
© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 556

Software Defined Networking (SDN) Controller for

Dynamic Network Traffic Isolation Through OpenFlow

JAMILU USMAN WAZIRI1, E, OMOKHUALE2

1 MIS/ICT Department, Federal University Gusau, Zamfara State, Nigeria
2 Mathematical Sciences Department, Federal University Gusau, Zamfara State, Nigeria

Abstract- OpenFlow is the latest and most widely

accepted networking technology which is used to

realize the paradigm changing concept of Software

Defined Networking (SDN). OpenFlow strongly

advocates the separation of a switch’s control plane

from the data plane and a centralized controller to

control the entire network. Traffic isolation enables

greater security for network communication, along

with managing the bandwidth of the network more

efficiently and providing logical separation between

hosts that need to work together. But, dynamically

managing the traffic isolation in a network is a very

tedious task. Network management applications

using OpenFlow for addressing this problem are not

widely available. We propose two approaches to solve

this problem using OpenFlow. We developed two

OpenFlow controller applications

’OFModifyVLAN’ and ’OFWhiteListing’, for

addressing the above problem in short-term and

long-term dynamic scenarios, respectively. We

configured multiple OpenFlow network platforms

using Mininet simulator, Open VSwitch and HP

Procurve switch to test the working and performance

of the two OpenFlow controller applications. We

tested ’OFModifyVLAN’ on the Open VSwitch

network, while ’OFWhiteListing’ has been tested on

all three platforms. We measured the round trip time

of the packets in all the above mentioned scenarios.

By observing the experimental results, we conclude

that the two applications are capable of handling

traffic isolation in real networks. Further, we

conclude that ’OFWhiteListing’ is more efficient

than ’OFModifyVLAN.’

Indexed Terms- OpenFlow, Packets Isolation,

Software Defined Networking (SDN), Dynamic

Traffic

I. INTRODUCTION

1.1 Overview of OpenFlow

 A recent approach to programmable networks is the

Software Defined Networking (SDN) architecture.

SDN consists of decoupling the control and data

planes of a network. It relies on the fact that the

simplest function of a switch is to forward packets

according to a set of rules. However, the rules

followed by the switch to forward packets are

managed by software. One motivation of SDN is to

keep the design of network devices simple. Another is

to perform network tasks that could not be done

without additional software for each of the switching

elements. Developed applications can control the

switches by running on top of a network operating

system, which works as an intermediate layer between

the switch and the application. OpenFlow ((Mckeown

et al., 2018) was proposed to standardize the

communication between the switches and the

software-based controller in an SDN architecture. The

authors identify that it is difficult for the networking

research community to test new ideas in current

hardware. This happens because the source code of the

software running on the switches cannot be modified

and that the network infrastructure has been”ossified”

2 (Mckeown et al., 2018) as new network ideas cannot

be tested in realistic traffic settings. By identifying

common features in the flow tables of the Ethernet

switches, the authors provide a standardized protocol

to control the flow table of a switch through software.

OpenFlow provides a means to control a switch

without requiring the vendors to expose the code of

their devices. OpenFlow networks have specific

capabilities. For example, it is possible to control

multiple switches from a single controller. It is also

feasible to analyze traffic statistics using software.

Forwarding information can be updated dynamically

as well and different types of traffic can be abstracted

and managed as flows. These capabilities have been

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 557

exploited by the research community to experiment

with innovative ideas and propose new applications.

Ease of configuration, security, availability, network

and data center virtualization and wireless applications

are those that have been investigated the most using

OpenFlow. They have been implemented in different

environments, including virtual or real hardware

networks and simulations. OpenFlow was initially

deployed in academic campus networks (Mckeown et

al., 2018). Today, at least seven Universities have

deployed this technology. The goal of OpenFlow was

to provide a platform that would allow researchers to

run experiments in production networks. However,

industry has also embraced SDN and OpenFlow as a

strategy to increase the functionality of the network

while reducing costs and hardware complexity. Table

1 shows a list of OpenFlow compliant switches

available in the market. The Open Networking

Foundation (ONF) was founded in 2011 by Deutsche

Telekom, Facebook, Google, Microsoft, Verizon, and

Yahoo to promote the implementation of SDN and

OpenFlow based networks. Currently, ONF has 59

members including several major vendors.

1.2 Motivation

In today’s world, a network plays a very crucial role in

the operation of various businesses. In order to

accommodate the ever-changing requirement of the

businesses, the network configurations would need to

be changed dynamically. One such ever changing

requirement in a network is the setup of new working

groups in a business office. That is for instance as a

new project comes in, certain staff in accounting

department and marketing department of a business

organization may need to collaborate together. The

requirement of these working groups may be that all

the hosts are attached to the same broadcast domain.

In some situations, the communications traffic among

these hosts in the working groups may be needed to be

strictly isolated. In fact, in the real-world situations,

hosts would have to be added and removed from a

particular working group dynamically as the business

needs change. One solution that is being extensively

used to attain a subset of the above requirement is the

concept of Virtual Local Area Network (VLAN).

While using VLANs to establish working groups,

many constraints come into play. Not all the switches

may be supporting VLANs. Even if that is the case, the

dynamic requirement to establish the working groups

is highly complex. Even to just establish a working

group as a first step, each of the switches in the

network’s subnet has to be configured separately.

Further, it is very difficult to keep up with the

dynamics of the working groups as the requirements

change. OpenFlow provides a centralized control of

the network and more generic ways to identify flows.

Hence, using the OpenFlow technology to carry out

the traffic management to establish the working

groups described above would be a good solution to

the present problem. The motivation for the project is

the scope and impact of the OpenFlow technology.

The aim of the project is to develop an OpenFlow

application, 4 evaluate its ease of development, and

test its applicability in multiple environments.

1.3 Software Defined Networks

Software-Defined Networking (SDN) has emerged as

a new intelligent architecture for network architecture

to reduce hardware limitations. The main idea of

introducing SDN is to separate the control plane

outside the switches and enable external control of

data through a logical software component called

controller. SDN provides simple abstractions to

describe the components, the functions they provide,

and the protocols to manage the forwarding plane

along with Mobile IP from a remote controller via a

secure channel. In conclusion, the inability of mutual

access between different parts of heterogeneous

networks would be solved. This abstraction is used

instead of the common requirements of forwarding

tables for a majority of switches and their flow tables.

Hence, the controller monitors network packets,

publishes policy, or solves errors according to the

monitoring results. A number of northbound interfaces

(connection between the control plane and

applications) that provide higher level abstractions to

program various network-level services and

applications at the control plane. The OpenFlow

standard has been exploited as the dominant

technology for the southbound interface (connection

between the control plane and network devices). This

scheme allows on-demand resource allocation, self-

service provisioning, completely virtualized

networking, and secures cloud services. Thus, the

static network would be evolved into a truly flexible

service delivery platform that can respond rapidly to

the network changes such as: end-user and market

needs, which greatly simplifies the network design and

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 558

operation. Moreover, the devices themselves no longer

need to understand and process thousands of protocol

standards but they should be capable of understanding

instructions from the SDN controllers (Akram &

Berthou, 2015). Facing the rapidly growing needs of

users, Internet service providers cannot afford huge

upgrades, adaption, or building costs, as hardware

elements are expensive. Therefore, another advantage

of exploiting SDN is to make it easier to introduce and

deploy new applications and services than the classical

hardware-dependent standards (Malik & Campbell,

2013). The ultimate goal of SDN is to create a network

that does not need any the design or adjustments of the

administrator interference, so, the network can be

implemented fully automated administration. The

administrators can manage the network through the

controller plane more easily with dictating the required

policy to the routers and switches, while they have a

fully function monitoring over the network. Software

defined networking (SDN) is bringing about a

paradigm shift in networking through the ideas of

programmable network infrastructure and decoupling

of network control and data planes. It promises

simplified network management and easier

introduction of new services or changes into the

network. Use of SDN concepts in 4G/5G mobile

cellular networks is also being seen to be beneficial

(e.g., for more effective radio resource allocation

through centralization, seamless mobility across

diverse technologies through a common control plane)

1.4 Statement of the Problem

In this section, the problems addressed by the

OpenFlow applications developed in this reseach are

being discussed. Given a network, isolating the traffic

among multiple hosts is being addressed by the

OpenFlow applications. This will be achieved by

grouping together the hosts in the networks that are

supposed to communicate with each other. The groups

are created in order to enable the group of host to work

together. Each host in the network may be part of

multiple work groups. To elaborate on the problem

addressed, let us consider the example network show

in the Figure 1. The network constitutes of a 2-switch

subnet with 4 hosts connected to each switch.

The desired basic functionality is that, given this

network, we need to be able to set up a working group

grp1 with say hosts A, C, D in it. As the situation

become more complex, a new requirement comes in

where F has to be added to the gr1 on 27/06/2022 from

9AM to 3PM. Another requirement may be that the

grp1 is no longer needed and so needs to be deleted.

OpenFlow can be used to dynamically manage the

network where such traffic isolation and management

is needed.

Figure 1: Network Example

Two approaches to solve this problem were developed

and tested for compatibility across multiple switching

platforms. The first application assumes that the

network is VLAN capable. The existing VLAN

capability of the network is being used to centrally

manage the network through an OpenFlow controller.

The second application does not assume any VLAN

capability in the network and addresses the problem by

using data structures in the centralized OpenFlow

controller.

1.7 AIM/OBJECTIVES

The aim of this research is to know the capability of

the two applications in handling traffic isolation in real

networks. The Objectives are to:

1) Implemented solution to the tedious traffic

isolation problem in a network using an the

OpenFlow controller using two applications

’OFModifyVLAN’ and ’OFWhiteListing’,

2) To set up OpenFlow networks on multiple

OpenFlow network platforms using Mininet

simulator, Open VSwitch and HP Procurve switch

to test the working and performance of the two

OpenFlow controller applications.

3) To measure the round-trip time of the packets in all

the above-mentioned scenarios.

II. LITERATURE REVIEW

2.1 Overview of OpenFlow

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 559

OpenFlow (Mckeown et al., 2018) is a technology

developed to enable a special kind of software

application to dynamically control the way in which

each of the switching elements in the network would

function, thereby controlling the way in which the

network itself has to work. The special kind of

software application could be developed by anyone

and is independent of the vendor specific switching

elements present in the physical network on which

these software applications run. In other words,

OpenFlow can be viewed as a realization of the

software defined networking methodology (Lantz et

al., 2010).

The OpenFlow technology constitutes of a number of

components that work together to enable the working

of the network to be controlled by the users of the

network, such as researchers. The three main

components are (Mckeown et al., 2018).

1. An OpenFlow Switch: In the subnet of any

network, there would be one or more switching

elements present. Each of these switches might

have been manufactured in different ways. That is,

different switch vendors have different hardware

and software in them. Nevertheless, for the same

software application 7 to control them, each of

these switches has to present itself in the same way

to the software application. This could be achieved

by each of the switches by implementing a

standardized OpenFlow specification on them.

2. An OpenFlow Controller: The special kind of

software application which controls the entire

network is developed and run within an OpenFlow

controller. An OpenFlow controller is a network

operating system which simultaneously runs a

number of these applications called as OpenFlow

controller components. The OpenFlow controller

is itself software running on a machine (which

could be a regular personal computer). This

machine must be able to communicate with the

switches in the network.

3. A Secure Channel: The OpenFlow controller and

the switches have to communicate with each other.

This is done through a secure channel established

between a switch and the controller. A simple

OpenFlow network example is given in Figure 2.

Figure 2: Open Flow Components

2.1.1 Control plane and data plane

Any switching element in a network is it a layer 2

ethernet switch or a multilayer switch that does

switching according to the layer 3 and layer 4 headers

as well, could be viewed as being comprised of two

parts. They are: a control plane and a data plane.

The control plane is the software of the switching

element which constitutes the logic behind the

processing and forwarding of packets in the switch. In

other words, from time to time, the control plane

updates the data plane with information about how to

process and forward a packet.

The data plane is essentially the physical hardware of

the switching element which does the processing of

the incoming packets and then forwarding of packets

out of the switch appropriately. With respect to an

OpenFlow switch, the part of the data plane that does

the processing of the packets is of interest to us, in this

section. Every normal switch has a forwarding table.

In a layer 2 switch, content addressable memory

(CAMs) (Lantz et al., 2010) are used to store the MAC

tables. In layer 3 and multilayer swithes, Ternary

CAMs or TCAMs are used to store routing tables.

Access control lists (ACLs), firewalls, QoS and

various statistical counters are implemented by using

TCAMs. As mentioned in Mckeown et al., 2018, the

various networking elements in today’s networks run

software that is being developed by the corresponding

companies. In fact the running environment is also

developed by the switch companies. That means if

somebody outside the switch company wants to

develop software that can run on the switch, the

interface using which to interact with it is not known.

It leads to a situation where, new networking ideas

could not be implemented on the production networks.

An OpenFlow switch is abstracted as an OpenFlow

flow-table to the OpenFlow controller software

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 560

application. So, now the question is what exactly is an

OpenFlow flow-table. It consists of:

i. A common set of already existing packet header

fields which are being identified, such that, they

are already used by most of the existing switches

to perform matching. An OpenFlow flow can be

defined using them.

ii. A set of Actions and counter variables associated

with each flow in the flowtable.

Without the OpenFlow protocol running on the

switch/router, the user would not have access to the

switch. But with OpenFlow running, an interface to

indirectly change the rules in the TCAMs according to

the user’s requirement is achieved.

It is clearly not required for the switch vendor to reveal

anything. They just have to add a piece of code, coded

according to the OpenFlow specification provided to

the switch software. After which the switch will be

able to communicate with a controller software

application.

In the following sections, the OpenFlow switch

specification is explained in further detail.

2.2 OpenFlow Version 1.0.0

2.2.1 Flow table: Rules, Actions, and Counters

Currently the most widely deployed OpenFlow

specification version is the 1.0.0. In fact the figure 2,

which shows an example OpenFlow network, can be

called an OpenFlow 1.0.0 network. Essentially in

OpenFlow specification 1.0.0, there is one OpenFlow

flow-table in a switch and one controller is responsible

for the switch. As mentioned before, in an OpenFlow

compatible switching element, the control plane is

abstracted to the user as an OpenFlow Flow table. In

OpenFlow switch specification 1.0.0, this flow table

constitutes of 3 segments:

i. Rules

ii. Actions

iii. Counters

The following is a brief description of the three

segments present in an OpenFlow flow table.

i. Rules are a set of header fields present in the

headers of the packets. A rule for a packet to match

with the flow can be defined using this set of

header fields. Some examples of the header fields

may be Source MAC address, TCP port number,

Destination IP address, Etc. So, a sample rule for a

packet to match the flow might be: All packets that

have the source MAC address X would match this

flow.

ii. Actions are a set of operations that could be

performed on the packets which match the Rule

corresponding to the flow. An example action

would be to: Forward the packet to all the ports on

the switch.

iii. Counters are the set of numbers that represent

various statistics with respect to the particular flow

or table or port or queue. For instance, the number

of received packets corresponding to a flow is an

example.

2.2.2 Packet Processing in an OpenFlow 1.0.0 Switch

As a summary, the figure 3 shows how a packet goes

through the processing systems in a switching

supporting Version 1.0.0.

Figure 3: Packet processing and forwarding in an

OpenFlow 1.0.0 switch

Figure 3 shows how a packet goes through the

processing in a switch supporting OpenFlow

specification 1.0.0. In the step 1, the Ethernet packet

entering the switch goes to a packet parsing system. In

the packet parsing system, the header fields present in

an Ethernet packet, supported by OpenFlow

specification 1.0.0 to perform matching with the flow

table, are being extracted and place in a packet look up

header.

The same is shown as step 2 in the above figure. In the

step 3, the packet look up header generated is being

sent in to a packet matching system. The packet lookup

header is being compared with the rules defined for

each flow entry in the OpenFlow flow table. A rule in

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 561

the flow table contains the values of the header fields

present in the packet lookup header in order to match

with the flow entry. The interaction with the flow table

is shown as step 4 in the diagram. An important point

to be noted here is that, the flow entries in the table are

present in the descending order of priority. So, the

comparison of the packet lookup header is done

starting from the first flow entry on the flow table. If a

match is found in the flow table, then the packet goes

through the step 5B and the action in the matched flow

entry are performed on the packet. If no match is

found, then the packet goes through the step 5A to the

controller for processing.

2.3 OpenFlow 1.1.0

2.3.1 Basic Structure

As described in Section 2.2, according to OpenFlow

specification 1.0.0, an OpenFlow switch constitutes of

a single flow table, a secure channel through which it

could communicate with the remote controller. The

messages in the communication are defined by the

OpenFlow protocol. In the OpenFlow specification

1.1.0, the switch constituents have changed

significantly.

In the OpenFlow switch specification 1.1.0, there are

multiple flow tables present in the switch. And there is

a Group table present in the switch in addition to the

multiple flow tables. Figure 4 shows an OpenFlow

1.1.0 switch. Although, the secure channel to

communicate with the controller and the OpenFlow

protocol are not very different from the specification

1.0.0. But, additional features have been added to the

OpenFlow protocol to accommodate the changes in

the flow table structure of the switch.

Figure 4: OpenFlow Switch 1.1.0

The packet processing of the packet entering the

switch has changed as there are multiple flow tables

available in the switch. The flow tables in the switch

are linked to each other through a process termed as

”pipeline processing”. Pipeline processing involves a

set of flow tables linked together to process the packet

coming in. When the packet fist enters the switch, it

enters a Table 0. It is then sent to the first table to look

for the flow entry to be matched. If there is a match,

the packet gets processed there and if there is another

table that the particular flow entry points to, the packet

is then next sent to that flow table. This happens until

a particular flow entry does not point to any other flow

table. The flow entries in the flow tables can also point

to the group table in addition to the ability to point to

the next table. The group table is a special kind of table

designed to perform operations that are common

across multiple flow. That is, actions pertaining to a

set of flows are grouped together. Further, the set of

flows are controlled to perform various actions

collectively under a single group. Complex forwarding

actions such as multipath, link aggregation are

enabled. Another important concept that is present in

the specification 1.1.0 is the metadata field that is used

to pass information between the table as the packet

traverses through them.

2.3.2 Packet Matching

In this subsection, the matching performed on a packet

in an OpenFlow 1.0.0 switch and 1.1.0 switch are

being explained to illustrate the significant differences

between the two. According to the OpenFlow

specification 1.0.0, the packet matching takes place as

described below:

a. The incoming packet is being parsed.

b. As there is a single flow table, each flow entry in

the flow table is being traversed until a match for

the parsed packet is found. And then the actions

corresponding to the matched flow entry are

performed on the packet.

c. If no match, the packet is forwarded to the

controller.

And according to the OpenFlow specification 1.1.0,

the packet matching takes place as described below:

i. When the packet enters the switch, the packet

parsing is the same as in 1.0.

ii. The matching process starts from the table 0 (the

numbering of the tables starts from 0 to n). If a

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 562

match is found, the set of instructions are executed.

As explained earlier, the instructions would process

the packet as desired and pass on to the next table after

updating the actions set and the metadata field.

a) If in a particular table, no match is found,

according to the switch configuration, three

options are available: Packet can be forwarded to

controller, Packet can be dropped, Packet can be

forwarded to the next table.

b) If in a particular table, there are no processing

instructions to perform pipelining by pointing to

the next table, the actions to be performed on the

packet for that table are performed and the

processing of the packet in the switch is complete.

By having a look at the matching process in OpenFlow

specification 1.0.0 and 1.1.0, it is clear as to how the

structural differences in the switch with respect to

OpenFlow specification 1.0.0 and 1.1.0 are

accommodated into the matching process.

III. METHODOLOGY

3.1 Overview of implementing applications using

OpenFlow

In order to run applications on top of a controller to

manipulate the flow table of a switch, a network

operating system is required (See Fig. 3). It acts as an

intermediate layer between the OpenFlow switch and

the user application. The network operating system

communicates with the switch using the OpenFlow

protocol and notifies the application of network

events. Nox N. Gude et al., 2020, Beacon by

(Erickson, 2019) and Maestro (Zheng et al., 2020) are

examples of network operating systems. Recently, Big

Switch released Floodlight, an open source Java based

controller. Foster et al., 2019 proposed Frenetic, a

network programming language that simplifies the

development of applications on top of network

operating systems. Table 1 summarizes comparative

data for some OpenFlow controllers. For more

detailed description, we refer the reader to Lara et al.,

2018, our survey paper (under review). There are at

least three possibilities to implement OpenFlow based

applications. First, an OpenFlow compliant hardware

switch can be used. It is also possible to implement an

OpenFlow compliant software based switch using

Open vSwitch Pfaff et al., 2019. Finally, a third option

is to deploy virtual networks using Mininet Lantz et

al., 2018. Using OpenFlow, experimental and

production traffic can share the same OpenFlow

switch. The action of a flow table entry of an

OpenFlow switch can be to send the packet to the

switch data path. On the other hand, a different flow

entry can be defined for experimental traffic. This

way, experimental traffic can be tested without

interfering with the production traffic Mckeown et al.,

2018. In order to further enhance this, Sherwood et al.

proposed FlowVisor Sherwood et al., 2020. Using this

technique, it is possible for several controllers to share

the control of a switch. A centralized OpenFlow based

controller” slices” the network and acts as an

intermediate layer between the switch and all the

OpenFlow controllers that manipulate the switch.

3.2 OpenFlow Compliant Switches

A number of commercial switch vendors have

developed switches that support OpenFlow protocol.

A non-exhaustive list of hardware switch vendors are

Arista, Ciena, Cisco, Juniper, HP, NEC, Pronto,

Toroki, Quanta. In addition to the hardware switches,

Open VSwitch is an OpenFlow software switch which

runs on linux operating system. Table 1 provides more

details on some of the prominent OpenFlow switch

vendors such as OpenFlow compatible series, the

capability of the switch.

Table 1: OpenFlow Controllers.

Controlle

r

Languag

e

Created

by

Comments

NOX C++ Nicira

Network

s

NOX was

donated to the

research

community in

2008. It has

several

branches at

Stanford

University,

such as classic

NOX, new

NOX and

POX. New

NOX is the

version that

will be further

developed.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 563

POX supports

Python and it

is used for

educational or

research

applications

Beacon Java Stanford

Universit

y

Supports both

event-based

and threaded

operation.

Mostly used

for research

and

experimentati

on (Erickson

et al., 2019)

Maestro Java Rice

Universit

y

Licensed

under licensed

under LGPL

v2.1. Not as

common as

other

controllers

such as NOX.

Floodlig

ht

Java Big

Switch

Network

s

Forked from

Beacon and

extended for

enterprise

usage. Apache

licensed.

3.3 OpenFlow Based Applications

OpenFlow has been used to provide ease of

configuration, security and availability. It has also

been used to achieve network and data center

virtualization. We also describe some wireless

applications and others.

3.3.1 Other applications

OpenFlow has also been used in other areas not listed

above, such as routing and network congestion

control. Liu et al., 2019 proposed a method to control

congestion using queuing systems and a centrally

controlled network. Yap et al., 2020 also consider

network congestion, as well as bandwidth reservation

and multicast. Nascimento et al., 2018 proposed

QuaqFlow, a Quagga implementation using

OpenFlow. Quagga is a routing package that provides

implementation of TCP/IP routing protocols.

RouteFlow Nascimento et al., 2018, an architecture

that provides routing as a service, was proposed as an

extended work of Quagga. Egilmez et al. 2019

proposed an architecture to provide routing for video

streaming.

3.4 Deployments

Deployments of OpenFlow based networks mainly

include campus networks and test beds, as well as

deployments undertaken by the industry. Stanford

University has deployed an OpenFlow based network

in one of its buildings. The network includes

production, experimental and demonstration traffic. It

connects approximately fifty switches and around 25

users, both wired and wireless. Details of the topology

can be found at Open Flow Stanford Deployment in

Other universities have also deployed OpenFlow

based networks. The full list is available at Open Flow

Current Deployment and it includes Clemson

University Open Flow Agregate, Georgia Tech,

Indiana University, Kansas State University, Rutgers

University, University of Washington, University of

Wisconsin and Princeton University. At a larger scale,

the Global Environment for Network Innovations

(GENI) provides a research infrastructure where

OpenFlow experiments can be conducted. The

OpenFlow core of this network consists of several

interconnected OpenFlow compliant switches on both

Internet2 and National LambdaRail (NLR) networks.

The connection to the NLR network is achieved

through HP6600 switches deployed at Sunnyvale,

Seattle, Denver, Chicago, and Atlanta and through

NetFPGA switches in Sunnyvale, Houston, Chicago,

and New York. Internet2 has OpenFlow compliant

switches installed in Los Angeles, New York,

Washington DC, Atlanta. Campus networks can

connect to the GENI deployment to run larger scale

experiments. The Energy Science Network (ESNet)

based in Berkeley Lab has also deployed an OpenFlow

test bed as part of the Advanced Networking Initiative

(ANI). As stated in, the ESnet ANI is an investment in

next-generation technology infrastructure to speed

scientific discovery. It has two test beds: Long Island

Metropolitan Area Network (LIMAN) and 100G. The

LIMAN test bed includes four NEC IP8800

programmable flow OpenFlow switches. The

OpenFlow network operates on the VLAN 101. There

are two ways of running an experiment on the test bed.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 564

One option is to connect the controller directly to the

OpenFlow switches through the management VLAN.

The second option is to connect to the flow visor

controller and getting a partition of the network to run

the experiments. The first option requires the

researches to reserve the test bed beforehand. The

second option does not require any reservation of

resources. The flow visor configuration file has to be

sent to the administrator to get connected. Figure 5

shows the topology of the ANI OpenFlow test bed.

Another smaller deployment is the Open Access

Research Testbed for NextGeneration Wireless

Networks (ORBIT) test bed, which is being developed

and operated by WINLAB, Rutgers University. It is

intended to be used to test and evaluate innovative

protocols in real-world settings and it includes an

OpenFlow based network. The deployment consists of

an OpenFlow compliant switch Pronto 3290

connected to nine nodes. Out of the 9 nodes, 7 of them

are connected to one NetFPGA each. Each of the

NetFPGA is connected to the Pronto 3290 OpenFlow

switch through four 1GbE connections. All of the 9

nodes are connected to the Pronto 3290 OpenFlow

switch and they are connected to a control plane

through which the nodes can be accessed through

telnet/ssh sessions by the experimenter. Figure 5

shows the topology of the ORBIT OpenFlow test bed.

Similar test beds have been deployed in Europe and

Japan as well. Ofelia is a project funded by the

European Union that provides an OpenFlow based

network with nodes in Belgium, Switzerland, UK and

Spain. Also, the Dynamic Network

Figure 5: Topology of ANI OpenFlow Testbed.

System (DYNES) project, funded by the National

Science Foundation (NSF), is exploring technologies

such as OpenFlow to interconnect campus, regional

and backbone networks. Other future deployments

also include the Network Development and

Deployment Initiative (NDDI) and the Open Science,

Scholarship and Services Exchange (OS3E).

OpenFlow has also been deployed by several

companies, as seen in the keynote lectures of the 2012

Open Networking Summit. As an example, Google

has deployed OpenFlow in the inter-datacenter

backbone network that carries all the traffic between

the different datacenters. Currently, this network is

completely OpenFlow based. According to the

speaker, adopting OpenFlow has been the most

significant change in networking in the company

(Steven Levy, 2011).

Figure 6: Topology of ORBIT OpenFlow Testbed

3.5 OFModifyVLAN Application

In this section, we describe the first application that

uses the existing VLAN support of hardware in the

network. This OpenFlow application approaches to

solve the problem described in the section 2 by

modifying the VLAN tags present in the appropriate

packets. The network is assumed to be in a particular

default configuration before the new dynamic

requirements come in. The default configuration

constitutes of a setup, where in the work groups are

initially setup by assigning appropriate VLAN

between the hosts. But as pointed out in the initial

chapters, VLANs are not very suitable when the

requirements of the network change very quickly. The

network management task to isolate the traffic through

VLANs is very tedious. To constantly change the

VLAN configurations to cope with the dynamics is not

easy. So, our OpenFlow controller application

manages the network which is initially running on a

default configuration. In other words, as the new

requirements come in, this OpenFlow controller

application makes adjustments to the current default

flows in the network to accommodate the new

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 565

requirements. The whole network management by the

controller is carried out centrally. Algorithm 1 shows

the step-by-step processing of the packet as it enters

the OpenFlow controller.

Algorithm 1:

Input: Packet, SourceIP, DestinationIP, vlanID,

Action

Output: Appropriate OpenFlow flow entry

modifications to the subnet switches.

Step 1: Controller waits for packet arrival. If packet

arrives, goto step 2

Step 2: Load the packet headers into ’match’ data

structure

Step 3: if network source IP address in ’match’ =

’SourceIP’ & network destination

IP address in ’match’ = ’DestinationIP’

Step 3.1: if ’Action’ is AddToVLAN

Step 3.1.1: Create a flow entry ’FEntry’ with

rules = match, actions = OF

Action Modify Virtual LAN Indentifier to ’vlanID’ +

OF Action Output to port OFPP NORMAL

Step 3.2: if ’Action’ is DeleteFromVLAN

Step 3.2.1: If VLAN ID in ’match’ = ’vlanID’

Step 3.2.1.1: Create a flow entry ’FEntry’

with rules = match, actions = OF Action Strip Virtual

LAN Indentifier + OF Action Output to port OFPP

NORMAL

Step 3.2.2: Else goto step 4.1

Step 4: Else Step 4.1: Create a flow entry

’FEntry’ with rules = match, actions = OF Action

Output to port OFPP NORMAL

Step 5: For all Switches in the network of the

subnet

Step 5.1: Insert the flow entry ’FEntry’ in to

the switche’s OpenFlow flow table

Step 6: Output the packet through the incoming port

Step 7: Goto step

In Algorithm 1, the inputs are the packet, the source

and destination IP address that should match with the

packet and Action that determines the flow to be

entered. The Action could indicate that a packet

coming from a source IP x and destination IP y should

not belong to VLAN z. Or the Action can indicate that

a packet coming from a source IP x and destination IP

y should belong to VLAN z. If the packet coming in

does not have match, then it just goes through the

normal processing of the switch. OFPP NORMAL is

an OpenFlow specification defined OpenFlow port. It

means the packet will be sent through the normal

processing of the switch. According to this input, the

OpenFlow flow entries are entered on to all the

switches in the network. The next packet matching the

flow entry would not go to the controller anymore. The

time complexity of the algorithm is in the order of O(n)

where n is the number of switches connected to the

OpenFlow controller. This application is very useful

to handle a situation where in requirements change

during a short duration. That is, given a network with

certain VLANs setup, temporary modification (such as

removing a particular host from the VLAN or adding

a host temporarily into the VLAN although it is not

part of the VLAN) can be done very easily. But, as the

flow entries involve adding and deleting VLAN ID

from a packet, it slows the packet transit. For long term

changes it is not very preferable. Also, this application

requires that the OpenFlow switches also support

normal Layer 2 and 3 processing, which is the case

with most of the networks today. But, it is a limitation.

All the above limitations are addressed by the

OFWhiteListing application which does not use

VLANs.

3.6 OFWhiteListing Application

This application uses a data structure in the OpenFlow

controller application to manage the working groups

in a network. While using this application, it is

assumed that there is no initial default configuration

setup. So, when the OpenFlow controller takes charge,

it has to make sure the communication links between

the hosts are explicitly setup. That is, the switches in

the networks subnet do not automatically function

according to their layer 2 and 3 functionalities. This

application takes advantage of this scenario to control

the network. As the work groups are formed, the links

between the hosts in the network are white listed. That

is, flow entries are entered to enable communication.

The data structure in the application that holds a

particular working group is a list of IP addresses. Each

of these work groups are maintained in a list called

’listOfGroups’. In a similar way, there are data

structures that bind each work group with ID, start

time and end time. With these data structures, the

application is implemented according to Algorithm 2.

The start time and end time are used to handle the

expiry time of the flow entry being inserted into the

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 566

switches. The below algorithm 2 does not show it.

Also a user interface has been developed to enable the

user to Add, Modify, Delete work groups.

Algorithm 2:

Input: Packet

Output: Appropriate OpenFlow flow entry

modifications to the subnet switches.

Step 1: Controller waits for packet arrival. If packet

arrives, goto step 2

Step 2: Load the packet headers into ’match’ data

structure

Step 3: Get network source IP address in ’match’ into

a varibale ’SourceIP’

Step 4: Get network destination IP address in ’match’

into a variable ’DestinationIP’

Step 5: For each work group in the listOfGroups

Step 5.1: If ’SourceIP’ is in the current work

group

Step 5.1.1: Get the ’SourceGroupID’,

’startTime’, ’endTime’ of the work group

Step 5.2: Else goto setp 5

Step 6: For each work group in the listOfGroups

Step 6.1: If ’DestinationIP’ is in the current

work group

Step 6.1.1: Get the ’DestinationGroupID’,

’startTime’, ’endTime’ of the work group

Step 6.2: Else goto step 6

Step 7: if SourceGroupID not null and SourceGroupID

= DestinationGroupID

Step 7.1: Create a flow entry ’FEntry’ with

rules = match, actions = OF Action Output to port

OFPP NORMAL

Step 8: For all switches in the network of the subnet

Step 8.1: Insert the flow entry ’FEntry’ in to

the switche’s OpenFlow flow table.

Step 9: Output the packet through the incoming port

Step 10: Goto step 1

The time complexity of the algorithm is in the order of

O(mn) where m is the number of WorkGroups in the

network and n is the number of hosts in the network.

The following are the differences between the

controller applications ’OFModifyVLAN’ and

’OFWhiteListing’. The first difference is the usage of

the OpenFlow action in the each of the applications.

The applications ’OFModifyVLAN’ uses the existing

VLAN feature in the network and hence uses the

OpenFlow actions modify VLAN and strip VLAN. In

the case of ’OFWhiteListing’, no VLAN features are

used. Instead the links between the hosts in the

network are being enabled when a communication is

desired. So, OpenFlow action forward is being used in

the ’OFWhiteListing’ application. The next major

difference between the two applications is the initial

network configuration. In the application

’OFModifyVLAN’, the network is assumed to be in an

initial default configuration. That is, VLANs that are

required to be available for the long term are already

setup. The ’OFModifyVLAN’ application makes

adjustments to this configuration to accommodate the

temporary requirement changes. Whereas, in the case

of OFWhiteListing, there is no initial default

configuration in the network. The application takes

care of allowing communication between the hosts. If

requirement changes are intended to be long term,

’OFWhiteListing’ is more suitable to use. Although,

’OFModifyVLAN’ integrates easily with the VLAN

features already in use.

3.7 Network Platforms for Testing

3.7.1 Mininet

Mininet is software that runs on a single laptop and can

be used to prototype large networks. In other words, it

is a platform that is capable of hosting large virtual

networks on a single laptop. Mininet has been

developed to provide an inexpensive virtual network

test bed to experiment with new ideas such as new

network architecture, or a new address scheme, or a

new mobility protocol etc. It is ideal to test new ideas

on virtual environment enabled by software such as

Mininet, before transferring them on to real hardware.

Mininet has been developed to provide an

environment to perform research in the area of

Software Defined Networking. More specifically, it

can used to very conveniently bring up OpenFlow

enabled network to test new OpenFlow applications.

Mininet has a set of commands that are used to set up

a network with certain number of OpenFlow enabled

switches and hosts attached to them. External

OpenFlow controllers such as NOX, Beacon,

Floodlight etc. could be used in conjunction with

Mininet to totally emulate a real world situation where

a network comprising of OpenFlow enabled switches

is controlled by an OpenFlow controller. The working

of Mininet is documented in Lantz et al., 2018.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 567

Briefly, Minnet creates a network of Virtual Machines

(VMs) on a single Linux Operating system. It brings

up each VM as a process in the OS. It uses the support

of network namespace provided in the Linux kernels.

It places a VM under a particular network namespace

and connects the network namespaces with virtual

Ethernet feature available in Linux kernel. In this

manner, Mininet claims to bring up a network of

hundreds of switches. Mininet is under extensive

development to fine tune itself as a flexible virtual

network platform to perform OpenFlow experiments.

It provides features to bring up custom topologies

although it also provides direct commands to bring up

parameterized topologies. It also provides a Python

API to create networks as per the requirement of the

experiment.

3.7.2 Open VSwitch

In order to experiment with OpenFlow, a step ahead of

virtual network platforms such as Mininet, is an Open

VSwitch. It is an OpenFlow enabled software switch.

It is a production quality multilayer software switch. It

is most suited to be a virtual switch in virtual

environments such as virtualized servers. Like a

hardware multilayer switch, it can be accessed through

a standard management interface to perform several

configurations. It is a common practice to perform

virtualization of servers to support multiple

functionalities on a single physical server. An Open

VSwitch is designed to provide visibility interfaces to

such virtualized physical servers. Virtualization of the

resources is done by several virtualization software.

Open VSwitch supports Linuxbased virtualization

technologies such as Xen/XenServer, KVM, and

VirtualBox. As mentioned in OpenFlow VSwich. The

latest version of Open VSwitch is 1.5.0. From Linux

kernel version 3.3 on, the Open VSwitch module is

part of the kernel. Open VSwitch can also operate, at

a cost of performance, entirely in userspace, without

assistance from a kernel module. To start

experimenting with OpenFlow on a small scale test

bed, Open VSwitch is a good option. Each of the

regular Linux box should be configured as an Open

VSwitch and Linux virtualization software such as

KVM could be used in conjunction with Open

VSwitch to bring up multiple virtual machine (VM)

hosts on the linux boxes configured as Open

VSwitches. An external OpenFlow controller could be

configured on each of the Open VSwitches using the

ovs-vsctl utility. Open VSwitch provides a good way

to experiment with server virtualizations using

OpenFlow.

3.7.3 HP Procurve

The Procurve series of switches from Hewlett-Packard

are OpenFlow enabled. The HP Procurve switches are

designed to be next-generation Layer 2, 3 intelligent

switches. They are designed to meet the adaptive

intelligence, versatility, and operational excellence to

meet current and future networking demands. The HP

Procurve switch series is OpenFlow enable with many

additional features. The OpenFlow module is included

in the HP switch software for the HP Switch 8200zl,

6600, 6200zl, 5400zl, and 3500/3500yl products. The

current OpenFlow module has been implemented in

switch software revision K.15.06.5008 for those

switches. Software revision K.15.06.5008 implements

OpenFlow protocol version 1.0. An external

OpenFlow controller is configured with the switch in

ordered to be operated in OpenFlow mode.

3.7.4 Ciena Coredirector

The CoreDirector CI Switch can deliver a wide range

of optical capacities, along with Ethernet switching

capabilities. The switch supports SONET as well as

SDH interfaces, specifically, OC-3/12/STM-1/4, OC-

48/STM-16, OC-192/STM-64 optical interfaces,

STM-1e electrical interfaces and Gigabit Ethernet

interfaces. They provide non-blocking, bidirectional

switching capacity that can be configured to switch

and groom traffic from any input port to any output

port down to the STS-1/VC-3 level. For the purpose of

our research, OpenFlow enabled firmware has been

deployed on the Ciena Coredirector. As this is a hybrid

optical switch, the above two mentioned applications

could not be tested on this platform. The firmware is

an experimental unsupported version.

IV. EXPERIMENTAL RESULTS

In this section we present the results obtained by

running OpenFlow applications described in the

previous section on multiple network platforms. The

applications have been tested for compatibility of the

same OpenFlow application on multiple network

platforms. The platforms used in the project are

Mininet, Open VSwitch and HP Procurve 5046 Zl

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 568

switch. We measured the round trip time of the packets

to determine the performance.

4.1 Mininet

The Mininet network emulation platform was used to

bring up the networks shown in Figures 7 and 9. A pre-

packaged Ubuntu Virtual machine (VM) with

modified kernel to support OpenFlow binaries, some

tools for measurements and many more modifications

to support emulation of large network, is available to

experiment with OpenFlow. The Mininet VM was

downloaded and run on a PC which the operating

system Ubuntu 11.10 running on it. Intel Core duo

processor with 4GB RAM was used in the PC.

4.1.1 Mininet Network Configuration 1

Figure 7 shows a network where in a single OpenFlow

switch connected to 4 host machines is brought up on

the Mininet VM. The OpenFlow switch is connected

to a Beacon OpenFlow controller which runs the

controller applications developed. The hosts labeled A

and B are programmed to be work group wg1. And the

hosts labeled C and D constitute the work group wg2.

So, A cannot communicate with C initially.

Figure 7: Mininet Configuration 1

The OpenFlow controller Application

OFWhiteListing described in Chapter 3 is used to

generate the following result. The host A is enabled to

communicate with C for duration of two hours.

Initially, the hosts A and C belong to two different

work groups. The graph in Figure 9 shows the round

trip time of packets set from host A to host C and host

C to host D. The communication between A to C is

inter workgroup, whereas, the communication

between C to D is within the same group. Despite that

we observe that the round tip time of the packets

stabilizes in both cases at around 0.1ms, after the first

packet taking an average of 27ms. The X axis shows

the sequence number of the packet. The Y-axis shows

the round trip time of the packet in milliseconds.

Figure 8: Mininet Network Configuration 1 Running

Application OFWhiteListing

4.1.2 Mininet Network Configuration 2

The second configuration used to test the Application

OFWhiteListing on Mininet is shown in Figure 9

below. In this case two switches with four hosts

attached to each of them are brought up using Mininet.

The initial configuration goes as follows:

Hosts A, B belong to work group wg1; hosts C,D

belong to work group wg2; hosts E,F,G,H belong to

work group wg3.

Figure 9: Mininet Configuration 2

Again, the OpenFlow controller Application

OFWhiteListing described in the Chapter 4 is used to

generate the following result. The host B is enabled to

communicate with D for duration of two hours.

Initially, the hosts B and D belong to two different

work groups. The graph in the Figure 5.4 shows the

round trip time of the packets flowing in the network

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 569

between several hosts on the network. The

OFWhiteListing application handles the inter and intra

workgroup communications at the same speed. We

observe that the round trip time of the packets

stabilizes in all cases at around 0.2ms, after the first

packet taking an average of 64ms. A point to be noted

in the following graph is that, the round trip time

between the hosts decrease asymptotically. The reason

being, the multiple packets had to be processed at the

controller before the controller could actually enter the

flows into the switches in the network. But eventually

the flows get instantiated in the switches and the round

trip time stabilizes.

Figure 10: Mininet Network Configuration 2

Running Application OFWhiteListing

4.2 Open VSwitch

4.2.1 Open VSwitch Network Configuration 1

The second network platform used was the Open

VSwitch (OVS), which is an OpenFlow software

switch. Two different networks have been configured

using OVS. The following Figure 11 shows the

network configuration where a single OVS switch is

being used. A Linux PC running Ubuntu 11.10

operating system has been used. The OVS module was

built and inserted in to the kernel of the operating

system. This enables the PC to become an OVS

switch. Kernel-based Virtual Machine (KVM)

virtualization software has been used in conjunction

with the OVS on the Ubuntu PC. Using KVM, 4 VM

hosts as shown in the figure 11 below were brought up.

They are connected to the OVS switch on the PC

through tap devices that are not shown in the figure

below. A Beacon OpenFlow controller also runs on the

PC and is connected to the OVS switch as an out of

band connection.

Figure 11: Open VSwitch configuration 1

The OpenFlow controller Application

OFModifyVLAN described in section 3 is run to

control the network. Initially hosts C and D belong to

VLAN 21. When the controller application is

instructed to allow host B communicate with host

belonging to the VLAN 21, the following graphs are

generated. The results in the graphs shown in the

Figure 5.6 indicate the round trip time of the packets

flowing between different hosts in the network. It can

be observed that the inter workgroup communication

between the Hosts A and C takes much longer than the

inter workgroup communication between hosts B and

D. After the first few packets, the round trip time of

packets between A and C takes about 4.9ms while the

communication between B and D takes about 0.5ms.

The round trip time between the hosts C to D is

observed to be highest. It can be attributed to the delay

at the controller while processing the packet. Also, the

round trip time of the communication between the

hosts A to C spikes occasionally. As the spike is not as

high as it is for the first packet, it may be attributed to

the occasional delay in processing the packet at the

switches. This delay in process of the packets at the

switch is most probably because of the packet header

modification actions. The following graph (Figure 13)

shows the results obtained by running the OpenFlow

controller Application OFWhiteListing on the same

configuration as Figure 5.5. The only difference in the

configuration being, that the VLANs are no longer

used. Instead, the network is in an initial configuration

where hosts A and B are in one group and hosts C and

D are in another group. And B tries to communicate

with C and D respectively. In the following graph, the

round trip time between the hosts A and C decrease

more gradually than the rest of the flows. The reason

being, the multiple packets had to be processed at the

controller before the controller could actually enter the

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 570

flows into the switches in the network. But eventually

the flows get instantiated in the switches and the round

trip time decreases from 55ms to around 0.5ms.

Figure 12: Open VSwitch configuration 1 running

Application OFModifyVLAN

Figure 13: Open VSwitch configuration 1 running

Application OFWhiteListing

4.2.2 Open VSwitch Network Configuration 2

The second network configured using the OVS switch

software is the one shown in the Figure 14 below. In

this configuration, two Ubuntu PCs have been

installed with OVS. KVM is used to bring up 4 hosts

on each of the OVS switches. The two OVS switches

are connected through an Ethernet interface eth0 by an

RJ45 Ethernet cross over cable. A Beacon OpenFlow

controller runs on one of the PC running OVS switch

1. So, it is reachable from both the switches.

Figure 14: Open VSwitch configuration 2

The initial configuration goes as follows: hosts A, B

belong to work group wg1; hosts C, D belong to work

group wg2; hosts E, F, G, H belong to work group

wg3. The controller is instructed to enable the

communication link between B and D, although they

belong to two different work groups. The graph in the

following Figure 14 shows the round trip time of the

packets flowing between different hosts. The round

trip time of the first packet from A to C is around

342ms. Whereas, the time taken by the first packet

from C to A is 36ms. It is significantly lower than the

time taken in the opposite direction. The reason behind

is that during the experiment, the communication

between A to C was initiated first and so, some of the

flow entries are already inserted. So, when the

communication between C to A was started, some of

the acknowledgement packets did not have to go to the

controller. Hence the significantly reduced round trip

time of the first packet.

Figure 15: Open VSwitch Configuration 2 Running

Application OFWhiteListing

4.2.3 Open VSwitch Controller Benchmarking

Finally, in the Figure 16 below we present the

OpenFlow controller benchmarking in the above two

OVS network configuration running either of the two

OpenFlow controller applications developed. The X

axis indicates the number of packets of length 1500

bytes each being sent to the controller. The Y axis

indicates the time taken to process all the packets sent

in milliseconds.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 571

Figure 16: OVS Network OpenFlow Controller

Benchmarks

4.3 HP Procurve 5046Zl

Figure 17 shows two hosts connected to the HP

Procurve 5046Zl at UNL running firmware supporting

OpenFlow 1.0.0. Beacon controller is running on host

A and is connected to switch as an out-of-band

connection. Initially there is no communication link

between the two hosts. By using the controller

application OFWhiteListing, the link is setup between

A and B to enable communication. We have recorded

the round trip time of the packets in the following

graph (Figure 18). The initial packets take around

70ms while the stabilized time is around 0.65ms.

Figure 17: HP Switch Configuration

Figure 18: HP Configuration 1 Running Application

OFWhiteListing

4.4 Comparison of the Measurements

The above experiments have been performed multiple

times to obtain the averages and do the comparison of

their performances with respect to the round trip time

(RTT) of the packets. Three instances of each of the

experiments have been performed to obtain the

averages. The following graph (Figure 19) shows the

comparison of the RTT of the first packet which goes

through the controller. Controller application

OFWhiteListing is being used. The average is

obtained by using the RTT of each communication

link (Ex: communication link A to C) in all the three

experimental instances. Note that HP has been tested

under only one configuration. It can be observer that,

as the complexity of the network grows from

configuration 1 to configuration 2, the average RTT

increases too. The Open VSwitch configuration 2 has

the highest RTT. While Mininet configuration 1 shows

the fastest RTT of the packets. And under the same

configuration, Miniet is faster than Open VSwitch.

The next graph (Figure 20) shows the comparison of

the RTT of the later packets which go through the flow

tables inserted into the switches rather than the

controller. Controller application OFWhiteListing is

being used. The average is obtained by using the RTT

about 7 packets of each communication link (Ex:

communication link A to C) in all the three

experimental instances. Note that HP has been tested

under only one configuration. It can be observer that,

as the complexity of the network grows from

configuration 1 to configuration 2, the average RTT

increases too. The Open VSwitch configuration 2 has

the highest RTT. While Mininet configuration 1 shows

the fastest RTT of the packets. And under the same

configuration, Miniet is faster than Open VSwitch.

Figure 19: Comparison of Round-Trip Time of the

1st Packet on the 3 Network Platforms

The third comparison (Figure 21) is between the two

controller applications developed. The first packet

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 572

average RTT as well as average time of 7 packets

going through the flow table in the case of Open

VSwitch in configuration 1 have been shown in the

following graph. The OFModifyVLAN takes lesser

time to set up, but performs lower than

OFWhiteListing if the later packets RTT is observed.

It takes about 2.9ms versus 0.5ms.

Figure 20: Comparison of Round Trip Time of the

Packet going through flow tables on the 3 Network

Platforms

Figure 21: Comparison of RTT of Packets under 2

OpenFlow Applications on OVS

V. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this research work, we have studied Software

Defined Networking through OpenFlow technology.

We have proposed and implemented solution to the

tedious traffic isolation problem in a network using an

the OpenFlow controller. Through a centralized

OpenFlow controller, a user could pass instructions to

change the configurations of the network as

dynamically as desired. We have discussed the

multiple platforms used to set up OpenFlow networks.

And the configurations used to set up the described

OpenFlow network on each of the platforms has been

discussed as well. From the results, it is clear that the

initial packets that go through the network take longer

time as they go through the controller. But the packets

following are processed and transmitted at a much

faster rate. The reason behind this decrease in round

trip time is that when the first packet goes through the

network there is no OpenFlow flow entries setup. So,

the first packet has to go to the controller where it will

be processed and the appropriate flows are setup in the

network switches. So, the following packets of the

same flow do not go to the controller. They pass

straight through the switches. Hence the decrease in

the round-trip time. Next, by observing the results

from the OVS network configuration 1, we can

compare the performance of the two OpenFlow

controller applications developed. Under the same

physical set up and user requirements, we see that

OpenFlow controller OFWhiteListing performs better

than that OpenFlow controller application

OFModifyVLAN. This is because of the actions that

are performed on the packets in each of the application

is different. While the application OFModifyVLAN

uses modifying and deleting VLAN ID in the packets,

application OFWhiteListing uses action to forward a

packet if there is a match. This indicates that

modification of packet header fields is a more

expensive operation than the forwarding and dropping

operations. Also, using the results we can compare the

performance of the platforms used, as the same

application processes the packets at different speeds.

The two OpenFlow controller applications present

distinct ways in which OpenFlow technology could be

used to solve some of the network management

problems we have. The performances of the

OpenFlow controller under these multiple OpenFlow

enabled network platforms have been compared.We

conclude that it is possible for a single OpenFlow

controller application to control a network comprising

of different types of networking elements. Also, we

conclude that given the current hardware capabilities,

certain OpenFlow actions such as forwarding packet

to a port, are performed faster than others like the

actions that modify the header fields in the packet,

while processing the packets. The reason is lack of

hardware support for handling modification to packet

headers.

5.2 Future Work

The OpenFlow controller applications developed as

part of the project could be extended to include

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 573

additional feature. Along with the management of

traffic in a network, features such as access control

lists (ACL), firewalls, etc. could be included into the

OpenFlow controller. This could eliminate the need

for multiple network management middle boxes which

carry out the above-mentioned tasks. Another

direction of enhancement of the application could be

to use the OpenFlow counters which are part of the

flow table, in the application. The switches and the

OpenFlow controller continuously exchange

messages. Based on the counter values received by the

controller from the switches, the network

configuration could be made to automatically change

through the controller. The OpenFlow specification is

continuously evolving to include more features.

OpenFlow specifications 1.1.0 and 1.2 are drafted,

although the deployments have not yet started. Given

the changes in the future specifications, the

applications may have to be modified to accommodate

these specification changes. Another area of future

work is the execution of the current OpenFlow

controller applications on more extensive real

networks. One option is to run the application on

network testbeds like ESNet [1] and ORBIT [19]

which are partly OpenFlow enabled. At UNL, two

hardware switches, HP Procurve and Ciena

Coredirector have been OpenFlow enabled. A network

could be set up across these switches and the

applications could be tested further for compatibility

and performance. Another option is to connect to

OpenFlow switches on other OpenFlow enabled

networks through the HP Procurve or the Ciena

Coredirector OpenFlow switches currently present on

the UNL campus.

ACKNOWLEDGMENT

This research work was supported by the TEtfund

Institutional Based Research (IBR) through the Center

for Research and Development (CRD) of Federal

University Gusau, Zamfara State, Under the

TETF/DR&S/CE/UNIV/GUSAU/IBR/2020/VOL.1

grant allocation.

REFERENCES

[1] Lara, A. Kolasani, and B. Ramamurthy. Network

innovation using software defined networking

and openflow. IEEE Communications Surveys

and Tutorials, 2018.

[2] Advanced Networking Initiative (ANI),

http://www.es.net/RandD/advancednetworking-

initiative/.

[3] Lantz, B. Heller, and N. McKeown. A Network

on a Laptop: Rapid Prototyping for Software-

Defined Networks. In Proceedings of the ACM

HOTNETS 2010 conference, 2018.

[4] Pfaff, J. Pettit, K.A.T. Koponen, M. Casado, and

S. Shenker. Extending networking into the

virtualization layer. In Proceedings of the ACM

SIGCOMM HotNets, 2019.

[5] Zheng, L. C. Alan, and T. S. E. Ng. Maestro: A

System for Scalable OpenFlow Control. Rice

University Technical Report TR10-08, 2020

[6] Clemson OpenFlow Agregate,

http://groups.geni.net/geni/wiki/GeniAggregate

/ClemsonOpenFlow.

[7] Erickson. Beacon Home,

https://openflow.stanford.edu/display/Beacon/H

ome/, 2019.

[8] Floodlight, http://floodlight.openflowhub.org/.

[9] GENI, Exploring Networks of the future,

http://www.geni.net/.

[10] GENI. GENI OpenFlow Backbone Deployment

at Internet2,

http://groups.geni.net/geni/wiki/OFI2. [35] N.

Gude, P. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: towards an

operating system for networks. SIGCOMM

Comput. Commun. Rev., 2018.

[11] Georgia Tech OpenFlow Agregate,

http://groups.geni.net/geni/wiki/GeniAggregate/

GeorgiaTechOpenFlow.

[12] H.E. Egilmez, B. Gorkemli, A.M. Tekalp, and S.

Civanlar. Scalable video streaming over

OpenFlow networks: An optimization

framework for QoS routing. In Image Processing

(ICIP), 2011 18th IEEE International

Conference on, 2011.

[13] Indiana OpenFlow Agregate,

http://groups.geni.net/geni/wiki/GeniAggregate/

IndianaOpenFlow. Internet2,

www.internet2.edu.

[14] IP8800 Openflow Networking,

http://support.necam.com/pflow/legacy/ip8800/.

[15] Java Spring Framework,

http://www.springsource.org. KSU Lab

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 574

OpenFlow Aggregate,

http://groups.geni.net/geni/wiki/GeniAggregate/

KansasStateOpenFlow. 76

[16] K. K. Yap, T. Y. Huang, B. Dodson, M. S. Lam,

and N. McKeown. Towards software-friendly

networks. In Proceedings of the first ACM asia-

pacific workshop on systems, 2020.

[17] L. Jianying, J. Pettit, M. Casado, J. Lockwood,

and N. McKeown. Prototyping Fast, Simple,

Secure Switches for Ethane. In High-

Performance Interconnects, 2007. HOTI 2007.

15th Annual IEEE Symposium on, 2019.

[18] L. Lu, Y. Xiao, and H. Du. OpenFlow control for

cooperating AQM scheme. In Signal Processing

(ICSP), 2010 IEEE 10th International

Conference on, 2019. 79

[19] M. Casado, M. Freedman, J. Pettit, J. Luo, N.

McKeown, and S. Shenker. Ethane: taking

control of the enterprise. SIGCOMM Comput.

Commun. Rev., 2007.

[20] M. R. Nascimento, C. E. Rothenberg, M. R.

Salvador, C. N. A. Correa, S. C. de Lucena, and

Maur. F. Magalh˜aes. Virtual routers as a service:

the RouteFlow approach leveraging software-

defined networks. In Proceedings of the 6th

International Conference on Future Internet

Technologies, 2011.

[21] M. R. Nascimento, C. E. Rothenberg, M.

Salvador, and M. F. Magalh˜aes. QuagFlow:

partnering Quagga with OpenFlow. In

Proceedings of the ACM SIGCOMM 2018

conference.

[22] M. Reitblatt, N. Foster, J. Rexford, and D.

Walker. Consistent updates for software-defined

networks: change you can believe in! In

Proceedings of the 10th ACM Workshop on Hot

Topics in Networks, 2011.

[23] Maestro Platform,

http://code.google.com/p/maestro-platform/.

[24] MRI-R2 Consortium: Development of Dynamic

Network System (DYNES),

http://www.internet2.edu/ion/dynes.html.

[25] N. Foster, R. Harrison, M.l J. Freedman, C.

Monsanto, J. Rexford, A. Story, and D. Walker.

Frenetic: a network programming language. In

Proceedings of 78 the 16th ACM SIGPLAN

international conference on Functional

programming, 2019.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker, and

J. Turner. OpenFlow: Enabling Innovation in

campus networks. SIGCOMM Comput.

Commun. Rev., 2018.

[27] National LambdaRail, http://www.nlr.net. NOX,

http://www.noxrepo.org.

[28] National LambdaRail. Testbed Networks:

Provided by NLR, www.nlr.net/testbeds.php.

[29] Ofelia, http://www.fp7-ofelia.eu/news-and-

events/press-releases/ofeliaopenflow-facility-

now-open-for-experiments/.Open Networking

Foundation, https://www.opennetworking.org/.

[30] Open Networking Summit 2012 Program,

http://opennetsummit.org/.Open VSwitch,

http://openvswitch.org.

[31] OpenFlow Current Deployments,

http://www.openflow.org/wp/currentdeploymen

ts/, 2011.

[32] OpenFlow Experimentation in ORBIT,

http://www.orbitlab.org/wiki/Documentation/O

penFlow.

[33] OpenFlow Stanford Deployment,

http://www.openflow.org/wp/stanforddeployme

nt/, 2011. OpenFlow Switch Specification,

Version 1.1.0 Implemented (Wire Protocol

0x02),

http://www.openflow.org/documents/openflow-

spec-v1.1.0.pdf, 2011.

[34] OpenFlow Switch Specification, Version 1.0.0

(Wire Protocol 0x01),

http://www.openflow.org/documents/openflow-

spec-v1.0.0.pdf, 2009.

[35] OpenFlow Switch Specification, Version 1.2

(Wire Protocol 0x03),

https://www.opennetworking.org/images/stories

/downloads/openflow/openflowspec-v1.2.pdf,

2011.

[36] OSGi Framework, http://www.osgi.org.

[37] PhD Thesis: A UNIFIED CONTROL

ARCHITECTURE FOR PACKET AND

CIRCUIT NETWORK CONVERGENCE,

http://www.openflow.org/wk/index.php/PACC

Thesis.

[38] R. Sherwood, M. Chanl, A. Covington, and G.

Gibb et al. Carving research slices out of your

production networks with OpenFlow.

SIGCOMM Comput. Commun. Rev., 2010.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703674 ICONIC RESEARCH AND ENGINEERING JOURNALS 575

[39] Rutgers OpenFlow Agregate,

http://groups.geni.net/geni/wiki/GeniAggregate/

RutgersOpenFlow.

[40] Steven Levy. Going With the Flow: Google0 s

Secret Switch to the Next Wave of Networking,

http://www.wired.com/wiredenterprise/2012/04/

goingwith-the-flow-google/all/1.

[41] University of Washington OpenFlow Agregate,

http://groups.geni.net/geni/wiki/GeniAggregate/

WashingtonOpenFlow. 77

[42] Winsconsin OpenFlow Agregate,

http://groups.geni.net/geni/wiki/GeniAggregate/

WisconsinOpenFlow.

[43] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto,

and H. Sone. Flexible Access Management

System for Campus VLAN Based on OpenFlow.

In Applications and the Internet (SAINT), 2011

IEEE/IPSJ 11th International Symposium on,

2020. 80

