
© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703677 ICONIC RESEARCH AND ENGINEERING JOURNALS 452

Detecting And Removing Vulnerabilities in Web

Applications Using Data Mining and Static Analysis

ASHA1, AMANDEEP KAUR2, ABHISHEK3, AISHWARYA PATIL4, KAILASH5

1, 2, 3, 4, 5 Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Bidar

Abstract- With the advent of new technologies and

applications, the web today is expanding faster than

ever. Web application security has been an important

subject of research in the last few years, yet it still

remains a challenging problem. The issues arise due

to vulnerable source codes that are written in unsafe

languages like PHP. With the use of static analysis

over the source code, we can detect the input

vulnerabilities in the web application. However, the

static analysis of the source code often create false

positives, and it takes a lot of effort to fix the code.

Through our paper, we delve into the approach of

detecting vulnerabilities of the web application, but

with lesser false positives. With the help of data

mining, we remove the false positives generated.

Here we will do programmed code amendment by

embedding fixes in the source code. Afterwards

diverse testing techniques like regression testing will

be used to ensure if the code after rectification runs

correctly and the points of vulnerability are

removed. We materialize our research and this

approach with the help of a WAP instrument.

Consequently, we perform a trial assessment on

numerous web applications with PHP source code to

guarantee the accuracy of our software.

Indexed Terms- Vulnerabilities, Static Analysis,

Data mining, False Positives.

I. INTRODUCTION

The World Wide Web is the single largest network in

existence. The inculcation of the internet in our lives

have made us hugely dependent on it. Immense

amounts of data and information is being exchanged

over the internet every moment; thus, it attracts

hackers and attackers from every corner looking to

exploit and gain the data. Through this paper, we work

on making the detection of vulnerabilities simpler and

enhancing the ability of the programmers to build

better and more secure web applications.

We examine the source code to detect the input

validation vulnerabilities and insert fixes in the same

code to remove these vulnerabilities. After fixing the

code, we test the code through a testing module to

ensure whether the code has been fixed or not. We use

taint analysis to detect the vulnerabilities. However, a

major issue in using taint analysis is that it generates

false positives, i.e., it shows the presence of

vulnerabilities even when they are not present. This is

because the application is built using PHP, which is an

unreliable and unsafe language. Therefore, we use

taint analysis to detect vulnerabilities and data

mining to predict the existence of false positives. This

actually follows two disjoint approaches, to manually

code about the vulnerabilities (for taint analysis), and

to automatically obtain the knowledge of

vulnerabilities through data mining. Algorithms such

as ID3, SVM, Naïve Bayes, Random Forest, K-NN,

are some of the classifiers that are used to flag the

vulnerabilities as false positives or not. We explore the

various induction rules like PART, JRip, Prism and

Ridor to present the attributes associated with false

positives. Through data mining, the machine only tests

the codes which have false positive in them. We also

explore Web Application Protection (WAP) which

analyses and removes input vulnerabilities from PHP,

which is used in a large number of web applications.

Thus, through this paper, we contribute towards

building a safe and secure web application with the

combination of taint analysis and data mining.

II. EXISTING SYSTEM

The WAP tool is based on the analyses of the source

code in the Intrusion Detection Systems. The IDS are

segregated into two categories, the knowledge-based

intrusion detection systems hold the database of

vulnerabilities or attacks created manually, the

behaviour-based systems learn about attacks using

labelled datasets automatically. WAP is used to detect

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703677 ICONIC RESEARCH AND ENGINEERING JOURNALS 453

different classes of input vulnerabilities in the source

code: XSS (Cross Site Scripting), SQL Injections, Path

Traversal, OS command injection and a few more. The

tool contains knowledge about these vulnerabilities

through manual coding. Using this taint analysis, we

check if the inputs can reach a sensitive function

without validation or sanitization. Hereby is an

example XSS, its input points, sensitive sinks, and

validation function in table 1.

Entry

Points

Sensitive Sinks Sanitisation

Functions

$_POST

$_GET

$_REQU

EST

$_COO

KIE

HTTP_P

OST_V

ARS

HTTP_G

ET_VA RS

HTTP_C

OOKIE_

VARS

$_FILES

$_SERV

ERS

Print echo die

print f exit error

file_put_content

sfprintffile_get_

contents

fgetsfg etc fscanf

Htmlentitieshtmlsp

ecialcharsstrip_tags

urlencode

Table 1. Entry points, Sensitive sinks and sanitization

functions for XSS vulnerabilities.

The three main components of WAP are: 1) Taint

Analyzer, 2) Data Mining Component,3) Code

Corrector.

Fig 1:- Overview of the WAP tool

The primary work of the taint analyser is to parse the

source code and build an abstract syntax tree (AST).

After building the AST, the taint analyzer generates

the tree describing candidate vulnerable control flow

paths. For each vulnerability class, the taint analysis

holds different attributes related to them, i.e. Entry

points, Sensitive sinks, and sanitation/validation

functions. However, it tends to create a lot of false

positives. False positives are vulnerabilities detected

by the taint analyzer which are not true. The

application has to be trained to predict newer false

positives with the help of data mining as the code gets

complex.

The false positive predictor uses the attributes from

these vulnerable control flow path and different

classifiers to predict if the given candidate

vulnerability is a false positive or not. It uses a

combination of three different classifiers, i.e. Logistic

regression, random tree, support vector machine. After

the vulnerabilities have been predicted, the Code

Corrector is used to add the fixes to the faulty code. It

looks after the fixes to be added and where they should

be added. The code corrector also needs the

information about the sanitation function which

should be used embed the fix. This can only happen

when the new classes are understood through data

mining. Tainted model is being used for performing

the static and dynamic analysis. The WAP tool does

not hold any specification of PHP, this is one of the

drawbacks of this tool. Another drawback is that as we

tested the WAP on various open source platforms, it

could not parse source codes without a constructed

grammar. However, with more research, this

drawback has been resolved and new rules have been

added. Pixy uses taint analysis as well as alias analysis

while testing. The alias analysis are used to verify the

existence of aliases, i.e. two or more variables which

are used to denominate the same variable. The WAP

tool performs global level analysis but Pixy performs

only module level analysis.To detect the false

positives, we use WEKA tool and perform data

mining. In some application penetration testing

approach has been used. The response are limited only

to HTTP as this approach is implemented as black box

testing. We use Static Analysis for vulnerability

scanning. Static analysis is efficient, fast and reliable

method of detecting vulnerabilities. To detect the

flaws in the code, techniques used are lexical analysis,

constraint analysis etc. Many of the applications are

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703677 ICONIC RESEARCH AND ENGINEERING JOURNALS 454

implementing this technique so as to detect the flaws

along with the additional modules.

III. LITERATURE SURVEY

A. Sonam Panda, Ramani S put forward a static

examination algorithm to detect SQLCIVs. It

determines the arrangements of conceivable

database queries that a web application may create

utilizing situation free grammars and tracks flow

of data through untrusted sources into those

grammars. By making use of a general meaning

of SQLCIVs based on the background of

unreliable substrings, we can dodge the

requirement for manually inscribed policies. It was

precise, notable unknown liabilities in the web

applications of the real world with multiple

negatives, showing the feasibility of our method.

B. Mounika B, A. Krishna Chaitanya projected an

inevitable system that provided an option to

produce an output sanitization which is robotized

input approval (IPAAS) and it is displayed for

avoiding XSS and SQL assaults. This method

advances the safe improvement of web

applications by the accomplishment of parameter

extraction and different type learning techniques

by applying commanding information validators at

runtime.

C. N. L. de Poel, propounded SAFERPHP, a static

investigation system used to detect the liabilities in

PHP source code. This agenda employs various

algorithms including; 1) To implement new type of

symbolic performance to check denial-of-service

liabilities. 2) A new type of infers procedural

analysis to verify the application sanction policy

and find misplaced checks before any complex

database operations.

D. Y.-W. Huang anticipated an approach which gave

quick protection at a much lower cost than others

since approval is confined to potentially weak

segments of code. If Web SSARI classifies the use

of untrusted data taking after right treatment, the

code is left as it is. As per several experiments,

Web SSARI carried only 0.02 percent of all the

statements to be inspected with inappropriate

sanitization agendas. Interestingly, Sharp and Scott

implements global justification for each data

submitted by the user without any complaint and

without even concerning that the same validation

process may be implemented by web application

as well. These finally outcomes in pointless

upstairs.

IV. OUTLINE OF THE PAPER

Through our research we outline the following points:

• Improvement in security of web applications by

detecting and removing input vulnerabilities in

source code of web applications.

• Usage of taint analysis and data mining techniques

for detection of vulnerabilities with fewer false

positives.

• Automatic correction in the source code and

informing programmer about it. 4) Finally

experimenting the tool with various web

applications to see the correctness of tool.

V. PROPOSED SYSTEM

Through this paper, we propose a tool that will scan

applications based on PHP, to detect and remove input

validation and other vulnerabilities. We use a

combination of two techniques i.e. Static source code

analysis and data mining in our approach. For

detection of false positives, Data mining coupled with

different machine learning classifiers is used. The

presence of false positives is confirmed by Induction

rule classifier. The single detection technique fails to

provide correct results so different detection

techniques are combined. But they also fail to provide

entirely correct results. The generation of false

positives happens after the detection of candidate

vulnerabilities. The proposed system comprises of the

tool which will replace the vulnerable code with fixes.

Fixes are nothing but the correct code. After replacing

the code by fixes, testing will be performed to check

for the correct working of the system. It will check the

behaviour of the application after replacing vulnerable

code with fixes. The proposed system is designed for

PHP applications. The system has been experimented

with a number of synthetic codes in which

vulnerabilities have been induced purposely.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703677 ICONIC RESEARCH AND ENGINEERING JOURNALS 455

VI. IMPLEMENTATION

The approach can be implemented as a sequence of

steps.

Fig 2:- Architecture of Proposed System.

A. Taint analysis

In taint analysis, the module is used to parse and

analyse the source code. After parsing, the module

builds an abstract syntax tree which gives us

information about candidate vulnerable control flow

path. To prevent the development of vulnerabilities, all

the variables are checked properly. Thus, before

reaching the sensitive sinks, the module checks the

variables. The PHP source code which is used in the

application is the input given in the module, and the

candidate vulnerabilities are the output. AST Lexer

and Parser in the module are used to create the tree. In

the Fig 3. shows the Abstract Syntax Tree for

$b=$_GET[‘v’]. All the variables that act as entry

points are marked tainted in the beginning. The

module generates a symbol table containing all the

tainted variables. All the symbols dependent on the

tainted variables are checked after marking them. Fig

4. shows the Tainted Symbol Table for specific

symbols having name, line number, and tainted flag as

its variables. In this way, all the candidate

vulnerabilities are marked which will be checked by a

false positive predictor to make sure about the real

vulnerability.

Fig 3: - Abstract Syntax Tree

Fig 4: - Tainted Symbol Table and Taint Analysis on

variables

B. Data mining

Data mining is used to obtain the attributes from

candidate vulnerable control flow-paths. The presence

of data mining is actually confirmed by data mining

coupled with classifiers. If the presence of false

positives is confirmed, further processing will be done

with the help of induction rules.

C. Code correction

After detecting vulnerabilities and checking it for false

positives each real vulnerability is removed by

correction of its source code. Then, the code is

corrected with the insertion of the fixes and new files

are created. Fixes are small pieces of the code (small

PHP functions developed to the effect) that perform

sanitization or validation of the user inputs, depending

on the vulnerability type. Our approach involves

automatic code correction using K-NN algorithm

after the detection of the vulnerabilities by taint

analyser and the data mining component.

D. Feedback

After testing the module, the programmer provides

feedback and observations based on the experience of

the client. Experience will be based on data collected

from vulnerable paths, vulnerabilities, fixes, false

positive probability and the attributes that classified it

as a false positive. Feedback will help programmer to

avoid the same mistakes.

E. Testing

In this module, we perform testing on the fixed code

and scan for more bugs. The testing is done without

any automation tool, i.e. it is done manually. Different

manual testing tools are Selenium, QTP, Jmeter,

Loadrunner.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703677 ICONIC RESEARCH AND ENGINEERING JOURNALS 456

F. Algorithms Used

The algorithms which will be used in implementing

the proposed system are Logistic Regression, Naïve

Bayes (NB) and K-Nearest Neighbour (KNN). The

other algorithms that will be used are random tree and

random forest classifier.

CONCLUSION

Through this paper, we propose a method of scanning

and amending vulnerabilities in web applications, we

put forward a technique of detecting the input

validation vulnerabilities. Two inverse methodologies

have been used, i.e., taint analysis of source code and

data mining to predict false positives. Data mining is

coupled with three different classifiers and an

induction rule classifier to predict and fix the false

positives. The classifier were chosen after an extensive

comparison and testing of several alternatives. Even

though through data mining, we can’t completely

evade static examination, we do get a probabilistic

consequence of the issues. This tool is used to embed

fixes in the code and contains sanitization and

validation functions. Testing is utilized to check if the

fixes surely evacuate the vulnerabilities and do not

compromise the (correct) conduct of the

applications. The tool became explored by way of

the usage of synthetic code with vulnerabilities

embedded on motive, and with a wide variety of open-

source PHP applications. It turned into additionally

contrasted with source code analysis tools: Pixy, and

PHP MinerII. This evaluation proposes that the device

can discover and correct the vulnerabilities of the

classes it is programmed to deal with. It may find out

388 vulnerabilities in 1.4 million strains of code. Its

exactness and accuracy were round 5% advanced to

PHP MinerII's, and 45% Superior to Pixy's.

REFERENCES

[1] L. K. Shar: Predicting common web application

vulnerabilities from input validation and

sanitization code patterns. Automated Software

Engineering (ASE), 27th IEEE/ACM

International Conference, 2012.

[2] N. L. de Poel: Automated security review of PHP

web applications with static code analysis. ACM

23rd international conference on World Wide

Web, 2014.

[3] Y.W. Huang: Securing web application code by

static analysis and runtime protection. ACM 1-

58113-844- X/04/0005, WWW 2004.

[4] L. K. Shar, H. B. K. Tan: Mining SQL injection

and cross site scripting vulnerabilities.

International Conference on Software

Engineering, 2012.

[5] Sonam Panda, Ramani S: Protection of Web

Application against SQL Injection Attacks.

IJMER Vol 3, Issue.1, Jan-Feb 2013

[6] Iberia Medeiros, Numo Neves: Detection of web

application vulnerabilities using static analysis.

IEEE transaction on reliability.

[7] Symantec, Internet threat report. 2012 trends,

vol. 18, Apr. 2013.

[8] Ashwani Garg, Shekhar Singh: A Review on

Web Application Security Vulnerabilities.

IJARSCE, Volume 3, Issue 1, January 2013.

