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Abstract- In this work, a new modified algebraic 

structure is constructed using modular arithmetic. 

Some algebraic properties of the structure were 

studied using a particular sequence (an). 

Composition of permutation is also used in studying 

some of these properties. It is discovered that the 

elements of the structure formed group under 

composition of permutation. 

 

Indexed Terms- Permutation, Image, Cycle, 

Transposition, Symmetric group and Alternating 

group. 

 

I. INTRODUCTION 

 

One important application of counting principles is in 

determining the number of ways that n-elements can 

be arranged (in order). An ordering of n-elements is 

called permutation of the elements. A permutation of 

n-elements is an ordering of the elements such that one 

is first, another one is second, and another one is third 

and so on. 

 

The notion of permutation is used with several other 

slightly different meanings but all related to the act of 

permuting (rearranging) objects or values. For 

example, there are six permutations of the set {1, 2, 3} 

namely {1, 2, 3}, {1, 3, 2}, {2, 1 ,3}, {2, 3, 1}, {3, 1, 

2}, {3, 2, 1}. One might define an anagram of a word 

as a permutation of its letters. The number of 

permutations of n distinct objects is n(n-1)(n-2)…2.1. 

In other word, the number is called n!  

 

Permutations occur in more or less prominent ways in 

almost every domain of mathematics. They often arise 

when different orderings on certain finite sets are 

considered possibly only because one wants to ignore 

such orderings and needs to know how many 

configurations are thus identified. For similar reasons 

permutation arises in the study of sorting algorithm in 

computer science. In high school mathematics, the 

words permutation and arrangement are used 

interchangeably. If the word arrangement is used at all, 

we draw the distinction between them. If X is a set, 

then a list in X is a function      f :{ 1, 2, 3… n} →X. 

If a list f in X is a bijection (so that X is now finiteset 

with     │X│= n), then f is called an arrangement of X. 

 

I. FORMULATION OF THE PROBLEM 

Let Ω be a non-empty, totally ordered and finite subset 

of N . 

Let 𝔾p  1 2 1, ..... P   −=  be a structure such that 

each i  is generated from the arbitrary set Ω, for any 

prime 5p  , using the scheme  

( )( ) ( ) ( )( )( )2 2 2 2 ... 2 1 (3.2.1)i mP mP mP
i i P i = + + + −

 

Then each i  is called a Cycle and the elements in 

each i  are distinct and called Successors. We denote 

thn  successor in a Cycle  i  as 

 

( )( )2 1 (3.2.2)n mP
a n i= + −

 

       Where the subscript Pm    indicates that the 

numbers are taken 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝,1 n P  , and  

1 1i P  − . The number of distinct successors in a 

cycle is called the Length of the Cycle. 

 

I.  II. SOLUTION TO THE PROBLEM 

Example 1.1: For 5p = , equation (3.21) and (3.22) 

can generate    

𝔾5=
 (23451), (24135), (25314), (21543)

  

Where 

1 2 3 4(23451), (24135), (25314), (21543)   = = = =
  

Each with length 5. 

Example 1.2: Let verify Group properties on 

permutation 𝔾p for 5p = , (where p is prime) 

Closure Property: 
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(23451)(24135) (25314)

(25314)(21543) (24135)

(21543)(23451) (21543)

=

=

=
 

Associative property: 

(13524)[(15432)(14253)] (13524)(13524) (15432)= =
 

[(13524)(15432)](14253) (14253)(14253) (15432)= =
 

Existence of Identity: 

It is observed that  

1

1 1. .

i p

i i i i p

G e

G

 

     

   =

 = =  
 

(23451)(25314) (25314)=
 

Existence of Inverse: 

Also for each  

1

1 1

1. .

i p i

i i i i i p

G

e G

 

     

−

− −

  

 = = =  
 

(24135)(25314) (23451)=
 

composition of i  
for 5p = , (where p  is prime) 

Let     1 (23451) =
,  2 (24135) =

,     

3 (25314) =
,     and    4 (21543) =

 

Then 

 

 
1  2  3  4  

1  1  2         
 3  4  

2  2  4  1  3  

3  3  1  4  2  

4  4  3  2  1  

Table 4.4: Composition of i  for 1,2,3,4i =  

 

Example 1.3: For 7p = , equation (1) and (2) can 

generate    

𝔾7= 

 (2345671), (2461357), (2514736), (2637415), (2753164), (2176543)
  

where  

1 (2345671) =
, 2 (2461357) =

, 

3 (2514736) =
, 4 (2637415) =

, 

5 (2753164) = 6 (2176543) =
 

Each with length 7. 

 
1  2  3  4  5  6  

1  1   2  3  4  5  6  

2  2  4  6  1  3  5  

3  3  6  2  5  1  4  

4  4  1  5  2  6  3  

5  5  3  1  6  4  2  

6  6  5  4  3  2  1  

Table 4.5: Composition of i  for 1,2,3,4,5,6i =  

 

Example 1.4:  On direct substitution in equation 

(3.2.2), for each i , the first successor in i , 1 ≤ 𝑖 ≤ 𝑝 − 

1, is 2 as established in the above example. Similarly, 

the second successor in 6 , for instance, is 1 and the 

third is 7, since, 0 and 7 are equivalent in mod7. 

 

Example 1.5: For 11P = , equation (3.2.1) and 

(3.2.2) can generate the structure 𝔾11= 

{(23456789(10)(11)1), ( 2468(10)13579(11)), (258(11)369147(10) ),

( 26(10)37(11) 48159), (2716(11)5(10) 4938), ( 28394(10)5(11)617),

(295184(11)73(10)6), ( 2(10)7 41963(11)85), ( 2(11)97531(10)864),

(21(11) (10)9876543)}
 

Where 

        

1

2

3

4

5

6

7

8

9

1

(23456789(10) (11)1)

(2468(10)13579(11) )

(258(11)369147(10) )

(26(10)37(11) 48159)

(2716(11)5(10) 4938)

(28394(10)5(11)617)

(295184(11)73(10)6)

(2(10)7 41963(11)85)

(2(11)97531(10)864)





















=

=

=

=

=

=

=

=

=

0 (21(11) (10)9876543)=

 

Each with length 11. 

Example 1.6:  On direct substitution in equation 

(3.22), for each i , the first successor in i , 1 ≤ 𝑖 ≤ 𝑝 − 

1, is 2 as established in the above example. Similarly, 

the second successor in 10 , for instance, is 1 and the 

third is 11, since, 0 and 11 are equivalent in mod11. 
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Example 1.7: For 13P = , equation (3.21) and (3.22) 

can generate the structure 𝔾13= 

{(23456789(10)(11)(12)(13)1), (2468(10)(12)13579(11)(13)), (258(11)147(10)(13)369(12)),

(26(10)159(13)48(12)37(11)), (27(12)4916(11)38(13)5(10)), (2817(13)6(12)5(11)4(10)39),

(293(10)4(11)5(12)6(13)718), (2(10)5(13)83(11)6194(12)7), (2(11)73(12)84(13)951(10)6),

(2(12)963(13)(10)741(11)85), (2(13)(11)97531(12)(10)864), (21(13)(12)(11)(10)9876543)}
 

Where 

1 (23456789(10)(11)(12)(13)1) =
 

2 (2468(10)(12)13579(11)(13)) =
 

3 (258(11)147(10)(13)369(12)) =
 

4 (26(10)159(13)48(12)37(11)) =
 

5 (27(12)4916(11)38(13)5(10)) =
 

6 (2817(13)6(12)5(11)4(10)39) =
 

7 (293(10)4(11)5(12)6(13)718) =
 

8 (2(10)5(13)83(11)6194(12)7) =
 

9 (2(11)73(12)84(13)951(10)6) =
 

10 (2(12)963(13)(10)741(11)85) =
 

11 (2(13)(11)97531(12)(10)864) =
 

12 (21(13)(12)(11)(10)9876543) =
 

 
Each with length 13.

 Example 1.8:  On direct substitution in equation 

(3.22), for each i , the first successor in i , 1 ≤ i ≤ p − 

1, is 2 as established in the above example. Similarly, 

the second successor in 12 , for instance, is 1 and the 

third is 13 since, 0 and 13 are equivalent in mod13. 

Example 1.9: For 17P = , equation (3.21) and (3.22) 

can generate the structure 𝔾17=               

 

 

( ) ( ) ( ) ( ) ( )( )23456789 10 (11) 12 (13) 14 (15) 16 17 1

  ( ) ( )( ) ( ) ( ) ( )( ) ( )( )2468 10 12 14 16 1 3 5 7 9 11 13 15 17

 ( )( ) ( ) ( ) ( ) ( )( ) ( )( )2 5 8 11 14 17 369 12 15 14 7 10 13 16

( ) ( ) ( )( ) ( ) ( ) ( )( )( )2 6 10 14 159 13 17 48 12 16 37 11 15

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 7 12 17 5 10 15 38 13 16 11 16 49 14

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 8 14 39 15 4 10 16 5 11 17 6 12 1 7 13

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 9 16 6 13 3 10 17 7 14 4 11 1 8 15 5 12

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 10 1 9 17 8 16 7 15 6 14 5 13 4 12 3 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 11 3 12 4 13 5 14 6 15 7 16 8 17 91 10

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 12 5 15 81 11 4 14 7 17 10 3 13 6 16 9

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 13 71 12 6 17 11 5 16 10 4 15 93 14 8

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 14 9 4 16 11 61 13 8 3 15 10 5 17 12 7

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 15 11 73 16 12 8 4 17 13 9 5 1 14 10 6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 16 13 10 7 41 15 12 9 63 17 14 11 85

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )2 17 15 13 11 97531 16 14 12 10 864

( ) ( ) ( ) ( )( ) ( ) ( )( )( )21 17 16 15 14 13 12 11 10 9876543
 

 Range of a Cycle  

We define the Range of a Cycle    𝔾p as 

( ) ( )1: f  =  where ( )1

f   is the difference 

between the first and the last successors in a Cycle
. 

 General Setting  

 Let 𝔾p
 
 1 2 1, ..... P   −=  Define an operator 

:  𝔾p X→      

                          (3) 

Such that    𝔾p  we have  

( ) ( )1: f  =      

    (4) 

The operator ( )   is said to have defined a range 

for any such . Then we have the following:   

Proposition 1 

 The operator   defines an Isomorphism on 𝔾p. 

 

Proof: 

 Each   is a Cycle structure and so the first successor 

is always 2. Thus    is well defined and non-empty. 

Furthermore, each ω is distinct up modularity. 

   Thus, ( ) ( ):i j   =  if and only if i j= , 

which implies that   is injective. In addition, suppose 

( )x  =  for some cycle . Then x    X . This 

implies that ( )x = . Hence   is onto. The result 

follows. 

 Theorem 1.1 

For any   𝔾p 
5p   a prime, x X  such that 

( ) x  =  mod p. 

 Proof: 

From the proof of theorem 4.16.1, it follows that   is 

an isomorphism, that is,  
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, 1 ,i ix X n N n p     
 

such that, 

, 1ix P n i= −     an index set. It follows from 

equation (4) that 

( ) ( ):i j x X  = =   

mod ,modX p p n p = −  

         
( ) modp n p= −  

         
modx p= . 

Number Theoretic Properties of 𝔾p  

 The number theoretic properties of this scheme are 

motivated by the nature of the sequence generated in 

the pairing of points of the Cycles.  Consequently, we 

have the following proposition.    

Proposition 2 

 For any prime number 5p  , 

( )
1

1

n
f

i i

i


−

=

  is divisible by p  

 Proof: 

 By Equations (3.2.1) and (3.2.2) as a general scheme, 

we have   

( )( )( ) ( )( )( )1 1 1 1 1: 1 2 ... 1a a a a p = + + + −   

( )( )( ) ( )( )( )2 1 1 1 1: 2 3 ... 2a a a a p = + + + −   

( )( )( ) ( )( )( )3 1 1 1 1: 3 4 ... 3

.

.

.

a a a a p = + + + −

  

( ) ( )( ) ( )( ) ( )( )1 1 1 1 1: 1 2 ... 1p a a p a p a − = + − + − +   

Hence  

( ) ( ) ( ) ( )
1

1

1 2 3 ... 1
p

f

i i

i

p p p
−

=

 = − + − + − + +  

                 

1

2
np=      

                
( )

1
1

2
p p= −  

Range of i  

We use the concept of parenthesizing in Catalan 

Numbers to develop the scheme for some primes  

11 17p   as follows: 

𝔾11= 

{(23456789(10)(11)1), ( 2468(10)13579(11)), (258(11)369147(10) ),

( 26(10)37(11) 48159), (2716(11)5(10) 4938), ( 28394(10)5(11)617),

(295184(11)73(10)6), ( 2(10)7 41963(11)85), ( 2(11)97531(10)864),

(21(11) (10)9876543)}
 

𝔾13=

{(23456789(10)(11)(12)(13)1), (2468(10)(12)13579(11)(13)), (258(11)147(10)(13)369(12)),

(26(10)159(13)48(12)37(11)), (27(12)4916(11)38(13)5(10)), (2817(13)6(12)5(11)4(10)39),

(293(10)4(11)5(12)6(13)718), (2(10)5(13)83(11)6194(12)7), (2(11)73(12)84(13)951(10)6),

(2(12)963(13)(10)741(11)85), (2(13)(11)97531(12)(10)864), (21(13)(12)(11)(10)9876543)}
 

G17=   

       

( )

( )

( )

(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(1)

(2)(4)(6)(8)(10)(12)(14)(16)(1)(3)(5)(7)(9)(11)(13)(15)(17)

(2)(5)(8)(11)(14)(17)(6)(3)(9)(12)(15)(1)(4)(7)(10)(13)(16)

(2)(6)(10)(14)(1)(5)(9)( )

( )

( )

(13)(17)(4)(8)(12)(16)(3)(7)(11)(15)

(2)(7)(12)(17)(5)(10)(15)(3)(8)(13)(1)(6)(11)(16)(4)(9)(14)

(2)(8)(14)(3)(9)(15)(4)(10)(16)(5)(11)(17)(6)(12)(1)(7)(13)

(2)(9)(16)(6)(13)(3)(10)(17)(7)(14)(4)(11)(1)(( )

( )

( )

( )

8)(15)(5)(12)

(2)(10)(1)(9)(17)(8)(16)(7)(15)(6)(14)(5)(13)(4)(12)(3)(11)

(2)(11)(3)(12)(4)(13)(5)(14)(6)(15)(7)(16)(8)(17)(9)(1)(10)

(2)(12)(5)(15)(8)(1)(11)(4)(14)(7)(17)(10)(3)(13)(6)(16)(9)

(2)(13)(7)( )

( )

( )

(1)(12)(6)(17)(11)(5)(16)(10)(4)(15)(9)(3)(14)(8)

(2)(14)(9)(4)(16)(11)(6)(1)(13)(8)(3)(15)(10)(5)(17)(12)(7)

(2)(15)(11)(7)(3)(16)(12)(8)(4)(17)(13)(9)(5)(1)(14)(10)(6)

(2)(16)(13)(10)(7)(4)(1)(15)(12)(( )

( )

( )

9)(6)(3)(17)(14)(11)(8)(5)

(2)(17)(15)(13)(11)(9)(7)(5)(3)(1)(16)(14)(12)(10)(8)(6)(4)

(2)(1)(17)(16)(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)

 

  And in general, for any prime p , we have  

𝔾p  1 2 1, ,... p   −=  

Where 

1 ((2)(2 ) (2 2 ) ... (2 ( 1) )mP mP mPi i p = + + + −  

And 

(2 ( 1) )mPn i+ −
 
is as defined in equation (3.22) 

Further Algebraic Properties 
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Further algebraic theoretic properties of the structure 

𝔾p
 
can be obtained by embedding a special Cycle into 

it as follows. 

Extending 𝔾p 

Let   be a non-empty set and 𝔾p 

 1 2 1, ,... p   −= be as defined earlier, where 

5p  is prime and i are Cycles. Define 𝔾p = 𝔾p
 

(7)p  

Where 
 (( )( )( ) ( )) (8)p p p p L p =  

is a special Cycle with Length 1 in which the 

successors are not distinct. Then we have the 

following: 

Proposition 3 

Let 𝔾p be as defined in equation (7) and , :i j =  𝔾p 

→  𝔾p be a concatenation map, 

1 , , 5 13i j p p and  = is a prime. Then (𝔾p 
, )  is an abelian group. 

 Proof: 

Define , ( , ) : ,i j i j i j    +=  where ( )i j+  is 

reduced to mod p, to be the concatenation map since 

( )i j+ is reduced to mod p, , ( , ) :i j i j i j    +=  

𝔾p and , ( , ) :i j i j i j i j    + += =  𝔾p for every 

( )i j+ mod p, implying closure and commutativity. 

Associativity easily follows. 

  Similarly, for every i  𝔾p 

,, ( , )i p i p i p i    += =  and that there exist an 

' [1, ]i p  such that , ( , ) : .i y i y i y p    += =

this implies that i is the reverse of i and p is the 

identity. 

Proposition 4 

Let : =  𝔾p 
'X→ be as defined in (3). The set 

'X
forms a canonical set of representatives for integer 

modulo p with identity. 

Proof:  By theorem (4.3.1),   

every x X  is expressible as 

, 1 , ,i ix p n n p i I= −    an index set. It 

follows that the only element that is missing there is 

the zero element. With the extension 𝔾p to 𝔾p we have

',1 ,i ix p n n p x X= −     . 

 

 

 

 

CONCLUSION 

 

We have so far established some group theoretic and 

number theoretic properties. Some properties of the 

new algebraic structure 𝔾p were investigated using 

some permutation pattern of numbers. An operator is 

defined on the 𝔾p constructed as composition of 

permutation in order to study the properties of the 

resulting structure. The structure was also used to 

generate some integer sequences. The concept of 

extension was used to extend the 𝔾p with some 

algebraic theoretic properties. 

 

In addition to this, the structure was found to be a 

group and each cycle of the structure was also found 

to be a ring. Homomorphism also holds in the 

structure. 

 

Finally, some functions were also defined on the cycle 

of the structure to construct a graph where adjacency 

matrix for each graph is presented. 
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