
© JUN 2022 | IRE Journals | Volume 5 Issue 12 | ISSN: 2456-8880

IRE 1703580 ICONIC RESEARCH AND ENGINEERING JOURNALS 100

Android Based Multi-Lingual SMS Spam Prototype

Design and Development

KIPKEBUT ANDREW1, THIGA MOSES2, OKUMU ELIZABETH3
1, 2, 3 School of Science and Engineering, Kabarak University -Kenya

Abstract- Most spammers are constantly developing

new sophisticated methods, rendering previous

techniques obsolete. A thoughtful deficiency in most

sms spam detection methods is lack of satisfying

accuracy, reliability, low performance and

comprehensibility especially when individual

classifiers are used, these remains important aspects

to be considered for an optimal model development.

Sms spam detection using machine learning

techniques is a new approach especially in

ubiquitous computing devices such as mobile

phones, moreover the design of short message spam

detection techniques in a mobile platform is

challenging task due to the non-stationary

distribution of the data and the multi-lingual nature

of text messages from users. It is in this background

that the research proposes a multi-stage ensemble

hybrid prototype sms spam detection model for a

mobile environment using machine learning

techniques. It involves enhanced use of pre-

processing techniques, content-based feature

engineering techniques, multilingual natural

language processing, data training and testing. The

effectiveness of the proposed prototype is empirically

validated using ensemble classification methods that

gave an overall classification accuracy of 98.2606%.

Indexed Terms— Algorithm, Detection, Ensemble

 Feature engineering, Machine learning, SMS.

I. INTRODUCTION

Mobile communication devices have been the most

adopted means of communication both in the

developed and developing countries with its

penetration more than all other electronic devices put

together [1]. Every mobile communication device

needs some type of mobile operating system to run its

services: voice calls, short message service, camera

functionality, and so on. Google Android, Apple IOS

and Microsoft Windows Phone are most common

types of mobile operating systems [2].According [3]

Android’s percentage share in the market is increasing

at an alarming rate, Google android is rapidly taking

its place in the eyes of today’s youth and every person

today wants affordable and the best operating system

which Android guarantees to provide to its users.

Dollah et al [4] research on mobile device ownership,

the research indicated that 159 out of 225 respondents

(70.4%) had Android based device for their mobile

phones followed by others (19%), Apple iPhone

(11.1%), and Windows Phone (2.2%). The least was

Blackberry mobile phone with a percentage of (1.3%)

only. The possible factors that led to the high

ownership rate of Android based mobile phones may

be attributed to the competitive price of these devices.

However, in lieu of this finding, the simplicity,

reliability and functionality may be best attributed to

others, such as, Apple iPhone and windows Phone. A

research conducted by [5] on the increasing market

penetration of mobile devices, such as smartphones

and tablets, poses additional challenges on the design

of distributed systems. Due to the heterogeneous

environment consisting of both, mobile and fixed

devices, a multitude of effects on different scales need

to be considered. Microscopic effects, such as an

individual user's interaction with the device, as well as

macroscopic effects, such as scalability with the

number of users have an impact on the system's

performance. The combined evaluation of micro- and

macroscopic effects requires both, simulations and

prototypical deployments. It is also common practice

for developers of user-facing software to transform a

mock-up of a graphical user interface (GUI) into code.

This process takes place both at an application's

inception and in an evolutionary context as GUI

changes keep pace with evolving features (Moran et

al., 2018). Using stable IDE software such as android

studio developers can develop applications for phone

that accelerate development and help you build the

highest-quality apps (Hagos, 2018).

© JUN 2022 | IRE Journals | Volume 5 Issue 12 | ISSN: 2456-8880

IRE 1703580 ICONIC RESEARCH AND ENGINEERING JOURNALS 101

II. RELATED WORK

There is a growing need for automated testing

techniques aimed at Android apps. A critical challenge

is the systematic generation of test cases. One method

of systematically generating test cases for Java

programs is symbolic execution. But applying

symbolic execution tools, such as Symbolic Pathfinder

(SPF), to generate test cases for Android apps is

challenged by the fact that Android apps run on the

Dalvik Virtual Machine (DVM) instead of JVM. In

addition, Android apps are event driven and

susceptible to path-divergence due to their reliance on

an application development framework [6]. Recent

introduction of a dynamic permission system in

Android, allowing the users to grant and revoke

permissions after the installation of an app, has made

it harder to properly test apps. Since an app's behavior

may change depending on the granted permissions, it

needs to be tested under a wide range of permission

combinations. At the state-of-the-art, in the absence of

any automated tool support, a developer needs to

either manually determine the interaction of tests and

app permissions. The study by [7] focuses on mapping

the testing techniques for mobile applications.

Additionally, the study emphasizes the need for testing

metrics to be included and adhere to address mobile

application testing lifecycle conformance. The major

lags in the mentioned techniques for a smartphone

application testing lie in the automation of testing.

According to the authors, this is an emerging and

future of mobile and other testing, but very few studies

have implemented this technique over complex

applications. Automated testing techniques perform

well over small to medium and simple mobile

applications, but very little work is done over the

implementation and analysis of this technique over

complex mobile applications. On android ecosystem

there is a large selection of different testing tools,

libraries and frameworks available for Android. It is

hard to understand which tool to use for what type of

tests whether unit testing, mocking, user interface

testing or integration testing [8].

III. METHODOLOGY

In this section the following very important methods

are outlined for the design and development of the

prototype: - Text preprocessing, feature engineering

techniques, model design, development and testing.

The Meta model as per the conceptual diagram

determines the class of data as either spam or not based

on data set provided. Finally an android based

prototype is implemented on the client phone to detect

the class for the messages.

Figure 1: Conceptual framework

A. Model prototype development and Implementation

The android-based client-side SMS SPAM detection

model implementation of this research is done using

open-source machine learning libraries, Java

language, JavaScript, XML on android studio IDE

with SQLite database for the backend. The model also

includes an additional cloud translation API module

for multilingual language processing. The final

implementation includes the following main modules.

• Listening of incoming messages.

• Enhance Text pre-processing

© JUN 2022 | IRE Journals | Volume 5 Issue 12 | ISSN: 2456-8880

IRE 1703580 ICONIC RESEARCH AND ENGINEERING JOURNALS 102

• Enhanced Feature engineering methods

• Training and testing of the model.

• Message classification and clustering.

As part of software validation, module testing is

adopted as a software testing type, it checks individual

subprograms, subroutines, classes, or procedures in a

program. Instead of testing whole software program at

once, module testing recommends testing the smaller

building blocks of the program, Module testing avoid

redundant activities and checks. This testing is done

using JUnit. JUnit is a testing framework for the Java

programming language. JUnit has been important in

the development of test-driven development [9], it

covers faults and defects for a given software.

B. Prototype Design and Implementation

In this section an overview of the ensemble hybrid

client side sms spam detection modules are presented

as per the model. After having evaluated the model,

the researcher implemented it as per the reasons

aforementioned previously. The application

architecture is shown in figure 2. The architectures

involves the initial stage of receiving incoming raw

messages which are pre preprocessing (stop words,

tokenization and stemming), TF and IDF, training and

testing. To achieve this implementation it was

necessary to comprehend well not only how the

hybridized ensemble model is designed, but also an in

depth pre-processing and feature engineering

procedures, the steps are illustrated below. The top-

level pseudo code developed in Java language. The

coding developed in this research work consisted of

four modules. The model is implemented at the client-

side portable android smart device GSM capabilities.

The user must allow the application to listen to

incoming messages through phone settings=>

apps=>choose Spam detector app=> under

permissions=> select allow sms .

Figure 2: Android based Architecture

The GUI is developed using JAVA and android

studio Integrated Development Environment (IDE)

with SQLite database which contains the messages for

training and testing .The system GUI conforms to user

interface design principles that’s satisfies the

following user interface design principles ,Clear,

Consistent, Efficient, Responsive and Reliable. The

incoming text message is first translated into English

from Swahili text messages when required, if the

message is in English then there is no need of

translation. Figure 3 Shows how this is done, If a

message is detected as SPAM the user has an option

of saving it or dismissing it, If the save option is

selected the user can view the saved message in a

different folder for future reference which also

include the Spam contacts associated with the Spam

messages received.

Figure 3 Training and testing example.

© JUN 2022 | IRE Journals | Volume 5 Issue 12 | ISSN: 2456-8880

IRE 1703580 ICONIC RESEARCH AND ENGINEERING JOURNALS 103

IV. RESULTS AND DISCUSSION

In this study it is clear that combining classifiers using

stacking algorithm was observed to give a better

accuracy compared to bagging and boosting since it

provides more diversity of classifiers and also

recorded high true positive and low false positive. A

stacked model of Naïve Bayes, Artificial Neural

Network and Support vector machine recorded the

most optimal solution with highest precision of 98.3%

and a low false positive of 0.064 %.

This model also recorded a Kappa statistics of

0.9268, Mean absolute error of 0.0181, MCC of

0.927 ,Root mean squared error 0.13 and ROC of

0.960 .

A. Prototype module Testing

Testing is a very important process in any design and

development of a software. It uncovers all the bugs

generated by the software to make the application a

successful product. In this thesis the prototype testing

was done as per the modules using JUnit a module

framework for Java based applications. It is an

automation framework for module testing as well as

user interface. It contains annotations such as @Test,

@Before, @After etc. [10].This process is an

important phase in software development lifecycle

since it serves as the “Quality Gate” for the android

application, the test summary report is an important

deliverable which is prepared at the end of a Testing

project. Further several metrics were used to help

understand the test execution results, the status of test

cases, defects among others. Defect Summary-

Severity wise; Defect Distribution-Function/Module

wise; Defect rejection ratio (DRR) and Defect

leakage ratio(DLR) were also included as part of the

software test report that including the use of

Charts/Graphs for better visual representation.

The tests planned and tests executed report on table 2

allowed the researcher to optimally track the testing

progress as per the test cases plan, number of

executions, number of passed and failed test.

Figure 4: Test Cases vs. failed test cases

In general there were a total of 25 test cases plan as per

the KLOC of the application, 20 test case were

executed successfully, 18 (90%) of them passed the

test and 2 (10%) of them failed the test. The 10 % in

the failed test cases was due to server and network

issues, and also from unresponsive scripts as

illustrated in figure 5, these were resolved by

modifying the ActivityTestRule and then re-executing

the failed test cases again [11].

In table 4 and figure 5 the defects opened (New,

Assigned, Reopened, and Blocked) vs. closed report

(Resolved, Closed, and canceled) displays the number

of defects that were opened compared with the

number of Defects that were closed. This report helps

to determine the rate at which defects are being

opened compared with the rate at which defects are

© JUN 2022 | IRE Journals | Volume 5 Issue 12 | ISSN: 2456-8880

IRE 1703580 ICONIC RESEARCH AND ENGINEERING JOURNALS 104

being closed. In general there were 8 (44%) closed

critical, 4 (22%) major, 3 (16.6%) medium and zero

cosmetic defects .All Critical defects were closed

since they represented those features that are most

important to the system to function e.g. the training

module. The cosmetic test case that represented 100

% of the open defect remained open since it only

represented the aesthetic value of the project rather

than the functionality.

Figure 5: Bar chart representing defect severity.

In general the module defect for the main module

registered a total of 4 defects (21%) , preprocessing

module 5 defects (23%) , feature selection module 5

defects (23%) , training module 3 defects (13%)

and testing module 4 defects (21%) of the total

defects for critical , major , medium and cosmetic as

shown in figure 6. The module defect

distribution report is important since it displays the

number of defects by status, helping the researcher

track the progress of defects for the prototype and also

in identifying and prioritizing the defects

Figure 6: Defects distributions

After identifying the defects the next step was fixing

the defects as per priority , once a defect has been

resolved and verified, the defect status is changed to

closed ,another important metric is to measure and

evaluate the quality of a test execution - Defect

rejection ratio (DRR) =(number of defects

rejected/total number of defects raised)*100 and

defect leakage ratio(DLR) =(number of defects

missed /total defects of the application)*100 DRR

was recorded as 0.0952 (9.52%) and DLR of 0.1423

(14.23%). The smaller value of DRR and DLR is, the

better quality of test execution done [12].

V. CONCLUSION

The experiments conducted on the ensemble prototype

method produced a better classification performance

as compared to other existing model. This

improvement was achieved because of the

preprocessing techniques and the enhanced feature

selection methods adopted. The prototype

implementation and testing conducted on android

device also proved that the generalized model is usable

and can handle diverse text messages through multi-

lingual processing.

REFERENCES

[1] Okediran, O. O., Arulogun, O. T., Ganiyu, R. A.,

& Oyeleye, C. A. (2014). Mobile operating

systems and application development platforms:

A survey. International Journal of Advanced

Networking and Applications, 6(1), 2195.

[2] Novac, O. C., Novac, M., Gordan, C., Berczes,

T., & Bujdosó, G. (2017). Comparative study of

Google Android, Apple iOS and Microsoft

Windows phone mobile operating systems.

© JUN 2022 | IRE Journals | Volume 5 Issue 12 | ISSN: 2456-8880

IRE 1703580 ICONIC RESEARCH AND ENGINEERING JOURNALS 105

In 2017 14th International Conference on

Engineering of Modern Electric Systems

(EMES) (pp. 154-159). IEEE.

[3] Jain, V., & Sharma, A. (2013). The consumers

preferred operating system: Android or

iOS. International Journal of Business

Management and Research (IJBMR), 3(4), 29-

40.

[4] Foozy, C.F.M. & Ahmad, Rabiah & Abdollah,

Mohd (2014). A framework for SMS spam and

phishing detection in Malay language: A case

study. International Review on Computers and

Software. 9. 1248-1255.

[5] Richerzhagen, B., Stingl, D., Ruckert, J., &

Steinmetz, R. (2015, August). Simonstrator:

Simulation and prototyping platform for

distributed mobile applications. In The 8th EAI

International Conference on Simulation Tools

and Techniques (ACM SIMUTOOLS 2015) (pp.

99-108).

[6] Mirzaei, N., Malek, S., Păsăreanu, C. S.,

Esfahani, N., & Mahmood, R. (2012). Testing

android apps through symbolic execution. ACM

SIGSOFT Software Engineering Notes, 37(6), 1-

5.

[7] Zein, S., Salleh, N., & Grundy, J. (2016). A

systematic mapping study of mobile application

testing techniques. Journal of Systems and

Software, 117, 334-356.

[8] Morgado, I. C., & Paiva, A. C. (2019). The

iMPAcT tool for Android testing. Proceedings of

the ACM on Human-

ComputerInteraction, 3(EICS), 1-23.

[9] Gromov, M. L., Prokopenko, S. A., Shabaldina,

N. V., & Laputenko, A. V. (2019, June). Model

Based JUnit Testing. In 2019 20th International

Conference of Young Specialists on

Micro/Nanotechnologies and Electron Devices

(EDM) (pp. 139-142). IEEE.

[10] Dietterich, T., Domingos, P., Mitchell, T., Page,

D., &Shavlik, J. (2016). Learning Bayesian

Networks (part 3).Terms via iOS and Android

Based Devices. International Journal of

Interactive Mobile Technologies, 11(3).

[11] Hagos, T. (2018). Android studio. In Learn

Android Studio 3 (pp. 5-17). Apress, Berkeley,

CA.

[12] Mesquita, D. P., Rocha, L. S., Gomes, J. P. P., &

Neto, A. R. R. (2016). Classification with reject

option for software defect prediction. Applied

Soft Computing, 49, 1085-1093.

