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Abstract- These are considerably long in comparison 

with their lateral dimensions and hence buckle when 

the axial load approaches a certain critical value 

known as critical buckling load. In this paper, we 

present Elzaki transformation means for discussing 

the Euler’s theory of very long columns with low 

critical buckling loads to obtain the Euler’s formula 

for critical or buckling load. It is a powerful 

mathematical means which is generally applied in 

different areas of science, engineering and 

technology for solving ordinary or partial differential 

equations without finding their general solutions. 

 

Indexed Terms- Euler’s theory, Elzaki 

transformation, Long Columns, Critical buckling 

load. 

 

I. INTRODUCTION 

 

Elzaki Transformation applied in solving boundary 

value problems in most of the science and engineering 

disciplines [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. It also comes 

out to be very effective tool to analyze differential 

equations with delta function [12,13, 14,15,16,17]. 

The differential equations are generally solved by 

adopting Laplace transform method or convolution 

method of residue theorem method [18,19, 

20,21,22,23, 24]. In this paper, we present a new 

technique called Elzaki transform to analyze 

differential equations with delta function. 

 

BASIC DEFINITIONS 

 

2.1 Elzaki Transform 

 

If the function ɦ(y), y ≥ 0 is having an exponential 

order and is a piecewise continuous function on any 

interval, then the Elzaki transform of  ɦ(y) is given by 

 

E{ɦ(y)} = ɦ̅(𝑝) = p ∫ 𝑒
− 

𝑦

𝑝

∞

0

ɦ(y)𝑑𝑦. 

 

The Elzaki Transform [1, 2, 3] of some of the functions 

are given by 

 

• 𝐸 {𝑦𝑛} =  𝑛! 𝑝𝑛+2 , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2, ..  

• 𝐸 {𝑒𝑎𝑦} =
𝑝2

1−𝑎𝑝
 ,  

• 𝐸 {𝑠𝑖𝑛𝑎𝑦} =
𝑎𝑝3

1+𝑎2𝑝2 ,  

• 𝐸 {𝑐𝑜𝑠𝑎𝑦} =
𝑎𝑝2

1+𝑎2𝑝2 ,  

• 𝐸 {𝑠𝑖𝑛ℎ𝑎𝑦} =
𝑎𝑝3

1−𝑎2𝑝2 ,  

• 𝐸 {𝑐𝑜𝑠ℎ𝑎𝑦} =
𝑎𝑝2

1−𝑎2𝑝2 .  

 

2.2 Inverse Elzaki Transform 

 

The Inverse Elzaki Transform of some of the functions 

are given by 

• E-1{𝑝𝑛} = 
𝑦𝑛−2

(𝑛−2)!
  , 𝑛 = 2, 3, 4 … 

• E-1{
𝑝2

1−𝑎𝑝
} = 𝑒𝑎𝑦 

• E-1{
𝑝3

1+𝑎2𝑝2}= 
1

𝑎
sin 𝑎𝑦 

• E-1{
𝑝2

1+𝑎2𝑝2} =
1

𝑎
cos 𝑎𝑦 

• E-1{
𝑝3

1−𝑎2𝑝2}= 
1

𝑎
sin ℎ𝑎𝑦 

• E-1{
𝑝2

1−𝑎2𝑝2} =
1

𝑎
cos ℎ𝑎𝑦 

 

2. 3 Elzaki Transform of Derivatives 

 

The Elzaki Transform [1, 2, 3] of some of the 

Derivatives of h(y) are given by 

 

• 𝐸{ℎ′(𝑦)} =
1

𝑝
𝐸{ℎ(𝑦)} − p ℎ(0) 

𝑜𝑟 𝐸{ɦ′(𝑦)} =
1

𝑝
ɦ̅(𝑝) − p ɦ(0), 
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• 𝐸{ɦ′′(𝑦)} =
1

𝑝2 ɦ̅(𝑝) − ɦ(0) − pɦ′(0), 

𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

 

METHODOLOGY 

 

Let a very long vertical column AB of length ‘a’ and 

having uniform area of cross-section, where A is the 

upper end of column and B is its lower end. Let ‘y’ be 

the lateral deflection of a section of the column at a 

distance ‘x’ from the lower end B, I be the moment of 

inertia of the section, ‘Y’ is the Young’s modulus of 

elasticity of the column and ‘P’ be the critical buckling 

load. Now we will discuss four different cases: 

 

Case-I: When both ends A and B of the column are 

pinned or hinged 

 

In this case, the bending moment [1] at the section is 

given by 

 

�̈�(𝑥)  + 𝑘2𝑦(𝑥) = 0, where k =  √
𝑃

𝑌I
  . (4) 

 

Taking Elzaki Transform of equation (4), we get 

 

𝐸[�̈�(𝑥)]  + 𝑘2𝐸[𝑦(𝑥)] = 0 

 

This equation gives 

 
1

𝑝2 �̅�(p) – 𝑦(0) -𝑝�̇�(0)+ 𝑘2�̅�(p) = 0   (5) 

 

Applying boundary condition: 𝑦(0) = 0, equation (5) 

becomes, 

 
1

𝑝2 �̅�(p) – 𝑝�̇�(0)+ 𝑘2�̅�(p) = 0 or 

1

𝑝2 �̅�(p)+ 𝑘2�̅�(p) =     𝑝�̇�(0)   (6) 

In this equation, �̇�(0)is some constant. 

Substitute�̇�(0) = 𝐴, equation (6) becomes 

 
1

𝑝2 �̅�(p)+ 𝑘2�̅�(p) =     𝐴𝑝   (7) 

Or  �̅�(p) =
𝐴𝑝3

(1+𝑝2 𝑘2)
  

Taking inverse Elzaki transforms [3] of equation (7), 

we get 

 

𝑦(x)=
𝐴

𝑘
sin(kx)     (8) 

Applying boundary condition: 𝑦(a) = 0, equation (8) 

gives 
𝐴

𝑘
 sin (k a) = 0 

Since A cannot be equal to zero because for A = 0, y 

= 0. This means that column will not bend at all, which 

is not possible.  

 

Therefore, sin (k a) = 0 

Or ka = n 𝜋, where n is an integer greater than equal to 

zero. 

 

Or𝑘 =  
n𝜋

𝑎
     (9) 

 

The least practical value of n is 1, therefore 

considering n = 1, we have 

k = 
𝜋

𝑎
 

Or √
P

YI
=  

π

a
 

Or P = 
π2YI

a2  

 

This equation provides the Euler’s formula for critical 

buckling load for very long column which is pinned at 

its both the ends. 

 

Case-II: When lower end B of the column is fixed and 

the other end A is free 

 

In this case, the bending moment [1] at the section is 

given by          

�̈�(𝑥)  + 𝑘2[𝑑 − 𝑦(𝑥)] = 0, where‘d’ is the deflection 

at the free end A due to critical buckling load. 

Taking Elzaki Transform of equation (4), we get 

𝐸[�̈�(𝑥)]    + 𝑘2𝐸[𝑦(𝑥) − 𝑑]  = 0 

This equation gives 
1

𝑝2 �̅�(p) – 𝑦(0) -𝑝�̇�(0)+ 𝑘2�̅�(p) =𝑘2𝑝2𝑑 ….. (5) 

Applying boundary conditions: 𝑦(0) = 0 and �̇�(0) = 0 

as the slope at x = 0 is zero, equation (5) becomes,  
1

𝑝2 �̅�(p) + 𝑘2�̅�(p) =𝑘2𝑝2𝑑 

Or  �̅�(p) =
𝑘2𝑝4𝑑 

 (1+𝑝2  𝑘2)
                          (6) 

Or  �̅�(p) =
𝑘2𝑝4𝑑 

 (1+𝑝2  𝑘2)
  (7) 

Or  �̅�(p) =
𝑑

p
− 

𝑑𝑝

 (𝑝2 + 𝑘2)
 

Taking inverse Laplace transforms [4] of equation (7), 

we get 
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  𝑦(x) = 
𝑑

𝑘2 - 
𝑑

𝑘2 cos (kx)                                                      

(8) 

Applying boundary condition: 𝑦(a) = d, equation (8) 

gives 

 𝑑 = d - d cos (k a)                                                    

Or cos (k a) = 0 

𝑜𝑟 𝑘𝑎 =
(2n−1)𝜋

2
, where n is an integer greater than 

equal to zero. 

Or k = 
(2n−1)𝜋

2𝑎
 

The least practical value of n is 1, therefore 

considering n = 1, we have  

k = 
𝜋

2𝑎
 

Or √
P

YI
=  

π

2a
 

Or P = 
π2YI

4a2  

This equation provides the Euler’s formula for critical 

buckling load for very long column whose lower end 

is fixed and upper end is free. 

 

 

Case-III: When both the ends A and B of the column 

are fixed 

In this case, the bending moment [1] at the section is 

given by 

�̈�(𝑥)  + 𝑘2𝑦(𝑥) = M, Where M =

 
𝑀0

𝐸I
 , 𝑀0is the restraint moment at each end. 

Taking Elzaki Transform of equation (4), we get 

𝐸[�̈�(𝑥)]    + 𝑘2𝐸[𝑦(𝑥)] = M 

This equation gives 
1

𝑝2 �̅�(p) – 𝑦(0) -𝑝�̇�(0)+ 𝑘2�̅�(p) =   M E{1}                 (5) 

Applying boundary conditions: 𝑦(0) = 0 and �̇�(0) = 0 

as the slope at x = 0 is zero, equation (5) becomes,  
1

𝑝2 �̅�(p) + 𝑘2�̅�(p) =𝑀𝑝2  

Or �̅�(p) =
𝑀𝑝4 

 (1+𝑝2  𝑘2)
                                    (7) 

Or  �̅�(p) = 𝑀𝑝2 − 
𝑀𝑝2

(1+𝑝2 𝑘2)
 

Taking inverse Laplace transforms [5] of equation (7), 

we get 

  𝑦(x) = 
𝑀

𝐾2 – 
𝑀

𝐾2cos(kx)                                                   (8) 

Applying boundary condition: 𝑦(a) = 0, equation (8) 

gives
𝑀

𝐾2 - 
𝑀

𝐾2  cos (k x) = 0 

Therefore, cos (k a) = 1 

Or k a = 2n 𝜋, where n is an integer greater than equal 

to zero. 

Or k = 
2n𝜋

𝑎
                                                                 (9) 

The least practical value of n is 1, therefore 

considering n = 1, we have  

k = 
2𝜋

𝑎
 

Or √
P

YI
=  

2π

a
 

Or P = 
4π2YI

a2             (10) 

This equation provides the Euler’s formula for critical 

buckling load for very long column whose both ends 

are fixed. 

 

 

Case-IV: When lower end B of the column is fixed and 

the upper end A is hinged or pinned 

In this case, the bending moment [1] at the section is 

given by          

�̈�(𝑥) + 𝑘2𝑦(𝑥) = 𝐻(𝑎 − 𝑥), where H =
H0

EI
, H0 is horizontal force at the fixed end 𝐵. 

Taking Elzaki Transform of equation (4), we get 

𝐸[�̈�(𝑥)]    + 𝑘2𝐸[𝑦(𝑥)]  = 𝐻𝐸(𝑎 − 𝑥)   

This equation gives 
1

𝑝2 �̅�(p) – 𝑦(0) -𝑝�̇�(0)+ 𝑘2�̅�(p)  = 𝐻𝐸[(𝑎 − 𝑥)]                    

(5) 

Applying boundary conditions: 𝑦(0) = 0 and �̇�(0) = 0 

as the slope at x = 0 is zero, equation (5) becomes,  
1

𝑝2 �̅�(p) + 𝑘2�̅�(p) = =  𝐻 [(
𝑎

𝑝
−

1

𝑝2)] 

                           (6) 

Or  �̅�(p) =𝐻[ 
𝑎𝑝

 (1+𝑝2 𝑘2 )  
-

1

 (1+𝑝2 𝑘2)
]                                (7) 

Or  �̅�(p) =𝐻[ 
𝑎𝑝

𝑘2 −  
𝑎𝑝2

𝑘2(1+𝑝2 𝑘2)
- 

𝑝3

𝑘2 +  
𝑎𝑝3

𝑘3(1+𝑝2 𝑘2)
  ]  

Taking inverse Laplace transforms [6] of equation (7), 

we get 

𝑦(x) =H[
𝑎

𝑘2 - 
𝑎

𝑘2 cos (k x) -
𝑥

𝑘2+
sin 𝑘𝑥

𝑘3  ] (8) 

Applying boundary condition: 𝑦(a) = 0, equation (8) 

gives 

H  [
𝑎

𝑘2 - 
𝑎

𝑘2 cos (k a) -
𝑎

𝑘2  +
sin 𝑘𝑎

𝑘3  ] = 0 

Or [ - 
𝑎

𝑘2 cos (k a) +
sin 𝑘𝑎

𝑘3  ] = 0 

Or   
𝑎

𝑘2 cos (k a) =
sin 𝑘𝑎

𝑘3  

Or tan (k a) = ka 

On expanding tan 𝑘𝑎 upto 5th power of 𝑘𝑎 and solving 

we get 

Or ka = 4.5 radians 

Or √
P

YI
𝑎 = 4.5 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 
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Or P = 
20.25YI

𝑎2  

Or P = 
2π2YI

𝑎2  

This equation provides the Euler’s formula for critical 

buckling load for very long column whose lower end 

is fixed and upper end is pinned. 

 

CONCLUSION 

 

This paper discussed the Euler’s theory of very long 

columns with low buckling axial loads by means of 

Elzaki transformation tool. An attempt has made to 

exemplify the Elzaki transformation method for 

discussing the Euler’s theory of very long columns 

with low buckling axial loads for obtaining the Euler’s 

formula of critical buckling load. In all the cases 

discussed, we found that the critical buckling load for 

very long columns which are subjected to axial loads , 

is inversely proportional to the square of the length of 

the column. 
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