung, gastrointestinal 

tract, and endothelial cells of the blood-brain barrier, 

with the primary ones being the liver, kidney, and 

intestines (BioFoundations, 2018). The liver carries 

out the following functions: ammonia filtration from 

the gastrointestinal tract drained blood, detoxification 

of endotoxins, filtration of other bacteria-derived 

substances, and xenobiotics filtration via the portal 

vein, glucose homeostasis, collecting and uptake of 

cholesterol, proteins assembly, and secretion of bile. 

The external origins of xenobiotic which are present in 

living organisms could result from human or natural 

actions which have direct or indirect effects on the 

natural ecosystem. In addition to components sourced 

from chemicals that could cause damages to the liver, 
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some naturally poisonous substances that can be found 

in the environment are peptides of Amanita phalloides, 

the pyrrolizidine alkaloids, and the toxin of the cycad 

nut (Ramaiah and Banerjee, 2015). As noted by 

Ramaiah and Banerjee in their research titled ‘Liver 

Toxicity of Chemical Warfare Agents’, mammals can 

also be contacted by toxic materials through other 

means such as unaware ingestion of mycotoxins 

through edibles that were contaminated as a result of 

environmental conditions that are beneficial to the 

growth of fungus and cyanobacterial polluted water. 

The liver cells possess the capability to stock up 

poisonous metals and extra vitamins that may result in 

toxic damage. Although, the notion of mammal renal 

UDP-glucuronosyltransferase (UGT) and cytochrome 

P450 (CYP) catalyst enzymes and the roles which they 

perform in the biotransformation of xenobiotics and 

endo-biotics are quite minute relative to liver-related 

metabolic actions on chemicals and drugs, evidence 

tell that the mammalian kidney possesses an excellent 

capacity for metabolic activities (Knights, K. et al., 

2013). The kidneys also, possess the ability to carry 

out prolonged red-ox, conjugation, and hydrolysis 

reactions (Lash, 1994). It is, therefore, pertinent to 

maintain a healthy level of enzymatic activities and to 

aid poor state of them in mammals and other existing 

organisms for the maintenance of the ecosystem. The 

preservation and improvement of such activities can 

be realised by effecting positive changes to 

consumables (food and drugs) to satisfy requirements.  

The available volume of data and the continuous 

expansion of the volume of the database make it 

necessary for insightful semi-analytical estimations 

leading to rational characterisation and description of 

trends in open data, which is vital for the purpose of 

decision-making. A big data can be defined as a 

collection of any dataset that is so large in volume and 

which needs a significant effort of processing via 

common programming devices that suppose that every 

information is available in memory (Dmitrij 

Martynenko, 2015). We may also define a big data as 

an object of human individual, and likewise a collected 

information which is generated and shared usually 

within the digital domain, where virtually everything 

can be measured and recorded by means of electronic 

devices and in so doing transformed into data 

(Sivarajah, et al., 2016) – the process is also called 

‘datafication’ (Mayer-Schönberger and Cukier, 2014).  

Accordingly, "data analytics -computer modelling of 

mammalian metabolism” can be said to be the 

analytics of a big data considering that these data were 

not originally present in the memory of the 

programming functions and require extraction from 

different sources. This primarily involves the 

modelling of mammalian cells metabolism using 

theoretical molecular descriptors as independent 

variables that characterise the structures and 

molecules of various substrate compounds to be 

metabolised by the mammalian enzymes. This method 

is the Quantitative-Structure Activity Relationships 

(QSARs), which is a widely applicable approach in 

metabolism studies based on analytical tools such as 

regression, decision trees, support vectors, 

discriminant analysis, etc.  

 

In this work, we used the Artificial Neural Networks 

(ANNs) and Multiple Linear Regression (MLR) 

machine learning algorithms to model metabolism in 

mammalian tissues based on theoretical molecular 

descriptor features, using existing data. This was 

achieved by employing the convenience of the 

MATLAB programming language. The metabolism 

study here is that which concerns the 

biotransformation of the various xenobiotic in the 

environment, by some key enzymes in the mammalian 

livers. 

 

II. METHODOLOGY 

 

The methods employed in this work are analytical and 

computational. The experimental data for the enzyme 

properties were obtained from the Braunschweig 

Enzyme Database (BRENDA) – an online 

experimental database and other reviews (Scheer, et 

al., 2011; Hansch, et al., 2004). The primary data 

which originated from the BRENDA database and 

other reviewed sources followed by thorough checks 

were collected from the supporting information of a 

publication (Pirovano, et al., 2015). BRENDA is a 

comprehensive database which contains a plethora of 

experimental information about enzymes including 

those of metabolism (that is the Michalis-Menten 

constant, Km and maximum reaction rate, Vmax) which 

are relevant for QSARs metabolism studies. 

 

The theoretical molecular descriptors of the 

compounds metabolised by the various isoenzymes for 
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each of the three categories of enzymes considered 

were computed using the Online Chemical Modelling 

Environment (OCHEM) for descriptors such as 

WHIM, GETAWAY, 3D Morse, etc. Compounds 

were represented as SMILES (simplified molecular-

input line-entry system) before the computation of the 

descriptors. The enzyme classes are Alcohol 

dehydrogenase (ADH), Aldehyde dehydrogenase 

(ALDH), and Flavin-containing monooxygenase 

(FMO); with each catalysing reaction for a 

combination of mammals (Human, pig, horse, rat, and 

mouse). OCHEM is a web-based platform which is a 

widely used platform that automatically computes a 

variety of descriptors employed for QSARs studies 

(Sushko, et al., 2011). 

 

Correlations of the descriptors with the enzyme 

properties (Km and Vmax) were done with Microsoft 

excel and descriptors with the best values of 

correlation coefficient were extracted to ensure 

reliable models. 

 

The QSARs models were developed using Artificial 

Neural Networks (ANNs) and Multiple Linear 

Regression (MLR). The regression technique which is 

a widely applied statistical method employed for 

properties prediction and which finds relevance in 

many disciplines, had been used in xenobiotic 

metabolism prediction. The ANN offers an assuring 

model result, particularly for datasets with nonlinear 

relationships (Agatonovic-Kustrin and Beresford, 

2000). ANNs are excellent pattern finding machine 

learning tools employed for too complicated or 

numerous patterns. The application of ANNs to 

predict metabolic activities on diverse xenobiotics in 

mammals is yet to be pronounced. Hence, this work 

seeks to exploit the predictability of the ANN 

algorithm in mammalian metabolic modelling with the 

intention of comparing its level of accuracy with that 

of MLR in this regard. 

 

The chosen machine learning algorithms were written 

and run on the MATLAB programming language to 

develop the predictive models. MATLAB means 

Matrix Laboratory. It is a high-level programming 

language that directly expresses matrices and array 

mathematics and provides an environment for 

numerical calculations with suitable computation, 

visualisation, and other in-built tools (Chern, 2015). It 

is specially created for easy and fast scientific 

calculations, with many in-built functions and 

toolboxes that are applicable for researches in 

engineering, statistics, optimisation, partial 

differential equations, and data analytics (Gerritsen, 

2006). 

 

Finally, the qualities of the prediction tools were 

demonstrated using the root-mean-square errors and 

the correlation coefficients between measured and 

predicted outcomes. 

 

The anticipated problem that later surfaced while 

carrying out this work was that of determining stable 

molecular descriptors: certainly, there was the need to 

explore numerous descriptors software before settling 

for stable descriptors with acceptable values of 

correlation with respect to the expected outcomes for 

precise predictions in the analysis. This was very 

tasking and time consuming. Most descriptors 

computed for this work had average correlations with 

the enzymatic constants. Nevertheless, this work can 

serve as a guide in further studies. 

 

III. SUMMARY OF INPUT DATA 

 

Each of the datasets used for the models’ input was 

divided into training, cross-validation, and test sets in 

the ratio of 70%, 15%, and 15% respectively for the 

analysis of both machine learning methods. The tables 

under this section give the summary of the entire input 

data used for developing the models. 

 

3.1 Physical Interpretation of the Descriptors 

For this QSARs study, the theoretical descriptor 

variables that were selected are presented in the table 

below: 

 

Table 1 – Descriptors by group. 

Descriptor Group 

AlogPS_logP 

AlogPS_logS 

AlogP 

XlogP 

Autocorr2D 

Autocorr3D 

Morse 

Apol 

CDK 

CDK 

CDK 

CDK 

RDKIT 

RDKIT 

RDKIT 

CDK 
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nAtom 

SMR_VSA10 

AMR 

Whim 

Getaway 

CDK 

RDKIT 

CDK 

RDKIT 

CDK 

 

These descriptors are selected based on their 

correlations with Log(1/Km) and Log(Vmax) and 

sometimes, with one another. Hence, the selected 

independent variables were found to have the best 

values of correlation coefficients with the target 

variables they were used to predict. 

 

The AlogPS_logP, AlogPS_logS, AlogP, and XlogP 

are molecular hydrophobicity (lipophilicity) 

descriptors, with the P being the partition coefficient. 

They are used for estimating the hydrophobicity and 

pharmacokinetic properties of chemical compounds. 

The LogP is a measure of the molecular 

hydrophobicity, with P being the partition coefficient 

obtained from the distribution of a drug between two 

non-miscible solvents, mainly 1-octanol and water 

(Kujawski, et al., 2011). For ADH, AlogPS_logP is 

0.6 correlated with Log(1/Km) and highly correlated 

with Autocorr2D8 and Morse129 (0.9 and 0.8 

respectively). For ALDH, AlogPS_logP is 0.56 

correlated with Log(1/Km), highly correlated with 

XLogP (R=0.94) and Apol (R=0.81). For FMO, 

AlogPS_logP is negatively correlated with AlogP (R= 

-0.77). 

 

The two and three-dimensional autocorrelation 

(Autocorr2D and Autocorr3D) descriptors are size and 

shape, and functional or fragment descriptors 

respectively encoded with the relative positions of 

atoms or properties. They do so, by computing the 

separation, in terms of bond count (Autocorr2D) and 

Euclidean distance (Autocorr3D), between pairs of 

atoms (Sliwoski, et al., 2015). The Autocorr3D21 was 

found to correlate poorly, with Log(Vmax). 

 

The 3D-Morse quantifies the representation of 

molecular structures based on electron diffraction 

descriptors; the descriptors have a wide range of 

application, predominantly in QSARs studies. They 

contain information about the atomic mass, van der 

Waals volume, polarizability, electronegativity, and 

atomic partial charge of molecules (Devinyak, et al., 

2014). For ADH, Morse129 had an average correlation 

with Log(1/Km) and a high correlation with 

Autocorr2D8 (R=0.95). 

 

The Apol descriptor gives information about the sums 

of the polarizabilities (together with implicit 

hydrogen) of atoms (CCG). It was averagely 

correlated (R=0.54) with Log(1/Km). 

 

The nAtom descriptor provides information about the 

number of atoms (including implicit hydrogen) in a 

molecule (CCG). It was averagely correlated (R=0.6) 

with Log(1/Km) and highly correlated (R=0.99) with 

Apol. 

 

The SMR_VSA descriptor provides information on 

the refractivity of a molecule (including implicit 

hydrogen) together with the subdivided surface area 

based on the van der Waals surface area 

approximation (CCG). 

 

The AMR is a molecular properties descriptor encoded 

with information on the Ghose-Crippen molar 

refractivity of molecules (DRAGON). 

 

The Whim descriptor incorporates the entire 

information of the 3D, that is, size, shape, symmetry, 

and atom distribution as well as information on the 

electrostatic potential, hydrogen bonding capacity, and 

hydrophobicity of molecules (Bravi and Wikel, 2000). 

Getaway descriptors contain the information on the 3D 

structure and weights of the molecule atoms by their 

masses, that is, size and shape (Consonni, et al., 2002). 

 

3.2 Ranges of Actual Values of the Descriptors 

The areas of application of the QSARs, which is in line 

with the Organisation for Economic Co-operation and 

Development (OECD), 2006 QSAR validation 

principles, are presented in ranges (minimum and 

maximum) of values of the theoretical molecular 

descriptors that were used to develop the models 

(Zvinavashe, et al., 2008). 

 

 

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bravi%2C+Gianpaolo
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wikel%2C+James+H
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Table 2 – The data for log(1/Km) and the descriptors showing the range of values (minimum, maximum) for each 

enzyme class.

 

                                                                                            Range (for MLR) 

Enzyme            Name             Range                Training       Cross-validation      Test                   

 

ADH            AlogPS_logP  (-1.52, 5.78)      (-1.52, 5.78)      (-1.52, 5.78)       (-1.52, 5.78) 

                     Autocorr2D8  (0.54, 3.27)       (0.54, 2.90)        (0.54, 3.27)         (0.54, 2.90) 

                     Morse129       (0.32, 15.2)        (0.32, 11)           (0.32, 15.2)        (0.32, 11) 

                     Log(1/Km)       (-6.48, 0)            (-6.48, 0)          (-5.18, -0.60)      (-5.34, -0.70) 

ALDH         AlogPS_logP  (-2.69, 8.20)       (-2.69, 8.20)     (-0.69, 4.43)        (-1.01, 2.60) 

                    XlogP              (-0.70, 10.2)       (-0.70, 10.2)     (0.02, 4.57)         (-0.70, 2.86) 

                    Morse71          (-4.34, 0.06)       (-4.34, 0.06)     (-1.01, 0.06)        (-0.95, 0.06) 

                    Apol                 (3.90, 103)          (3.90, 103)       (3.90, 31.7)         (3.90, 29.9) 

                    nAtom              (4.0, 87.0)           (4.0, 87.0)        (4.0, 31.0)           (4.0, 26.0) 

                    Log(1/Km)       (-4.0, 3.40)         (-4.0, 3.40)       (-3.38, 0.70)         (-3.51, 1.0) 

FMO           AlogPS_logS    (-8.45, 1.21)      (-8.45, 1.21)     (-5.85, 1.04)       (-5.64, 1.04) 

                    AlogP                (-2.07, 5.05)     (-2.07, 5.05)     (-0.77, 3.97)       (-2.07, 5.05) 

                    SMR_VSA10    (0.0, 45.20)       (0.0, 44.6)        (0.0, 45.2)          (0.0, 40.6) 

                    Log(1/Km)       (-4.60, -0.04)     (-4.60, -0.04)    (-3.88, -0.30)      (-3.90, -0.15) 

Table 3 – The data for log(Vmax) and the descriptors showing the range of values (minimum, maximum) for each 

enzyme class. 

                                                                                           Range (for MLR) 

Enzyme            Name             Range                Training       Cross-validation      Test                   

ADH          Getaway255      (0.35, 19.9)       (0.35, 19.9)        (0.35, 19.9)       (0.35, 16.7) 

                   Getaway264     (0.22, 17.4)        (0.22, 17.4)        (0.22, 17.4)       (0.22, 13.1) 

                   Log(Vmax)         (-2.0, 1.94)        (-2.0, 1.94)        (-0.82, 1.93)      (-1.05, 0.74) 

ALDH        Morse203         (0.41, 19.1)        (0.41, 19.1)       (0.41, 10.1)        (0.41, 9.07)  

                   Whim8              (0.42, 1.0)          (0.42, 1.0)         (0.43, 1.0)         (0.46, 1.0) 

                   Log(Vmax)         (-2.0, 1.23)        (-2.0, 1.23)        (-2.0, 0.997)      (-1.70, 0.23) 

FMO           Whim1              (0.13, 7.06)      (0.13, 5.93)        (0.16, 7.06)       (1.61, 5.84) 

                    Whim3              (0.49, 0.96)      (0.49, 0.96)        (0.49, 0.93)       (0.49, 0.93) 

                    Whim4              (0.04, 0.49)      (0.04, 0.49)        (0.05, 0.49)       (0.05, 0.49)        

                    Whim25            (0.48, 0.96)      (0.48, 0.96)        (0.48, 0.93)       (0.49, 0.93) 

                    Whim26            (0.04, 0.49)      (0.04, 0.49)        (0.05, 0.49)       (0.05, 0.49) 

                    Log(Vmax)         (-1.52, 0.40)     (-1.52, 0.25)      (-0.70, 0.40)      (-0.92, 0.37) 

 

IV. MODEL DEVELOPMENT

 

The QSARs models were built with the ANN and the 

MLR. For both models (ANN and MLR), all datasets 

were divided into training sets – those used for 

estimating the model parameters, cross-validation sets, 

and test sets. After testing the model, the estimated 

parameters were finally used to fit the whole dataset to 

estimate the model performance on the entire dataset. 
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4.1 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are based on the 

following sigmoid models: 

ℎ𝜃(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) =
1

1+𝑒−𝑧
  (1) 

Where 0 ≤ ℎ𝜃(𝑥) ≤ 1. 

𝑧 = 𝑥𝜃𝑇     (2) 

Basically, the threshold is 0.5 but in practice it is 

usually being raised to ensure reasonable level of 

certainty. 

 

A scaled form of the sigmoid function is the 

hyperbolic tangent function which have an output 

range of -1 to +1, with a basic threshold of 0. 

𝑓(𝑥) = tanh(𝑥) =
2

1+𝑒−𝑥
− 1   (3) 

 

The models have been intensely studied and they are 

very popular learning techniques among others in in-

silico modelling. ANNs have been utilised in 

medicinal chemistry for classifying compounds, 

QSARs modelling, primary virtual screening of 

compounds, identification of potential drug targets, 

and localisation of structural and functional 

characteristics of biopolymers (Patel and Chaudhari, 

2005). ANN techniques have also been applied in the 

fields of robotics, pattern recognition, psychology, 

physics, computer science, biology, and others (Fogel, 

2008). 

 

ANN came up in an attempt to simulate the structure 

and function of the human brain. Nevertheless, besides 

any neurological interpretation, they can be considered 

as a class of general, flexible, nonlinear regression 

models (Haykin, 1999). The network is made up of 

simple units, known as neurons, arranged in a certain 

topology, and connected to each other. Neurons are 

organized into layers. A typical Network comprises of 

an input layer and one output layer, with a single or 

more hidden layers. The accuracy of an ANN increase 

as the number of hidden layers and hidden neurons 

increases, likewise the cost of computation. An ANN 

in which the neurons are connected only to those in the 

preceding layers are called the feedforward networks, 

this group contains multiplayer perceptron (MLP), 

radial basis function (RBF) networks, and Kohonen’s 

self-organizing maps (Kohonen’s SOM). Conversely, 

if recursive connections exist between neurons in 

different layers, it is a feed-back network. The forward 

propagation computes the activation functions of the 

hidden units and the output, while the back-

propagation algorithm computes the cost function of a 

neural network with respect to the weights or the 

fitting parameters. A simple Network with two hidden 

layers is shown below: 

 

 
Figure 1 – A simple neural networks. 

 

A neuron consists of a linear activator followed by a 

nonlinear inhibiting function. The activation function 

computes the sigmoid of the sums of the products of 

its input data and the parameters plus that of an 

independent term from a bias unit with an input of +1. 

The signal level of the sum is captured by the nonlinear 

retarding function. The most familiar activation 

hypotheses are the hyperbolic tangent, step, and 

sigmoid functions. The act of improving the 

parameters of fit with available data is known as 

“training of the network” and the data used for this 

purpose, the ‘training dataset’. The algorithm mostly 

used for the network training is the back-propagation 

which is essentially a gradient descent method that 

minimises the computational cost function (the mean 

square error), it basically minimises the mean square 

error difference between the model outcomes and the 

target values of the training dataset to arrive at the 

parameters of best fit. 

 

A common problem with ANNs in predictive analytics 

is that the classification models produced are not 

always interpretable physically or chemically, this 

issue is usually called the 'black box' nature of ANNs. 

However, the main benefit of ANNs is the capacity to 

arrest and simulate nonlinear trends in data 

(Lavecchia, 2015). 

 

Considering the four-layered network illustrated in 

figure 1: The network consists of three input units 

representing the features (independent variables), two 

hidden layers with the first hidden layer having three 
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hidden units and the second hidden layer having two 

hidden units, and one output unit. 

 

Each node or neuron consists of a linear activation 

function, which is basically a sigmoid function, 

followed by a nonlinear inhibiting function. 

 

4.1.1 Feed Forward Propagation Model 

The feed forward propagation accomplishes the 

computation of the linear activation functions which is 

essentially the sigmoid of the sums of the products of 

its input data and the parameters, plus that of an 

independent term from a bias unit with an input of plus 

one for the hidden units and the expected outcomes, as 

the nonlinear inhibiting function attempts to arrest the 

signal level of the sum having trained a network. 

 

For the network in figure 1, the activation functions of 

the hidden layers are computed as follows: 

 

𝑎1
2 = 𝑔(𝜃10

1 𝑥0 + 𝜃11
1 𝑥1 + 𝜃12

1 𝑥2 + 𝜃13
1 𝑥3)  (4) 

𝑎2
2 = 𝑔(𝜃20

1 𝑥0 + 𝜃21
1 𝑥1 + 𝜃22

1 𝑥2 + 𝜃23
1 𝑥3)  (5) 

𝑎3
2 = 𝑔(𝜃30

1 𝑥0 + 𝜃31
1 𝑥1 + 𝜃32

1 𝑥2 + 𝜃33
1 𝑥3)  (6) 

𝑎1
3 = 𝑔(𝜃10

2 𝑥0 + 𝜃11
2 𝑥1 + 𝜃12

2 𝑥2 + 𝜃13
2 𝑥3)  (7) 

𝑎2
3 = 𝑔(𝜃20

2 𝑥0 + 𝜃21
2 𝑥1 + 𝜃22

2 𝑥2 + 𝜃23
2 𝑥3)  (8) 

 

The output function h(x), is given by: 

ℎ𝜃(𝑥) = 𝑎1
4 = 𝑔(𝜃10

3 𝑎0
3 + 𝜃11

3 𝑎1
3 + 𝜃12

3 𝑎2
3)  (9) 

 

Where 𝑎𝑖
𝑗
 is the activation function of unit i in layer j 

and 𝜃𝑗 is the matrix of the parameters controlling 

function mapping from layer j to layer j+1, 𝑥0 is 1 and 

𝑎0
3 is 1. 

 

For the hidden units 𝜃1, 𝜃2 ∈ ℝ3×4 ,while for the 

output unit 𝜃3 ∈ ℝ1×4. 

 

4.1.2 Back Propagation Model 

The back propagation algorithm computes the cost 

function of a neural network. The algorithm does the 

training of the network by adjusting the parameters to 

find the parameters which best fit the training dataset. 

The adjustment is done through an iterative gradient 

descent process to minimise the computation cost (the 

squared error function). 

 

The cost function of a neural network is given as: 

 

𝐽(𝜃) = −
1

𝑚
[∑ ∑ 𝑦𝑘

(𝑖)
𝑙𝑜𝑔ℎ𝜃(𝑥

𝑖)𝑘 + (1 −
𝐾
𝑘=1

𝑚
𝑖=1

𝑦𝑘
(𝑖)
)log(1 − ℎ𝜃(𝑥

𝑖))𝑘] +
𝜆

2𝑚
∑ ∑ (𝜃𝑖𝑘

(𝑙)
)
2𝑠𝑙+1

𝑘=1
𝑚
𝑖=1  (10) 

 

Where 𝝀 is the regularisation parameter, m is the 

length of the training set, k is the number of units in a 

given layer, and l denotes the number of layers. 

 

The gradient functions are computed by back 

propagation alongside the parameters of fit to obtain 

those parameters which give the minimum 

computation cost. The parameters can also be arrived 

at by some advanced optimisation algorithm such as 

FMINUNC and FMINCG. 

 

Let 𝛿𝑖
𝑙 be the deviation of a prediction at node k and 

layer l from a target value, considering a four-layer 

network like that of figure 2.4, we have the following: 

 

𝛿𝑘
4 = 𝑎𝑘

4 − 𝑦𝑘     (11) 

𝛿3 = (𝜃3)𝑇𝛿4.∗ 𝑔′(𝑧3)    (12) 

𝛿2 = (𝜃2)𝑇𝛿3.∗ 𝑔′(𝑧2)    (13) 

 

Where 

𝑔′(𝑧𝑙) = 𝑎𝑙 .∗ (1 − 𝑎𝑙)    (14) 

At every i training examples, the gradient is computed 

as: 

 
𝜕

𝜕𝜃𝑖𝑘
𝑙 𝐽(𝜃) =

1

𝑚
(𝑎𝑘
𝑙 𝛿𝑖

𝑙+1 + λ𝜃𝑖𝑘
𝑙 )   (15) 

 

And the a’s are the activations earlier computed for the 

nodes in the layers other than the input layer using feed 

forward propagation.  

 

As part of debugging, gradient checking is usually 

done by computing the numerical estimates of the 

gradients using the function: 

 
𝑑

𝑑(𝜃)
𝐽(𝜃) ≈

𝐽(𝜃+𝜀)−𝐽(𝜃−𝜀)

2𝜀
    (16) 

 

Where 𝜀 is a very small value of about 10-4. 

 

A simple three-layer (with one hidden layer) network 

is sufficient to train a neural network. But for this 

study, the networks are trained with five layers (having 

three hidden layers) with each of the hidden layers 

having thirty hidden units to increase the level of 

certainty. 
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4.2 Multiple Linear Regression Model 

The linear regression analysis is a statistical approach 

which is performed to predict the values of a target 

variable, y, given some predictor variables (x1, x2, …., 

xn). This method of analysis is employed in QSARs 

modelling of the relationship between one or more 

molecular descriptors (independent variables or 

features) and a continuous outcome/target (dependent 

variable). In metabolism modelling, this outcome can 

be the metabolic rate (Vmax) or the affinity between an 

enzyme and a substrate (Km). A linear regression 

model could be a simple linear equation, equation with 

multiple independent variables or a polynomial 

function. 

 

The multiple linear regression hypothesis is expressed 

as follows: 

 

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3+. . . +𝜃𝑛𝑥𝑛 (17) 

 

Where ℎ𝜃(𝑥) is the dependent variable which 

represents the predicted biological activities, that is, 

the Michaelis-Menten constant (Km) and the 

maximum reaction rate (Vmax) that we predicted for the 

enzymatic activities of the four classes of enzymes, 𝑥1, 

𝑥2, 𝑥3, 𝑥4,. . . 𝑥𝑛 are the features representing the 

theoretical molecular descriptor values, and 𝜃0, 𝜃1, 𝜃2, 

𝜃3, 𝜃4, . . . 𝜃𝑛 are the parameters of best fit which are 

to be learnt with the training set of each dataset. In this 

study, these parameters were determined using the 

method of Least Squares. 

 

In matrix form, (17) is expressed as follows: 

 

ℎ𝜃(𝑥) =

(

 
 
 

ℎ𝜃0
ℎ𝜃1
ℎ𝜃2
ℎ𝜃3
⋮
ℎ𝜃𝑛)

 
 
 
=

(

 
 
 

1 𝑥11𝑥21 𝑥31…𝑥𝑛1
1 𝑥12𝑥22 𝑥32…𝑥𝑛2
1 𝑥13𝑥23 𝑥33…𝑥𝑛3
1 𝑥14𝑥24 𝑥34…𝑥𝑛4
⋮⋮⋮⋮⋱⋮
1 𝑥1𝑛𝑥2𝑛 𝑥3𝑛 …𝑥𝑛𝑛 )

 
 
 

(

 
 
 

𝜃0
𝜃1
𝜃2
𝜃3
⋮
𝜃𝑛)

 
 
 

  (18) 

 

The objective function which is a function of the loss 

or the difference between the model outcome ℎ𝜃(𝑥
𝑖) 

and the measured dependent variable 𝑦𝑖  is given by the 

squared error function: 

 

𝐿 = ∑ (𝑦𝑖 − ℎ𝜃(𝑥
𝑖))

2
𝑚
𝑖=1     (19) 

 

The parameters can be estimated using the method of 

least squares, with the intention of minimising the 

objective: 

 

𝐿 = (𝑦 − 𝑋𝜃)𝑇(𝑦 − 𝑋𝜃)    (20) 

 

By expansion 

𝐿 = 𝑦𝑇𝑦 − 2𝜃𝑇𝑋𝑇𝑦 + 𝜃𝑇𝑋𝑇𝑋𝜃   (21) 

 

The minimum value of 𝐿 is obtained when 𝜕𝐿 𝜕𝜃⁄ =

0, as such: 

 
𝜕𝐿

𝜕𝜃
= −2𝑋𝑇𝑦 + 2𝑋𝑇𝑋𝜃 = 0   (22) 

(𝑋𝑇𝑋)𝜃 = 𝑋𝑇𝑦     (23) 

 

Therefore, 

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦     (24) 

 

The gradient descent approach was further used to 

double-check the estimated parameters. 

 

V. RESULTS 

 

The most influential descriptors (that is, those with the 

highest values of correlation with Log(1/Km)) for 

ADH were ALogPS_logP and Autocorr2D8, that is, 

partition coefficient and functional group or fragment 

respectively, with all having positive correlations. The 

most influential descriptors for ALDH were 

ALogPS_logP and XLogP having positive correlation 

coefficients. The best descriptor for FMO  was ALogP 

with positive correlation. 

 

For the QSAR modelling of Log(Vmax) prediction, the 

best-correlated descriptors are Getaway264, Whim8, 

and Whim1, for ADH, ALDH, and FMO respectively.  

For each model predictions of Log(1/Km) and 

Log(Vmax) for the various enzyme, the models' 

performances (the root mean square deviations and the 

Pearson's correlation coefficients) were recorded. The 

variable 1/Km is a reflection of the enzyme affinity for 

substrate: a high Km suggests a low binding affinity. 

The correlation coefficient (R) and the root-mean-
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square error (RMSE) revealed the performances of the 

models on each dataset, showing the relationships 

between the models’ outcomes and measured values. 

The performance on the test datasets is of concern here 

because, those tell how well the models will perform 

on an unseen data, although consistency matters still. 

The RMSE is only presented for models’ predictions 

when fitted with the whole datasets. 

 

Detailed necessary discussions on the results obtained 

from the learning algorithms are as follows: 

 

5.1 ANNs Results 

The five-layer network (three hidden layers, each 

having thirty hidden units) was trained for each of the 

dataset over ten random division of the datasets for the 

prediction of Log(1/Km) and Log (Vmax) and 

performances were averaged as presented in the 

following subsections: 

 

5.1.1 ANN Prediction of Michaelis-Menten Constant 

(Km) 

In all, the average performances of the model on each 

division showed insignificant differences. The 

model’s prediction strengths (R) were about 64% for 

ADH and ALDH, and 54% for FMO. The model was 

seen to produce good and consistent correlations for 

all enzyme classes as shown by the performance plots 

in figures 2 – 4 below. 

 

 
Figure 2 – ANN prediction of Log(1/Km) plot for 

ADH. 

 

 
Figure 3 – ANN prediction of Log(1/Km) for ALDH. 

 

 
Figure 4 – ANN prediction of Log(1/Km) for FMO. 

 

5.1.2 ANN Prediction of Maximum Reaction Rate 

(Vmax) 

The average performances (R) of the model on the test 

sets for ADH and ALDH appear to be of insignificant 

differences relative to the performances on the training 

sets. But the said performances show substantial 

differences, as well as poor results in the case of FMO 

which can be easily traced to the correlation between 

the molecular descriptor values and Log(Vmax). The 

correlation for ADH is about 50%, about 40% for 

ALDH, and 11% for FMO. This showed fairly 

consistent correlation results for ADH and ALDH, but 

poor for FMO because of the inherent poor correlation 
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between the features and the target variables as can be 

seen in table 6. 

 

Figures 5 – 7 below show the various performance 

plots for Log(Vmax) prediction. 

 

 
Figure 5 – ANN prediction of Log(Vmax) for ADH. 

 

 
Figure 6 – ANN prediction of Log(Vmax) for ALDH. 

 

 
Figure 7 – ANN prediction of Log(Vmax) for FMO. 

 

5.2 MLR Results 

The performance of the MLR predictive model for the 

four classes of enzymes was examined using the same 

data that were used to check for performances on the 

ANN prediction model. This means that those 

descriptors that mostly influence the prediction of 

Log(1/Km) and Log(Vmax) in the ANN model, that is, 

partition coefficient and functional group for Log(1/ 

Km) and size, shape, symmetry, and atom distribution 

for Log(Vmax), were still valid. Although the MLR 

model was run once on each of the datasets, 

performances in most cases appear to be lower than 

the worse in the case of the ANN model. The MLR 

model results are summarised in detail as follows: 

 

5.2.1 MLR Prediction of Michaelis-Menten Constant 

(Km) 

For the MLR model, the best performance (R) was 

seen on the ADH dataset, but significant variations in 

the training, cross-validation, and test results, as well 

as lower R values, were observed. The test 

performance was about 66% for ADH, 40% for ALDH 

and FMO. Evidence of overfitting and underfitting, 

however, appear significant as shown in table 5; in 

which correlations appear fairly consistent for ADH 

but not for ALDH and FMO. 

 

The estimated training parameters computed by the 

method of least squares are as follows: 

 

ADH: 𝜃 = (−4.827, 1.585, 5.621, −4.442)𝑇 
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ALDH: 𝜃 =

(−0.895, 0.511, 0.361, −0.853, −0.153, 0.1132)𝑇 

FMO: 𝜃 = (−2.671, −0.095, 0.139, 0.019)𝑇 

The model’s performance plots are presented in 

figures 8 – 10 below. 

 

 
Figure 8 – MLR prediction of Log(1/ Km) for ADH. 

 

 
Figure 9 – MLR prediction of Log(1/ Km) for ALDH. 

 

 
Figure 10 – MLR prediction of Log(1/ Km) for FMO. 

 

5.2.2 MLR Prediction of Maximum Reaction Rate 

(Vmax) 

Although the model performance (R) appears 

favourable in some instances, it fails the test of 

generalisation due to clear cases of overfitting and 

underfitting as revealed by the plots; generally 

showing inconsistent correlation values for all the 

enzyme classes. Test sets performance were about 

27% for ADH, 35% for ALDH, and 47% for FMO. 

 

The learning parameters computed for Log(Vmax) 

prediction by the method of least squares are given as 

follows: 

ADH: 𝜃 = (−0.012, 0.005, 0.070)𝑇 

ALDH: 𝜃 = (−0.018, −0.028, −0.154)𝑇 

FMO: 𝜃 =

(−1.636, 13.332, 13.278, 0.047, −11.663, −11.909)𝑇 

The Log(Vmax) prediction performance plots for the 

MLR model are presented in figures 11 - 13 as shown: 
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Figure 11 – MLR prediction of Log(Vmax) for ADH. 

 

 
Figure 12 – MLR prediction of Log(Vmax) for ALDH. 

 

 
Figure 13 – MLR prediction of Log(Vmax) for FMO. 

VI. SUMMARY 

 

Having developed the ANN and MLR based QSARs 

models to predict metabolism in mammals for the 

three enzyme classes, we have been able to achieve the 

aim of this study. First, the performance (R) of the 

models on the datasets appeared to be in order when 

compared to those reported in the literature especially 

for the Log(Km) prediction in which most of the 

correlation values meet the threshold (absolute 0.4). 

For Log(1/Km) prediction, both ANN and MLR have 

performance (R) on the test datasets in the following 

decreasing order: ADH, ALDH, and FMO. For the 

Log(Vmax) prediction in which most of the descriptors 

did not meet the threshold requirement, the ANN 

model still followed the order of performance but the 

MLR model did not. The tables below present the 

performances of the models on the datasets for the 

various enzyme classes, with RMSE presented for the 

whole datasets: 

 

The QSARs model results obtained for the prediction 

of Log(1/Km) are summarised as follows: 

 

Table 4 – ANN model’s average performances for 

Log(1/Km) prediction. 

  Enzyme                                                    R                                                    RMSE 

                              Training       Cross-validation      Test             All                              

   ADH                    0.7364              0.6719              0.6414        0.7093          

0.9593 

  ALDH                  0.7373              0.7079              0.6360        0.7208          

1.1397 

   FMO                   0.7792              0.4979              0.5445        0.6943          

0.7262 

 

Table 5 – MLR model’s performances for Log(1/ Km) 

prediction. 

  Enzyme                                                    R                                               RMSE 

                            Training       Cross-validation      Test             All                              

   ADH                   0.5521             0.7865              0.6579        0.5985       

1.0832 

  ALDH                  0.7340           -0.0414              0.4015        0.5921       

1.3469 

   FMO                   0.5701            0.1052              0.3930        

0.4907        0.8483 

 

The QSARs model results obtained for the prediction 

of Log(Vmax) are summarised as follows: 
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Table 6 – ANN model’s average performances for 

Log(Vmax) prediction. 

  Enzyme                                                    R                                                 RMSE 

                             Training       Cross-validation      Test            All                              

   ADH                   0.6184             0.5332              0.4723        0.5597        

0.6550 

  ALDH                  0.5921             0.3061              0.4125        0.5185        

0.5897 

   FMO                   0.5488             0.1120              0.1140        0.3857         

0.3201 

 

Table 7 – MLR model’s performances for Log(Vmax) 

prediction. 

  Enzyme                                                    R                                                 RMSE 

                             Training       Cross-validation      Test             All                              

   ADH                   0.5000               0.7973              0.2654       0.5339         

0.6200 

  ALDH                 0.1490               0.7033              0.3503       0.2325         

0.6683 

   FMO                  0.2280               0.7342              0.4690       0.3245         

0.3200 

 

Above all, despite the possibility of inherent noise in 

the data, the problems of overfitting and underfitting 

appeared more evident with the MLR model even 

when descriptors were relatively stable but less 

significant with the ANN model as revealed in tables 

4 to 7 except for the Log(Vmax) cases in which 

correlations were relatively weak. This observation in 

particular implies that the ANN’s model is able to 

learn better even with noisy data. Hence, more 

credible for generalisation. Therefore, the results on 

the tables do not imply that the MLR model is superior 

where its performance (R) are relatively higher. 

 

The limitations of the models which necessitated poor 

performances in some instances on the datasets 

become clear when the data sources are taken into 

consideration. The fact that the experimental Km and 

Vmax values were obtained from the scientific literature 

implies that they resulted from different laboratory 

experiments that used different orders and employed 

conditions which vary. For instance, pH and 

temperature conditions will influence enzymatic 

activities (Garrett and Grisham, 2010). Furthermore, 

the rate data reported as either Vmax or Kcat values 

required transformation to convert the rates into same 

units using conversion factors (Pirovano, et al., 2015). 

Also, the merging of data for various mammals (that 

is, human, horse, rat, pig, mouse, and rabbit) and for 

the several isoenzymes is a likely cause of variations. 

Additionally, the correlation threshold of absolute 0.4 

between descriptors and the Km and Vmax values 

reported by Pirovanol, et al., 2015 could not be 

achieved in this work due to the limited descriptors 

software within reach. Therefore, the descriptors used 

in this work are of absolute correlation values in the 

range of 0.2 to 0.6, unlike those reported where 

correlations as high as 0.9 were achieved. 

 

CONCLUSION 

 

The predictive strengths of two learning algorithms 

have been evaluated in this work, that is, those of 

Artificial Neural Networks and Multiple Linear 

Regression based Quantitative Structure-Activity 

Relationships, using existing data and accomplished 

with the MATLAB programming tool. The enzyme 

data utilized for achieving the objectives contained 

information for several xenobiotic compounds 

metabolized by the ADH, ALDH, and FMO, and for 

various mammalian species. 

 

The main properties which determined the affinity 

coefficient (1/Km) appeared to be enzyme specific. 

The partition coefficient and functional group were 

those that mostly influenced ADH, ALDH, and FMO. 

Size, shape, symmetry, and atom distribution were the 

most influential predictors for the maximum reaction 

rate (Vmax). The constant Vmax is indicative of the 

speed of reaction of the catalysed process involving 

the interaction between substrate or xenobiotic and 

enzyme. 

 

This study is useful for understanding the principles 

behind biotransformation by the liver enzymes and for 

predicting the enzymatic constants (Km and Vmax) of 

the four main mammalian enzymes metabolizing 

various xenobiotics. It is also relevant for choice-

making when confronted with the issue of selecting an 

appropriate model considering the nature of data 

available for analysis. 
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